
Journal of Modern Applied Statistical
Methods

Volume 14 | Issue 1 Article 23

5-1-2015

Pseudo-Random Number Generators for Vector
Processors and Multicore Processors
Agner Fog
Technical University of Denmark, agfo@dtu.dk

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Fog, Agner (2015) "Pseudo-Random Number Generators for Vector Processors and Multicore Processors," Journal of Modern Applied
Statistical Methods: Vol. 14 : Iss. 1 , Article 23.
DOI: 10.22237/jmasm/1430454120

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss1/23?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss1%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Modern Applied Statistical Methods

May 2015, Vol. 14, No. 1, 308-334.

Copyright © 2015 JMASM, Inc.

ISSN 1538 − 9472

Dr. Fog is a Researcher at the Technical University of Denmark. Email him at
agfo@dtu.dk.

308

JMASM Algorithms and Code
Pseudo-Random Number Generators for
Vector Processors and Multicore Processors

Agner Fog
Technical University of Denmark

Ballerup, Denmark

Large scale Monte Carlo applications need a good pseudo-random number generator
capable of utilizing both the vector processing capabilities and multiprocessing
capabilities of modern computers in order to get the maximum performance. The
requirements for such a generator are discussed. New ways of avoiding overlapping
subsequences by combining two generators are proposed. Some fundamental
philosophical problems in proving independence of random streams are discussed.
Remedies for hitherto ignored quantization errors are offered. An open source C++

implementation is provided for a generator that meets these needs.

Keywords: Random number generation, SIMD, vector processors, multiprocessors,

parallel generation, combination of generators, quantization errors, theoretical proofs,

philosophy of science

Introduction

The exponential increase in the computing power of mainstream microprocessors

over several decades, known as Moore's Law, has made large scale Monte Carlo

applications feasible and common. The current trend in microprocessor

technology goes towards parallel processing of data in mainly two ways: 1)

microprocessors have vector registers that can do arithmetic operations on a

whole vector with a single CPU instruction (Single Instruction Multiple Data,

SIMD), and 2) microprocessor chips have multiple CPU cores that can execute

multiple threads simultaneously. The design of pseudo-random number generators

(PRNGs) has been improved considerably in recent decades, but few of the

published designs are suitable for utilizing the parallel processing capabilities of

mailto:agfo@dtu.dk

AGNER FOG

309

today's microprocessors in large scale computations (Manssen, et al., 2012;

Passerat-Palmbach, Mazel and Hill, 2011). The construction of pseudo-random

number generator software capable of utilizing both vector processing and multi-

threading for the fast generation of large amounts of pseudo-random numbers of

high quality, using the newest microprocessor technology are considered.

Choice of hardware

Several hardware platforms are available for parallel processing:

Mainstream CPUs for the PC market

These CPUs are quite powerful. They are universally available and cheap because

of high production volumes. The size of vector registers in the common x86

family of microprocessors has grown exponentially in recent years, as illustrated

in Table 1.

Table 1. Vector register size of x86 family microprocessors.

Year introduced
Instruction set for integer vector

operations
Vector size, bits

1997 MMX 64

2001 SSE2 128

2013 AVX2 256

expected 2017 AVX-512 512

Vector sizes of 1024 bits and perhaps 2048 bits can be expected in

mainstream CPUs in the coming years. However, the vector size will probably not

keep growing exponentially because of diminishing returns and because the size

of mask registers used for conditional execution is limited to 64 bits,

corresponding to 64 elements of 32 bits each = 2048 bits, in current specifications

from Intel (Intel, 2014a).

The high-end CPUs are currently available with 8 or more cores and a clock

frequency of 3 – 4 GHz. Some models are capable of running two threads in each

core, but this may not be useful for CPU-intensive code because both threads are

competing for the same hardware resources (Fog, 2014a).

PSEUDO-RANDOM NUMBER GENERATORS

310

Graphic processors.

Graphics Processing Units (GPUs) are included in many PCs and designed mainly

for the purpose of computer games. Contemporary GPUs are available in many

different configurations with hundreds or thousands of parallel streams and clock

frequencies ranging from 200 to 1600 MHz. GPUs have increasingly been applied

to general computation tasks that involve large amounts of parallel data. Software

libraries for random number generation in GPUs are available (Manssen, et al.,

2012; Demchik, 2011; Barash and Shchur, 2014; Nandapalan, et al., 2012).

A serious limitation of GPUs is that each stream has access to only a small

amount of RAM memory, and communication between streams is expensive. We

have to consider that random number generation is typically only a small part of

an application, using only a small part of the total CPU time. The other parts of a

typical application, the ones that consume the random numbers, will typically be

running in the same units that produced the random numbers and be subject to the

same limitations on memory use and communication between streams. This is

limiting the usefulness of GPUs for large scale Monte Carlo applications.

Many-core coprocessors

Intel's current Many Integrated Core (MIC) Xeon Phi coprocessor codenamed

Knights Corner has up to 61 cores with 512-bit vector registers and a clock

frequency of 1.2 GHz (Chrysos, 2012). The throughput per core is much lower

than for a general purpose CPU, and the total throughput is rarely more than a few

times the throughput of the best mainstream CPU configurations. In some cases, a

mainstream CPU can even outperform the Knights Corner (Saule, Kamer and

Çatalyürek, 2013; Chan, 2013; Karpiński 2014). The Knights Corner has its own

instruction set, which makes it less attractive for portable software. The

announced successor, codenamed Knights Landing, is expected to be faster and it

will be using the same instruction set (AVX-512) as future mainstream CPUs

(Anthony, 2013). This will make it possible to use the same software on MIC

processors and mainstream CPUs.

Similar products from other vendors include Nvidia Tesla and AMD

FireStream. These processors have more in common with GPUs.

Large vector processors

For most applications, clusters of general microprocessors have largely replaced

the large and expensive supercomputers that were used decades ago for

demanding scientific purposes.

AGNER FOG

311

Parallel generation of pseudo-random numbers in vector
processors

A PRNG generally uses a generating function f of the form (L’Ecuyer, 1994)

 1 2f , , ,i i i i nx x x x

where each new value xi is a function of the previous n values. The successive

values xi may be used directly as random numbers, or they may be transformed by

an output function g of the form

 1g , , ,i i i i ny x x x

Not all of the values xi−1, xi−2, ..., xi−n need to be included in f. We will say

that f has a feedback path of length φ if f depends on xi−φ. The function f can be

implemented in a vector processor with registers of size v bits if v ≤ wφ for all

feedback paths φ, where w is the number of bits needed to represent each xi. For

example, for a vector size v of 256 bits and a word size w of 32 bits, the shortest

feedback path φ must be at least 8 for an efficient vectorized implementation of f.

