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Micceri (1989) examined the distributional characteristics of 440 large sample general 
education achievement and psychometric measures. All the distributions were found to be 
statistically significantly different from the normal distribution. In this study, 395 special 
education datasets were examined. Although there were some normally distributed 

datasets, most were not, and some were markedly different in shape from those found by 
Micceri (1989). Implications for statistical testing and making special education policy 
decisions were given. 
 
Keywords: Nonnormal data sets, statistical testing, special education  

 

Special education distributions 

Micceri (1989) conducted an investigation of the distributional characteristics of 

440 large sample educational achievement and psychometric measures. The data 

sets were obtained from general education and the behavioral and social sciences, 

including ability tests, achievement tests, criterion or mastery level tests, 

psychometric measures, and pre- and post-intervention scores. All were found to 

be non-normal based on the Kolmogorov-Smirnov test with nominal α = 0.01. 

Factors that contributed to a non-Gaussian error distribution in the population 

include (a) subpopulations within a target population, (b) ceiling/floor effects, and 

(c) variability in the items within a measure. This has implications in terms of 

statistical testing, because classical parametric tests require normality in order to 

maintain acceptable robustness and comparative power properties (Sawilowsky & 

Blair, 1992). If ignored, costly errors may occur in making policy decisions. 

The prevalence of non-normally distributed data permeates many fields. 

Previous studies that demonstrated this include Bradley (1977, 1982), Hill and 
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Dixon (1982), Ito (1980), Pearson and Please (1975) and Tan (1982). However, 

they, as well as Micceri (1989), did not have special education and disability 

assessments as a focus. 

Assessment of students in special education is frequently different than for 

students in general education, because often the focus is on process or progress as 

opposed to specific learning outcomes. This may include adaptive behavior, 

development, and screening. Adaptive behavior skills are those skills that are 

useful in daily functioning. Developmental skills pertain to fine- and gross-motor, 

communication and language, social, cognitive, and self-help skills. Screening 

helps find children who might be below the norm in different areas (Rosenberg, 

Westling, & McLeskey, 2010). 

Purpose of the study 

Given the paucity of representation of special education data sets in the studies 

mentioned above, the purpose of this study is to canvass that literature to 

determine the distributional shape commonly encountered. This will help inform 

the appropriate statistical method (i.e., parametric or nonparametric) to be used in 

measuring the progress of students in special education. 

Methodology 

The distribution patterns of special education data sets were obtained from 

published, peer-reviewed journal articles from the years of 2007-2011. In addition, 

research studies that focused on special education assessment were considered for 

inclusion. A Google Scholar search with the key terms “special education” and 

“data” returned 396,397 related publications. 

To construct a confidence level of 95% and margin of error of ±5%, a 

sample size of 384 data sets was needed from that population. It was estimated a 

return response rate of 25% was needed to accommodate lack of responses, and 

therefore 1,540 survey requests were made from selected authors of those 

published studies. Assessment data sets were also solicited from various state 

departments of education. Requests were made via email and telephone. The 

request included instructions to de-identify student information. Initial contact via 

email and phone was made from October - December, 2012. Follow-up phone 

calls and email messages were made in January, 2013. 
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Criteria for inclusion 

Potential studies were reviewed to determine if the instrument used to collect data 

was supported by adequate reliability and validity information. However, there 

was no preset type or minimum reliability index or validity methodology required 

for inclusion. 

Reliability is “the consistency that a test measures whatever it measures” 

(Sawilowsky, 2007, p. 516). As noted by Sawilowsky (2000), reliability is a 

psychometric property of a test. If the test produces similar results under 

consistent conditions then it is considered reliable. There were different types of 

reliability information obtained: 

 

 Internal consistency, which is the extent items on an instrument 

relate to each other. 

 Test-retest, which is the consistency over time (i.e., stability) of an 

instrument. 

 Inter-rater reliability, which is the degree of agreement among raters. 

 

Validity is “the degree that a test measures what it purports to measure 

(Sawilowsky, 2007, p. 166). There are different types of validity, including 

content-related validity, construct validity, and predictive validity (Cicchetti, 

1994): 

 

 Content-related validity, which is how well the content of the test 

relates to what is being assessed. 

 Construct validity. “A construct is a fiction that is used to explain 

reality” (Cuzzocrea & Sawilowsky, 2009, p. 215), such as aptitude, 

intelligence, or self-determination. Hence, construct validity is the 

degree that a test measures that fiction used to explain reality. 

 Predictive validity, which is the extent a test predicts some criterion 

measure. 

Results 

There were 744 authors contacted via email. Note that many authors had obtained 

multiple data sets in their study, exceeding the 1,540 data set requirement. 

Follow-up phone calls and emails were conducted where necessary after 3 months. 