If φ ≥ 8 and n ≥ 8 then we can calculate 8 successive values of xi with a vectorized

function f of the form:

 7 6 1 2, , , , , ,i i i i i i nx x x x x x f

If v > wφ then the vectorized function f needs to implement multiple steps of

the generating function f. This is usually so complicated that it offsets the

advantage of vectorized calculation.

The last n values of xi are stored in a circular buffer, called the state buffer,

which is updated by each call of the generating function f or f. The initial value of

the state buffer is a function of an arbitrary number called the seed. This function

is the so-called seeding procedure.

The size of the state buffer is at least wn and often extended to the nearest

multiple of the vector size v. The implementation is most efficient if wφ and wn

are multiples of the vector size v.

Most of the commonly used PRNGs have a feedback path φ = 1, which

makes them unsuited for vectorized calculation. Preferred generators are those

with feedback paths corresponding to the largest vector size there is access to in

PSEUDO-RANDOM NUMBER GENERATORS

312

available vector processors. A generator designed to match 128-bit vector

registers has been published under the name SIMD-oriented Fast Mersenne

Twister (SFMT) (Saito and Matsumoto, 2008, 2009).

Parallel generation of pseudo-random numbers in
independent streams

The construction of generators suitable for vector processors has received

relatively little attention in the literature, but the simultaneous generation of

multiple pseudo-random streams has been discussed in several publications. Five

different methods for producing independent streams have been proposed

(L’Ecuyer, 1994; Salmon, 2011; L’Ecuyer, Oreshkin and Simard, 2014; Bauke

and Mertens, 2007):

1. Use multiple instances of the same generator with different seeds.

We want to avoid overlap between the generated subsequences.

Assume that we are generating k subsequences of length ℓ from a

generator with total cycle length ρ. If the seeding procedure is

sufficiently random then we can calculate the probability that any of

the subsequences are overlapping as (L’Ecuyer, Oreshkin and

Simard, 2014)

1 21 1 / /

k
p k k

If the total cycle length ρ is sufficiently long then this probability can

be very small. For example, for a Mersenne Twister MT19937

(Matsumoto and Nishimura, 1998) with cycle length ρ = 219937−1,

k = 1000 and ℓ = 1010, we have p = 2∙10−5986. This means that we can

safely ignore the risk of overlapping subsequences in such cases.

2. Use a generator with a jump-ahead feature. We use this jump-ahead

feature to generate each stream as a subsequence of the same

generator at an offset q ≥ ℓ relative to the preceding stream

(L’Ecuyer, 1994; L’Ecuyer and Côté, 1991). The jump-ahead feature

is usually quite complicated and requires a significant amount of

computing resources. Regularly spaced starting points may cause

inferior randomness for some generators (Durst, 1989).

AGNER FOG

313

3. A variant of the jump-ahead method is to put all the randomness in

the output function g, while the generating function f is a simple

counting xi = xi−1 + 1 mod 2w (Salmon, 2011). This makes it trivial to

generate non-overlapping subsequences. The output function g is

borrowed from cryptology. Instructions for AES encryption are

implemented in hardware in many computers, using a vector size of

128 bits, but not higher (Intel, 2014b).

4. Leapfrogging. The first of k streams uses outputs xi, xi+k, xi+2k, ... The

next stream uses xi+1, xi+1+k, xi+1+2k, ... and so on. This is useful when

the k streams form a vector generated by a single vector processor. It

is more complicated to use leapfrogging when the streams are

generated in separate processors. Known multiprocessor

implementations use prime modulus (Bauke and Mertens, 2007),

which leads to quantization errors (see below).

5. Use different generators based on the same principle but with

different sets of parameters in the generating function. If we have

many streams then we need to either store many pre-calculated

parameter sets, or include the necessary code to search for good

parameter sets on the fly (Matsumoto and Nishimura, 2000). This so-

called dynamic creation method requires a lot of computational

resources, possibly even more than the resources needed to generate

the random number streams, and it has been reported to make

inferior parameter sets in some cases (Passerat-Palmbach, Mazel,

Mahul and Hill, 2010).

There is disagreement among theorists about whether method 5 can be

recommended. One would intuitively assume that random streams generated by

different generators with different parameter sets are statistically independent, but

some have argued that we have no theoretical proof that there is no unwanted

correlation between such random streams (Passerat-Palmbach, Mazel and Hill,

2011; L’Ecuyer, 1994). However, those who make this objection seem to ignore

that the same argument can be made about subsequences from the same generator.

Perhaps they rely on the implicit (and arguably false) assumption that the most

recommended generators are perfect, and conclude that non-overlapping

subsequences from the same generator are statistically independent.

However, if subsequences are spaced by an offset of e.g. q = 1015 and

experimental tests for randomness have included no sequences longer than

ℓ = 1010 then we have no experimental proof that all subsequences are

PSEUDO-RANDOM NUMBER GENERATORS

314

independent, and no theoretical proof either (Bauke & Mertens, 2007). It is

reasonable to assume that the probability of unwanted correlations between

sequences from different generators (with different seeds) is not bigger than the

probability of unwanted correlations between subsequences of the same generator.

We will return to a more general discussion of theoretical proofs below.

6. A sixth method of making independent pseudorandom streams is

now proposed. It involves the combination of two different PRNGs.

We will have two different generators, G and H, and initialize them

with seeds s1
G and s1

H, respectively. G generates a pseudorandom

sequence x1
Gi and H makes another sequence x1

Hi, where each x is an

integer of w bits, and 0 ≤ i < ℓ. The two sequences are now combined

into one stream by means of a bitwise XOR operation or addition

modulo 2w, e.g. x1
i = x1

Gi + x1
Hi mod 2w. The combined stream x1

i

now depends on both seeds s1
G and s1

H. We can make a second

combined stream (indicated by superscript 2) x2
i by changing the

seed for G, s1
G to s2

G and keeping the seed for H constant:

s1
G ≠ s2

G ∧ s1
H = s2

H. The second combined stream is

x2
i = x2

Gi + x2
Hi = x2

Gi + x1
Hi mod 2w. Now consider the unlikely event

that the seed s2
G generates a sequence x2

Gi that is offset from x1
Gi by

a distance q < ℓ, perhaps because of a bad seeding procedure. In this

case, the sequences x1
Gi and x2

Gi have a partial overlap of length

ℓ − q because x2
Gi = x1

Gi + q. However, the contribution from H is

x2
Hi = x1

Hi ≠ x1
Hi + q, except for random i-occurrences with expected

frequency 2−w. Therefore, the first and second combined sequences

x1
i and x2

i will be statistically independent, even in the unlucky event

that the G component of the sequences have a partial overlap.

7. A variant of method 6 is to change both seeds:

s1
G ≠ s2

G ∧ s1
H ≠ s2

H. To see if this method is safe from overlaps,

consider the coincidence of three unlucky events: 1) The sequence

x2
Gi is offset from x1

Gi by a distance |qG| < ℓ so that the G-sequences

have a partial overlap; 2) the sequence x2
Hi is offset from x1

Hi by a

distance |qH| < ℓ so that the H-sequences have a partial overlap; and

3) the two overlaps are equal qG = qH. The two combined sequences

x1
i and x2

i have a partial overlap only in this contrived scenario. This

is a theoretical possibility, but it can only happen at the coincidence

of three unlucky events, all of which are extremely unlikely. The

probability of this coincidence happening between any of k

AGNER FOG

315

combined sequences is approximately k2ℓ / (ρGρH) where ρG and ρH

are the cycle lengths of G and H, respectively. With large cycle

lengths, this probability is so low that there is room for human errors.

Even in the event that both seeding procedures are seriously flawed,

the coincidence of the three unlikely events seems no more than a

theoretical possibility.

Method 7 has the advantage that the difference between two combined

streams di = x2
i – x1

i depends on both generators G and H, while di depends only

on G if method 6 is used. This gives improved randomness in applications where

differences between streams are involved. The possible improvement in

randomness by combining two different generators is discussed in the next section.

Advantages of combined generators

The technique of combining two or more PRNGs is often used in order to

improve randomness and cycle length. The cycle length of a combined generator

is the least common multiple of the cycle lengths of the individual generators.

There are different opinions on the merits of combining two or more PRNGs.

L'Ecuyer has argued that the combined output of two generators may conceivably

be less random than the individual sequences (L’Ecuyer, 1990, 1994), while the

acknowledged handbook Numerical Recipes emphasizes: "An acceptable random

generator must combine at least two (ideally unrelated) methods" (Press, 2007, p.

342).

The combination of two random streams can only be less random than its

components if the two streams are correlated in a certain way. The next section

will discuss whether it is possible to prove that such an unfortunate correlation

between two random streams does not exist.

It has been observed that the combination of two or more PRNGs produces a

stream that is more random than either component. In fact, many good random

generators have been made by combining inferior ones. Pragmatically speaking,

we may say that if generator G has some defects and generator H has some other

defects, then the combination of G and H has neither of these defects, as long as

the defects of G and H are of different kinds. This is not a universal law of nature,

of course, and it requires a more specific analysis to determine whether a

particular kind of defect can be eliminated by combination of generators. There is

plenty of theoretical evidence that various defects in random generators can be

eliminated by combining with other generators that do not have the same kind of

PSEUDO-RANDOM NUMBER GENERATORS

316

defects (Matsumoto and Nishimura, 2000; Deng, Lin, Wang and Yuan, 1997;

L’Ecuyer and Granger-Piché 2003; Marsaglia, 1985). Experience shows that

combining two generators is a very efficient way of improving randomness. For

example, if generator G has a bias that makes certain values more frequent than

others, and generator H has no such bias, then the combined output of G and H

will have no bias. If Generator H has a correlation between subsequent numbers

and generator G has no such correlation, then the combined output will be free

from such correlations. The two generators should preferably be very different in

their design in order to avoid that they both have the same kinds of defects (Press,

2007).

Combining two or more generators is also useful in applications where

security is important. It is possible to reconstruct a complete sequence from a

subsequence in many generators. This becomes very difficult or impossible when

multiple generators are combined and only the combined output is accessible to

the attacker.

How much can be proven?

It has been argued above that it is unreasonable to demand a theoretical proof that

streams from different PRNGs are uncorrelated as long as we cannot even prove

the same thing for different substreams of the same generator. This opens up a

much more general discussion about what kind of proofs are actually possible in

relation to PRNGs. There are three kinds of claims that we would like to prove for

generators:

a) A particular generator G has no unwanted correlation with an

application A, i.e. a correlation that would make A produce results

that are significantly different from what perfectly random numbers

would give.

b) There is no correlation between non-overlapping subsequences from

the same generator G.

c) There is no correlation between the outputs of two different

generators G and H.

Claims of type (a) are made implicitly or explicitly whenever a particular

PRNG is recommended. Such claims may later be falsified when a particular

weakness in a generator is discovered. For example, Linear congruential

generators which have been widely used in commercial software were found after

AGNER FOG

317

many years to have serious defects (Entacher, 1998). The popular and often

recommended Mersenne Twister has the flaw that it can produce long sequences

with more 0's than 1's if it comes into a state where the state buffer contains

mostly 0's. This flaw was reported only after the Mersenne Twister had been the

preferred generator for several years (Saito and Matsumoto, 2008). A tiny bias in

the Multiply-with-carry generators was discovered a few years after this kind of

generators had been recommended (Couture and L'Ecuyer, 1997). In fact, one

defect reported by Bauke and Mertens (2004) applies to a large part of all known

PRNGs.

The possibility cannot be ruled out that more such discoveries will be made

in the future, no matter how good we believe that our generators are. Claims that a

PRNG is good should therefore be regarded as falsifiable propositions in

accordance with Popper's (1963) philosophy of science. The claim that a

generator produces random output is never true in the strictest sense, because the

output is deterministic. It may be proven experimentally that the output of a

PRNG passes certain tests for randomness, but the possibility that it will fail some

test if a larger sample size is used cannot be ruled out. If the sample size is

increased to the entire cycle length then the total sample is no longer random

because, typically, all output values occur the same number of times in a full

cycle.