There were n = 333 data sets collected from journal article authors, as compiled in 
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Table 1. In addition, academic achievement special education assessment test 

scores were requested from state education departments. Twenty four state 

departments of education, randomly selected, were contacted from which an 

additional n = 62 data sets were obtained from Alaska, Florida, Michigan, 

Minnesota, Missouri, and South Carolina, as compiled in Table 2. Thus, there 

were a total N = 395 data sets. Based on an estimated accessible population, the 

obtained sample size yielded a confidence level of 95% with a ±4.25% margin of 

error. 
 
 
Table 1. Summary of Canvassed Authors (744) and Data Sets (4,362) 

 

  Total Total % of Articles 

Acceptable Reliability 1760 40.30% 

Acceptable Validity 1600 36.70% 

Acceptable Articles* 1002 23.00% 

Acceptable Data Sets 333 7.60% 
 

*Note: An acceptable article required acceptable reliability and validity evidence. 

 
 
Table 2. Data Sets from State Departments of Education 

 

Florida 16   Minnesota 19 

South Carolina 8 
 

Alaska 15 

Missouri 3   Michigan 1 

      Total 62 

 
 

Cronbach alpha coefficients for the instruments used to obtain these data sets 

ranged from .70 to .93. Test-retest reliability coefficients ranged from .65 to .97, 

and alternate-forms reliability ranged from .91 to .92. Concurrent validity indices 

ranged from .70 to .89, and predictive validity indices ranged from .65 to .86. 

(The author of one study used Item response theory (IRT) in a measurement 

model (i.e., Rasch one-parameter logistic (1PL) partial credit model for 

polytomous scoring). 

Distribution shapes 

The histograms was analyzed and categorized. Histograms that resembled 

Micceri’s (1986) distributions were named accordingly. Histograms that did not 
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resemble Micceri’s distributions were given a name based on the shape of each 

distribution. Figure 1 contains typical shapes obtained from the data sets. The 

types of distributions and the percentage of each distribution that were collected 

are indicated in Table 3. There were 258 (65.31%) special education data sets that 

were different and 137 (34.67%) similar to Micceri’s (1989) shapes. 

The data sets were also analyzed for normality and compared with Micceri’s 

data sets. Based on the Kolmogorov-Smirnov and Shapiro-Wilks tests, 318 (81%) 

data sets were non-normally distributed and 77 (19%) data sets were normally 

distributed. Recall that Micceri (1986, 1989) found 100% of the distributions to 

be significantly non-normally distributed at the α = .01 level. There were 19 out 

of 440 distributions, or 4.3%, that were considered reasonable approximations to 

the Gaussian distribution only in the sense that they were smooth symmetric with 

light tails. As compared with Micceri’s (1986, 1989) results, this study shows 

special education assessment data sets were somewhat more likely to be normally 

distributed, but the number of different data sets shapes was higher than those 

found by Micceri (1986, 1989). 
 
 
Table 3. Type, Number, and Percentage and Distribution Shapes 
 

Type of Distribution Number Percentage 

Extreme Bimodality 106 26.84% 

Equimodal 96 24.30% 

Unimodal and Smooth 79 20.00% 

Bimodal and Smooth 31 7.85% 

Slight Asymmetry 25 6.33% 

Multimodal and Lumpy 19 4.81% 

Unimodal and Slightly Smooth 10 2.53% 

Extreme Asymmetry 6 1.52% 

Slightly Asymmetric and Digit Preference 6 1.52% 

Digit Preference 4 1.01% 

Unimodal and Slightly Lumpy 4 1.01% 

Equimodal and Symmetric 3 0.76% 

Extreme Mass at Zero 2 0.51% 

Mass at Zero 1 0.25% 

Smooth Symmetric 1 0.25% 

Equimodal and Slight Asymmetry 1 0.25% 

Slightly Smooth and Symmetric 1 0.25% 
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Dataset 1. Skew = 2.090, PATM Pre-test 

 
Dataset 2. Skew = 1.340, PATM Post-test 

 

 
Dataset 3. Skew = -.111,  

CAAVES Reading Assessment 

 
Dataset 4. Skew = -.080,  

CAAVES Math Assessment 
 

 
Dataset 5. Skew = -.246, Pre-test 

Tomlinson’s differentiated instruction 
strategies adapted assessment 

 

 
Dataset 6. Skew = -1.543, Post-test 
Tomlinson’s differentiated instruction 

strategies adapted assessment

 
Dataset 7. Skew = 1.291 

Grade 2, Dyslexiacriteria, Spring 

 
Dataset 8. Skew = .896 

Grade 1, Fluency Word Recognition, Fall 
 
Figure 1. Special Education Data Sets 
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Discussion 

There were more classifications of special education data sets as extreme 

bimodality (n = 106, uni-modal, and smooth and equimodal than found in other 

disciplines. There were 106 extreme bimodality distributions and 57%, or 60 data 

sets, were non-normal. There were 46 distributions that were normal. There were 

79 unimodal and smooth distributions and 29%, or 23 data sets, were non-normal. 