In science, theoretical proofs are often regarded as stronger than

experimental proofs. However, for PRNGs there is a dilemma. If it is possible to

prove theoretically that a PRNG has a certain desirable property, then the

theoretical insight that allowed this analysis may also be used in the construction

of an experimental test that defeats the same generator. For example, the

construction of generators in the Mersenne Twister family usually relies on the

Berlekamp-Massey algorithm for verification of the cycle length (Saito and

Matsumoto, 2008). Therefore, it is no surprise that the Mersenne Twisters fail a

test based on the Berlekamp-Massey algorithm, the so-called linear complexity

test (L’Ecuyer and Simard, 2007). If a chaotic behavior with no recognizable

mathematical structure is what characterizes a good PRNG, then perhaps the best

generators are the ones that are most difficult to prove good (Fog, 2001). On the

other hand, attempts to produce PRNGs without any theory have led to very bad

results (Knuth, 1998).

Claims of type (a) are generally the easiest to falsify. Most of the generators

described in the literature have weaknesses that have been discovered by either

experimental of theoretical methods.

PSEUDO-RANDOM NUMBER GENERATORS

318

Claims of type (b) have occasionally been falsified. Durst (1989)

demonstrated a correlation between regularly spaced subsequences of linear

congruential generators.

Claims of type (c) are the most difficult to falsify. The more different two

generators are, the more difficult it is to construct a mathematical framework that

allows the simultaneous analysis of both, and the more unlikely it is that they

have a common structural property that can produce a correlation (Press, 2007). A

given generator is more likely to correlate with an application, which can have a

lot of regularity, than with another generator that was designed with the goal of

avoiding correlations.

The dilemma that mathematical tractability is good for theoretical analysis

but bad for randomness seems to prevent us from making the best random

generators, or at least from knowing which generators are best. Fortunately, we

can get along with less than perfect generators as long as we can eliminate known

defects by combining two different generators. This means that we can live with

minor imperfections in (a) and (b) as long as we can rely on claims of type (c).

It is unreasonable to demand a theoretical proof of type (c) for three reasons.

The first reason is that it is not clear what kind of theoretical proof is expected to

prove the randomness of a pseudo-random sequence of numbers. The second

reason is that the philosophy of science does not allow absolute proofs of this kind,

only evidence and falsifiable hypotheses. And the third reason is that the

mathematical tractability that would allow such a proof, would also defeat it.

All evidence, theoretical as well as experimental, supports the claim that we

can improve randomness by combining the outputs of two or more very different

generators. We will rely on this claim as long as it has not been falsified, because

it is the best method we have so far for producing deterministic pseudo-random

numbers. A more general philosophical discussion is needed about what kind of

proofs are possible or desirable in relation to PRNGs.

Quantization effects

The minimum difference between two floating point numbers in the interval

[½, 1] is δ = 2−24 for single precision, and 2−53 for double precision according to

the IEEE-754 standard, which all modern computers support (IEEE Computer

Society, 2008). The minimum difference for single precision is 2−25 in [¼, ½], 2−26

in [⅛, ¼], and so on. Many applications require random floating point numbers

with uniform distribution in the interval [0,1). If we require equidistant points

with the best possible resolution in single precision, then we will have 224 possible

AGNER FOG

319

values in the interval [0,1). For this, we need a generator capable of giving 224

different values, all with the same frequency. If the generator outputs e.g. a 32-bit

word then we can simply use 24 of these bits and discard the remaining 8 bits.

For most generators, the generating function f gives an integer output xi in

an interval [0, m). Typically f is some arithmetic function modulo m. If m is a

power of 2 then we can easily extract the desired number of random bits.

Unfortunately, many of the generators that are described in the literature have a

modulus m which is not a power of 2. Often m is a prime because functions with

prime modulus have advantageous mathematical properties. When converting a

pseudorandom integer xi modulo m to a floating point number in [0,1) it is

common to just divide xi by m. Unfortunately, this does not give equidistant

points with equal frequency. If m < 224 then there will be some of the possible

values that never occur. If m > 224 then some values between 0.5 and 1 will occur

more frequently than other, and values less than 0.5 can be spaced less than

δ = 2-24 apart. Such quantization effects can lead to systematic errors in

applications that depend on the probability that a random number falls within a

certain narrow interval.

For example, consider a generator with prime modulus m = 232−5 (e.g.

L'Ecuyer, 1999). A floating point output from this generator will have the value

0.6 with frequency 255/m, while the next value 0.6 + δ occurs with frequency

256/m. The value 0.2 occurs with frequency 63/m while the next value 0.2 + δ/4

occurs with frequency 64/m.

Such inaccuracies may be unimportant in small applications, but in large

applications that use billions of random numbers, the accumulated errors may

actually be statistically significant. It is possible to eliminate the quantization

errors by means of a rejection method, but this is quite costly in terms of

efficiency (See below for an example of a rejection method). Alternatively, the

quantization error may be tempered by an appropriate output function that uses

multiple elements in the state buffer.

Why is the output interval half open?

The half-open intervals [0,1) and (0,1] can both be divided into 224 equidistant

points with the maximum resolution δ = 2−24 for single precision floating point

numbers. This makes it easy to generate a uniformly distributed variable from 24

random bits. We will have quantization errors, as explained above, if we map a

24-bit random number to one of the symmetric intervals [0,1] and (0,1), which

have 224 + 1 and 224 − 1 equidistant points, respectively.

PSEUDO-RANDOM NUMBER GENERATORS

320

A Monte Carlo application can generate an event with probability p ∈ [0,1]

by testing x < p, where x ∈ [0,1) is a uniform random variable. If x is quantized

as 224 equidistant points in [0,1) with equal frequency and p is similarly quantized

by δ = 2−24 then the event x < p will occur with the exact frequency p. If x ∈ (0,1]

then x ≤ p will also occur with the exact frequency p. A uniformly distributed x in

one of the symmetric intervals [0,1] or (0,1) will give rise to tiny rounding errors

in the frequency of x < p.

A disadvantage of the half-open intervals is that the mean is not exactly ½,

but (1−δ)/2 and (1+δ)/2, respectively. This is acceptable for most purposes since it

will take a sample size of 8∙1014 to estimate the mean of x with enough precision

to get a statistically significant error of 3 standard deviations.

Requirements for good generators

Consider some requirements that are important for the choice of PRNGs for large

applications using vector processors, multicore processors and CPU clusters.

1. The generator should pass experimental tests for randomness.

2. The cycle length should be so high that the risk of overlapping

subsequences is negligible, but not so high that the state buffer uses

an excessive amount of data cache.

3. Good equidistribution, as determined by theoretical or experimental

methods (L’Ecuyer, 1994).