The remaining category, which had a large amount of distributions, is the 

equimodal category. There were 96 distributions and 70%, or 67, were non-

normal. Thirty percent of the equimodal distributions were normally distributed 

based on the Kolmogorov-Smirnov and/or Shapiro-Wilks normality tests. 

These data sets that were non-normally shaped pertained to curriculum-

based assessments in writing, alternative assessments, applied problem solving, 

calculations, mathematics operations, reading, letter-word identification, 

segmenting words, and letter naming. Assessments of achievement, and fine- and 

gross-motor skills tended to be shaped normally.  

In terms of policy, it is important to consider statistical robustness and 

comparative power when analyzing special education assessments. The results of 

this survey confirm the importance of considering nonparametric alternatives to 

parametric methods. As has been conducted throughout the Monte Carlo literature 

of the past century for data in many disciplines (e.g., general education, 

psychology, medicine, nursing), a study is warrant to determine the extent to 

which robustness and power of parametric tests may be compromised when 

analyzing special education data. 

The new special education data shapes in this study may overlap with 

Micceri’s (1989) data shapes. Due to the small sample size of the special 

education data sets, some of the shapes were different than Micceri’s data shapes, 

but a larger sample sizes may show the data converges to one of Micceri’s shapes. 

For example, consider the data sets from the Florida Alternate Assessment. 

They were separated by grade level and a distribution was created for each data 

set, because the achievement of students in special education is measured based 

on a set of academic standards for each grade level. However, if the sample size is 

increased by combining a single grade with all grade levels, the resulting shape, 

identified by Micceri (1989) as a discrete mass at zero with gape, will result, as 

noted in Figure 2. 
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Figure 2. Concatenated Florida Alternate Assessment Special Education Data Set for All 
Grade Levels 

 

 
 

In summary, Micceri’s (1989) seminal article on 440 real data sets from 

general education achievement and psychometric constructs, shockingly, found 

them all to be non-normally distributed. This led to a major overhaul in 

techniques for analyzing quantitative data, as is known in the statistical literature, 

in those fields. Unfortunately, progress in revising and updating statistical 

strategies into other fields has been slow. Workers have the tendency to hold fast 

to techniques learned many years prior in graduate school, and furthermore, with 

the uptick in qualitative research, the lessons learned from Micceri (1989) obtain 

little voice until such surveys are replicated in their fields. On the basis of 395 

special education data sets obtained in this study, differences from Micceri’s 

(1989) rubric were noted, particularly the emergence of new non-normal 

distribution shapes. We believe this survey will help motivate quantitative 

workers in the special education field update their data analytic choices. 
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Appendix: Journals used in the survey 

Journals marked with an “*” were used in the survey. The data is available from 

the first author of this study. 

 

*American Annals of Deaf 

*American Educational Research Journal 

*American Journal on Intellectual and Developmental Disabilities 

*Annals of Dyslexia 

*Applied Measurement in Education 

Australasian Journal of Special Education 

Behavioral Disorders 

British Journal of Special Education 

Career Development for Exceptional Individuals 

Child Development Perspectives 

Developmental Psychology 

Early Childhood Research Quarterly 

Education and Training in Mental Retardation and Developmental Disabilities 

*Education and Treatment of Children 

Educational Assessment 

*Educational and Psychological Measurement 

*Elementary School Journal 

*Exceptional Children 

*Exceptionality: A Research Journal 

International Journal of Disability 

*Journal of Adolescent and Adult Literacy 

*Journal of Applied Behavior Analysis 

Journal of Applied Developmental Psychology 

Journal of the Association for Persons with Severe Handicaps 

Journal of Attention Disorders 

*Journal of Autism and Developmental Disorders 

Journal of Deaf Studies and Deaf Education 

*Journal of Disability Policy Studies 

*Journal of Early Intervention 

Journal of Educational Psychology 

Journal of Educational and Behavioral Statistics 

Journal of Educational Measurement 

*Journal of Emotional and Behavioral Disorders 
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Journal of Intellectual Disability Research 

*Journal of the International Association of Special Education 

*Journal of Learning Disabilities 

Journal of Policy and Practice in Intellectual Disabilities 

*Journal of Positive Behavior Interventions 

*Journal of Psychoeducational Assessment 

Journal of Research and Development in Education 

*Journal of School Psychology 

*Journal of Special Education 

Journal of Speech and Hearing Research 

*Journal of Visual Impairment and Blindness 

*Learning and Individual Differences 

*Learning Disability Quarterly 

*Learning Disabilities Research and Practice 

Mental Retardation 

Peabody Journal of Education 

*Preventing School Failure 

*Psychology in the Schools 

*Reading and Writing 

Reading Psychology 

Reading Research Quarterly 

*Remedial and Special Education 

Research in Developmental Disabilities 

*Review of Educational Research 

*School Psychology Quarterly 

*School Psychology Review 

Teachers College Record 

Teaching Exceptional Children 

*Volta Review 
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