4. Good diffusion. This is obtained if each bit in the state buffer

depends on multiple bits in the previous state (Panneton, L'Ecuyer

and Matsumoto, 2006). Diffusion is closely related to the concept of

bifurcation in chaos theory (Fog, 2001; Černák, 1996). A good

diffusion means highly chaotic behavior, which is a desirable

property for a PRNG.

5. The shortest feedback path should be long enough to fit the largest

available vector register. However, a long feedback path means poor

diffusion. Therefore, the shortest feedback path should not be longer

than necessary.

6. The modulus m should be a power of 2 to avoid quantization effects

and rounding errors.

7. The generator should be reasonably fast.

8. It should be possible to generate independent streams from multiple

instances of the generator.

AGNER FOG

321

Construction of a generator satisfying these requirements

There are many PRNGs described in the literature, but few that satisfy all the

requirements listed above. Parallel generation has relied more on multiprocessors

than on vector processors (L’Ecuyer, Oreshkin and Simard, 2014). The only

generator explicitly designed for vector processors is the "SIMD-oriented Fast

Mersenne Twister" (SFMT), which relies on 128-bit vectors (Saito and

Matsumoto, 2008, 2009). Unfortunately, the feedback path of this generator does

not allow implementations in larger vector registers, and there are no plans for an

extended version (Saito, 2014). The general Mersenne Twisters have long

feedback paths (Matsumoto and Nishimura, 1998; Nishimura, 2000) so that they

can easily be implemented in vector processors. These generators have poor

diffusion and slow recovery from a state of mostly 0's. The recently published

variant "Mersenne Twister for Graphic Processors" (MTGP) (Saito and

Matsumoto, 2013) has somewhat improved diffusion properties, and this appears

to be the best choice. The chosen version has the Mersenne exponent 11213,

which gives a state buffer size of 351 x 32 bits. The cycle length is ρ = 211213−1.

This is more than enough to avoid overlapping subsequences, and higher values

would be a waste of data cache. Smaller versions have not been published. The

shortest feedback path is 84 x 32 bits, which makes implementation in large

vector registers possible.

This generator has known weaknesses, which are common to the Mersenne

Twister family: It is vulnerable to tests based on algebra; it has relatively poor

diffusion; and it has subsequences with more 0's than 1's. These weaknesses

should be eliminated by combination with a second generator that does not have

the same weaknesses.

Other generators with long feedback paths are difficult to find in the

literature. The RANROT generator is a lagged Fibonacci generator with bit

rotation (Fog, 2001). This generator is simple and fast, it can be constructed with

any feedback path length, and most versions pass all tests for randomness.

However, this is an example of a generator that is difficult to analyze theoretically.

Assumptions about the cycle lengths of RANROT generators are based on

extrapolations from experimental measurements on very small generators. The

RANROT may be a good generator, but more research is needed before we can

rely on this generator for demanding applications.

No other generator was found with a sufficiently long feedback path suitable

for our purpose. Multiply-with-carry generators with lag have been described, but

they have an extra feedback path of length 1 in the carry (Marsaglia, 2003). It

PSEUDO-RANDOM NUMBER GENERATORS

322

may be possible to construct a multiply-with-carry generator where the carry

feedback is also lagged.

Because no suitable candidate for the second generator has been found with

a feedback path that allows vectorization, we have instead to rely on multiple

parameter sets for the same kind of generator (method 5). Each vector position

will have its own independent generator with different parameters for each. After

rejecting generators with prime modulus, the best candidate we found was a

multiply-with-carry (MWC) generator (Goresky and Klapper, 2003). This

generator is relatively simple, it has excellent randomness and very high diffusion

or bifurcation. Nine good multipliers for MWC are listed by Press (2007). Eight

of these are used in order to implement eight generators of 64 bits each in a 512

bit vector. The output function is a 64-bit XOR-shift method as recommended by

Press (2007). Unfortunately, there are not enough good multipliers for future

implementations in larger vector registers. Each MWC generator delivers a 64-bit

output which is divided into two 32-bit random numbers.

The eight MWC generators have different cycle lengths, ranging from 5∙1018

to 9∙1018. This is not enough to completely rule out overlapping subsequences in

large applications when the MWC generator is used alone, but the MTGP

generator has prime cycle length so that the cycle lengths are multiplied when the

MWC and MTGP generators are combined.

The MWC generator has a very slight bias in the upper bits (Couture and

L'Ecuyer, 1997). The bias is too small to have practical significance, and it is

removed by the output function or by the combination with the MTGP generator

anyway.

It can be concluded that the MTGP and MWC generators both have known

defects, but they have no defects in common. There are no known defects in any

of these two generators that cannot be removed by combination with the other

generator. Therefore, it is expected that the combined output of these two

generators is suitable for even the most demanding applications. Multiple

independent streams can be generated from multiple instances of the combined

generator by changing the seed of one or both generators, in accordance with

method 6 or 7.

Practical implementation

It was decided to make an implementation that is suitable for the forthcoming

AVX-512 instruction set, which will be common to the most relevant hardware

platforms in a near future. Existing instruction sets with vector sizes smaller than

AGNER FOG

323

512 bits are supported by dividing the data into smaller vectors. C++ is the

obvious choice of programming language for code that needs to be portable to

several platforms and operating systems, highly optimized, and needs overloaded

operators for vector operations. The code is integrated into the vector class library

(VCL. Fog, 2014b) which provides efficient vector operators for the generator as

well as for the application that uses it. Supported platforms include Windows,

Linux and Mac OS with Microsoft, Intel, Gnu and Clang compilers.

The generator, named RANVEC1, is implemented as a C++ class so that an

application can make a separate instance for each thread in a multiprocessor

environment. Each instance can deliver random number vectors of up to 512 bits

with integer or floating point elements.

The fastest way of generating a uniform floating point output with

equidistant points from random bits is to set the exponent of a single precision

floating point number in the IEEE-754 representation to (0+bias) and set the

mantissa to 23 random bits. This gives a uniform random number in the interval

[1,2). Subtracting 1 then gives a number in the desired interval [0,1) (Saito and

Matsumoto, 2009). This method gives a resolution of 2−23. The maximum

resolution of δ = 2-24 can be obtained from 24 random bits by first using 23 bits to

make a random number in the interval [1,2) as above, and then subtracting either

1 or (1−δ) depending on whether the last bit is 0 or 1. It is possible to make a

double precision random number with the maximum resolution of 2−53 by the

same method, but the current implementation gives only a resolution of 2−52 for

double precision because it was decided that the last bit will have no significance

for applications with a realistic sample size.

Many applications need a random integer u with uniform distribution in an

interval [a,b] of length d = b-a + 1. This can be obtained from a random 32-bit

unsigned integer x by a 64-bit multiplication: 32/ 2u a xd . However, this

method is subject to a bias similar to the quantization error discussed above when

the interval length d is not a power of 2. Floating point calculation methods give

the same error because of the mapping of an interval of a power-of-2 length to

another interval of incommensurable length d. Most standard random generator

libraries have this error. The error may be negligible when d is small, but it can be

quite serious for large d. The worst case is d = 3∙230. In this case, values of (u − a)

that are divisible by 3 occur twice as frequent as other values. This can obviously

lead to serious errors in applications that happen to depend on u mod 3. This error

can be eliminated by using a rejection method. Confine x to r possible values

PSEUDO-RANDOM NUMBER GENERATORS

324

where r is a multiple of d. 322 / .r d d If xd mod 232 ≥ r then reject the value

and generate a new x.

Rejection methods are also used for generating random variables with other

distributions than uniform (Devroye, 1986). Algorithms that involve rejection

methods may be implemented in vector processors as follows. First generate a

random vector and execute the steps in the algorithm necessary to determine

rejection. If any elements of the vector are rejected, then generate another random

vector and repeat the calculations. Replace any rejected elements in the first

vector by accepted elements from the second vector. Continue like this until we

have a vector of only accepted elements. If calculations are expensive and not

dependent on changing parameters then we may save any remaining accepted

elements for the next round. If exact reproducibility across platforms is required

then we must keep the vector size constant.

Tests of the constructed generator

The randomness of the generator outputs were tested using the powerful BigCrush

battery of tests in the TestU01 software suite of experimental tests for randomness

(L’Ecuyer and Simard, 2007). The MWC generators were tested in various

configurations: each of the eight generators separately, the lower or upper 32-bit

half of each generator output, as well as all eight generators in a round robin

fashion. All tests were passed. The MWC generators failed several tests when the

XOR-shift output function was removed.

The MTGP generator failed the linear complexity test as expected, but

passed all other tests in the BigCrush battery of tests. The MTGP generator also

failed a binary matrix rank test where the matrix size was increased to

12000×12000. The test results were the same when the output function (so called

tempering) was removed. The combination of the MWC and MTGP generator

passed all tests, with or without tempering.

The speed of the random generators were tested after compiling with

different compilers and different vector register sizes. The test measured the time

required to generate 214 random 32-bit integers and computing their sum. The

calculation time depends on the CPU clock frequency, which varies a lot due to

the power-saving features of the CPU. In order to get consistent and reproducible

time measurements, it was decided to use the core clock count as time unit. This

time unit is defined by the frequency that the execution unit in the CPU is actually

running at. Core clock counts were measured using the TESTP test program (Fog,

AGNER FOG

325

2014c). The calculation speed was measured for the MWC and MTGP generators

as well as for the SFMT generator and the original Mersenne Twister (MT). The

results are given in Table 2.

Table 2. Random number generation times for various generators using different

compilers and register sizes. The unit is core clock cycles per 32 bits, single thread.

Compiler

Generator Register size bits Gnu Clang Intel Microsoft

MWC
128 4.1 4.0 3.6 3.0

256 1.8 2.2 2.6 3.1

MTGP
128 8.9 10.3 8.8 18.4

256 4.0 4.5 4.5 43.1

MTGP w/o tempering 256 3.1 3.5 3.6 18.9

MWC + MTGP
128 10.4 12.4 10.4 20.3

256 5.0 5.7 6.1 46.4

MWC + MTGP w/o
tempering

256 3.9 4.6 5.1 20.7

SFMT 128 2.0 1.8 2.0 1.9

MT 32 9.3 14.2 8.5 12.8

Configuration: Intel Haswell microprocessor, 3.4 GHz. Windows 7, 64 bits. Gnu C++ compiler v. 4.8.3 Cygwin.

Clang C++ compiler v. 3.4.2 Cygwin. Intel C++ compiler v. 15.0. Microsoft C++ compiler v. 17.0.

Notice that the combined generator takes 5 – 6 clock cycles per random

number using a vector size of 256 bits when the Gnu, Clang or Intel compiler is

used. This corresponds to approximately 6∙108 random numbers per second per

thread on a 3.4 GHz processor. This number can be multiplied by the number of

cores in the CPU when each core is running one thread. It is possible to run two

threads per core on some CPUs, but this may not be optimal if the two threads are

competing for the same execution resources (Fog, 2014a).

Most Monte Carlo applications take much more time than this to process the

random numbers, so that the random number generation will account for only a

small fraction of the total execution time. A few clock cycles more or less is

hardly important in this context. Therefore, we can afford the luxury of using a

combined generator of very high quality. The convenient availability of random

numbers as vectors can make it easier to vectorize the applications that use the

PSEUDO-RANDOM NUMBER GENERATORS

326

random numbers, possibly leading to very significant speed gains for some

applications.

The RANVEC1 code also supports a register size of 512 bits. This was

verified using Intel Software Emulator version 7.1.0, but no meaningful speed

measurement was possible because no microprocessor with the AVX-512

instruction set is available yet.

The SFMT generator is faster than the MTGP generator because the former

is designed specifically for vector processing while the MTGP is designed for

graphics processors. Unfortunately, the SFMT generator cannot be implemented

with vector sizes higher than 128 bits.

Conclusion

There are two main principles for parallel processing: vector processing and

multicore processing. Large Monte Carlo applications need to utilize both in order

to get the maximum performance out of modern computers. A literature search

revealed only one generator specifically designed for vector processing, and none

that fits the growing vector size of modern processors. Fortunately, it is possible

to utilize vector processors by adapting other generators with sufficiently long

feedback paths or by implementing multiple similar generators in parallel. The

combined generator described here (RANVEC1) utilizes both methods. A C++

implementation of this combined generator is available as part of the vector class

library (VCL) at http://www.agner.org/optimize/#vectorclass.

As Monte Carlo applications get larger they also put higher demands on the

quality of random number generators. The following qualities must be considered:

1. Quality of randomness.

2. Speed.

3. Avoid overlapping sequences.

4. Equidistant points with perfectly uniform distribution.

5. Portability among platforms.

6. Reproducibility.

The quality of randomness (1) can be improved by combining two

generators with fundamentally different design. This enables us to overcome the

flaws caused by the unsolvable dilemma between the need for mathematical

tractability and the desire for chaotic behavior.

http://www.agner.org/optimize/#vectorclass

AGNER FOG

327

The speed (2) of the available generators is so high that the generation of

random numbers accounts for only a small fraction of the total calculation time of

a typical application. However, there is a pitfall when measuring the speed of a

generator in isolation. The larger Mersenne Twister generators are consuming

considerable amounts of data cache whereby they may slow down the

applications that use them. The size of the state buffer should be a compromise

between long cycle length and low data cache use.

The risk of overlapping sequences (3) gets higher as the number of

simultaneous random streams is increasing. This risk can be made negligible by

using a generator with an extremely long cycle length, or we can eliminate it

completely by combining two different generators.

Quantization effects are often ignored in standard PRNG libraries, which

makes them deviate from the perfectly uniform distribution (4). Undesired

quantization effects are seen when the output of a generator with prime modulus

is mapped onto an interval with power-of-2 modulus and when the output of any

generator is used for generating a random integer in an interval of arbitrary

(incommensurable) length. These undesired effects can be eliminated by avoiding

generators with prime modulus or by using a rejection method.

Portability (5) is generally obtained by using a standardized programming

language. The RANVEC1 generator is designed for the vector extensions to the

x86 instruction set. This fits the most commonly used computer platforms today,

as well as prospected future processors with 512-bit vectors. It cannot be used on

platforms with other instruction sets without major reprogramming, and the target

platform must have similar vector processing capabilities.

Reproducibility (6) is useful for replaying an interesting simulation event,

for verifying results and for debugging. It is always possible to reproduce a

random number stream by using the same generator again with the same seed.

However, problems may arise when vector sizes change. For example, consider a

simulation application that uses both integer and floating point random number

vectors. First, it generates a vector of 8 integers, then a vector of 8 floats, then 8

integers, 8 floats, etc. If we now update the hardware to a processor that supports

bigger vectors, we may generate first 16 integers and then 16 floats, etc. This

means that the numbers are generated in a different order so that the simulation

results will be different even though we have used the same seed. A remedy

against this problem is to generate numbers in batches that correspond to the

biggest possible vector size. The RANVEC1 software uses batches of 512 bits to

fit the future AVX-512 instruction set, but the reproducibility will be lost in case

PSEUDO-RANDOM NUMBER GENERATORS

328

of future extensions to 1024 bits or more. Reproducibility can also be lost in case

of outputs that use a rejection method when the vector size is changed.

Scope for future research

We have found an acceptable solution to our needs for a good PRNG that utilizes

both vector processing and multiprocessing, but we can predict the future need for

a generator that fits larger vector sizes. We would also like a more efficient

solution even though the speed is acceptable for current purposes.

The vector implementation of the MTGP is slower than the SFMT even

though it can use a larger vector size. The difference in speed can be explained by

the following factors.

 The size of the state buffer in the MTGP is not divisible by the

vector size. Extra code is needed to handle the wrap-around situation

where a vector spans part of the end of the buffer and part of the

beginning. Memory access is misaligned for the same reason.

 The output function in the MTGP, called tempering, consumes a

large fraction of the code and CPU time. The purpose of the

tempering is to improve equidistribution, but this improvement is not

visible in the test results. The SFMT generator obtains good

equidistribution by an appropriate choice of parameters without a

tempering function.

 The MTGP algorithm has longer dependency chains than the SFMT.

 The SFMT can use the state buffer also as output buffer in a block

generation scheme. This is not possible with the MTGP because its

tempering function needs to read two parts of the state buffer for

each output value.

A better solution would have a state buffer size that is a multiple of the

largest vector size we expect to be available in a reasonable future. It is possible

to increase the state buffer size beyond the Mersenne exponent either by having

some bits without feedback or by using the same method as the SFMT (Saito and

Matsumoto, 2008, 2009). The state buffer size should not be excessive because of

the data cache use. Parameters should be adjusted to give satisfactory

equidistribution in order to eliminate the need for a tempering function.

The shortest feedback path should be at least as long as the largest possible

vector size. There is a tradeoff here because a large feedback path is reducing the

AGNER FOG

329

diffusion in the generator. The diffusion is already low in many variants of

Mersenne Twisters because they use sparse matrixes in the algorithm. There are

various ways to make more dense matrixes without excessive computation time. It

is possible to implement a 4×32 bit matrix multiplication with a single 512-bit

vector permutation instruction, and this method is used in the RANVEC1 code.

Another possibility, which has not been utilized so far, is to use carry-less

multiplication. Modern x86 processors have such an instruction. The carry-less

multiplication instruction multiplies two 64-bit vectors to give a 127-bit product

(Intel, 2014b), and this corresponds to a dense matrix multiplication in .

Unfortunately, there is no version of this instruction with larger vectors, but the

result can easily be broadcast into a larger vector in order to increase diffusion.

The second generator in our combination, the MWC, cannot easily be

expanded to larger vectors than 512 bits. There are nine known good multipliers

for a 64-bit MWC (Press, 2007) and we have used eight of these for implementing

eight parallel MWC generators. Future implementations with larger vector sizes

need another generator with more good parameter sets—perhaps a variant of

MWC with an addend, an extra term or a short lag.

These are very practical problems, which can definitely be solved. On a

more philosophical level, we need a clarification of the role of proofs in PRNG

research. Is it possible to prove that a generator has no defects? What kind of

evidence can we accept? If all we have is falsifiable propositions, does it make

sense to say that some propositions have more value than others if it is more

difficult to find examples that falsify them? Does it make sense to require

theoretical proofs, e.g. that two random number streams are statistically

independent, when it is impossible to even prove the more fundamental

assumptions about randomness of a single stream?

References

Anthony, S. (2013). Intel unveils 72-core x86 Knights Landing CPU for

exascale supercomputing [Blog post]. Retrieved from

http://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-

landing-cpu-for-exascale-supercomputing

Barash, L. Yu., & Shchur, L. N. (2014). PRAND: GPU accelerated parallel

random number generation library: using most reliable algorithms and applying

parallelism of modern GPUs and CPUs. Computer Physics Communications,

185(4), 1343–53. doi:10.1016/j.cpc.2014.01.007

http://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing
http://www.extremetech.com/extreme/171678-intel-unveils-72-core-x86-knights-landing-cpu-for-exascale-supercomputing
http://dx.doi.org/10.1016/j.cpc.2014.01.007

PSEUDO-RANDOM NUMBER GENERATORS

330

Bauke, H., & Mertens, S. (2004). Pseudo random coins show more heads

than tails. Journal of Statistical Physics, 114(3–4), 1149–69.

doi:10.1023/B:JOSS.0000012521.67853.9a

Bauke, H., & Mertens, S. (2007). Random numbers for large-scale

distributed Monte Carlo simulations. Physical Review E, 75(6), 066701.

doi:10.1103/PhysRevE.75.066701

Černák, J. (1996). Digital generators of chaos. Physics Letters A, 214(3),

151–60. doi:10.1016/0375-9601(96)00179-X

Chan, E. Y. K. (2013). Benchmarks for Intel MIC Architecture. Retrieved

from http://www.clustertech.com/wp-

content/uploads/2014/01/MICBenchmark.pdf

Chrysos, G. (2012). Intel Xeon Phi Coprocessor - the Architecture.

Retrieved from http://software.intel.com/en-us/articles/intel-xeon-phi-

coprocessor-codename-knights-corner

Couture, R., & L'Ecuyer, P. (1997). Distribution properties of multiply-

with-carry random number generators. Mathematics of Computation, 66(218),

591–607.

Demchik, V. (2011). Pseudo-random number generators for Monte Carlo

simulations on ATI graphics processing units. Computer Physics Communications,

182(3), 692–705. doi:10.1016/j.cpc.2010.12.008

Deng, L. Y., Lin, D. K. J., Wang, J., & Yuan, Y. (1997). Statistical

justification of combination generators. Statistica Sinica, 7, 993–1003.

Devroye, L. (1986). Non-uniform random variate generation. New York:

Springer.

Durst, M. J. (1989). Using linear congruential generators for parallel random

number generation. In E. A. MacNair, K. J. Musselman, & P. Heidelberger (Eds.),

WSC ’89 Proceedings of the 21st conference on Winter simulation (pp. 462–66).

New York: ACM. doi:10.1145/76738.76798

Entacher, K. (1998). Bad subsequences of well-known linear congruential

pseudorandom number generators. ACM Transactions on Modeling and

Computer Simulation, 8(1), 61–70.

Fog, A. (2001). Chaotic random number generators with random cycle

lengths. Publisher: Author. Retrieved from

http://www.researchgate.net/publication/245642152

http://dx.doi.org/10.1023/B:JOSS.0000012521.67853.9a
http://dx.doi.org/10.1103/PhysRevE.75.066701
http://dx.doi.org/10.1016/0375-9601(96)00179-X
http://www.clustertech.com/wp-content/uploads/2014/01/MICBenchmark.pdf
http://www.clustertech.com/wp-content/uploads/2014/01/MICBenchmark.pdf
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://dx.doi.org/10.1016/j.cpc.2010.12.008
http://dx.doi.org/10.1145/76738.76798
http://www.researchgate.net/publication/245642152

AGNER FOG

331

Fog, A. (2014a). Optimizing software in C++. An optimization guide for

Windows, Linux and Mac platforms. Publisher: Author. Retrieved from

http://www.agner.org/optimize/optimizing_cpp.pdf

Fog, A. (2014b). C++ vector class library [Software library]. Publisher:

Author. Retrieved from http://www.agner.org/optimize/#vectorclass

Fog, A. (2014c). Test programs for measuring clock cycles and performance

monitoring [Software library]. Publisher: Author. Retrieved from

http://www.agner.org/optimize/#testp

Goresky, M., & Klapper, A. (2003). Efficient multiply-with-carry random

number generators with maximal period. ACM Transactions on Modeling and

Computer Simulation, 13(4), 310–21. doi:10.1145/945511.945514

IEEE Computer Society. (2008). IEEE Standard for Floating-Point

Arithmetic (IEEE Std. 754-2008) New York: IEEE.

Intel. (2014a). Intel architecture instruction set extensions programming

reference (Doc. 319433-021). Retrieved from http://software.intel.com/en-

us/intel-isa-extensions

Intel. (2014b). Intel 64 and IA-32 architectures software developer’s manual

(Doc. 325462-052US).

http://www.intel.com/content/www/us/en/processors/architectures-software-

developer-manuals.html

Karpiński, P. (2014). Evaluation of Intel Xeon Phi (Knight’s Corner)

coprocessor’s core performance using VCL. Manuscript submitted for publication.

Knuth, D. E. (1998). The art of computer programming, volume 2:

seminumerical algorithms (3rd Ed). Boston, MA: Addison-Wesley Professional.

L’Ecuyer, P. (1990). Random numbers for simulation. Communications of

the ACM, 33(10), 85–97. doi:10.1145/84537.84555

L’Ecuyer. P. (1994). Uniform random number generation. Annals of

Operations Research, 53(1), 77–120. doi:10.1007/BF02136827

L'Ecuyer, P. (1999). Tables of linear congruential generators of different

sizes and good lattice structure. Mathematics of Computation, 68(225), 249–60.

doi:10.1090/S0025-5718-99-00996-5

L’Ecuyer, P., & Côté, S. (1991). Implementing a random number package

with splitting facilities. ACM Transactions on Mathematical Software, 17(1), 98–

111. doi:10.1145/103147.103158

http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/#vectorclass
http://www.agner.org/optimize/#testp
http://dx.doi.org/10.1145/945511.945514
http://software.intel.com/en-us/intel-isa-extensions
http://software.intel.com/en-us/intel-isa-extensions
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://dx.doi.org/10.1145/84537.84555
http://dx.doi.org/10.1007/BF02136827
http://dx.doi.org/10.1090/S0025-5718-99-00996-5
http://dx.doi.org/10.1145/103147.103158

PSEUDO-RANDOM NUMBER GENERATORS

332

L’Ecuyer, P., & Granger-Piché, J. (2003). Combined generators with

components from different families. Mathematics and Computers in Simulation,

62(3–6), 395–404. doi:10.1016/S0378-4754(02)00234-3

L’Ecuyer, P., Oreshkin, B., & Simard, R. (2014). Random numbers for

parallel computers: requirements and methods. Manuscript submitted for

publication.

L’Ecuyer, P., & Simard, R. (2007). TestU01: a C library for empirical

testing of random number generators. ACM Transactions on Mathematical

Software, 33(4), 22. doi:10.1145/1268776.1268777

Manssen, M., Weigel, M., & Hartmann, A. K. (2012). Random number

generators for massively parallel simulations on GPU. European Physical

Journal: Special Topics, 210(1), 53–71. doi:10.1140/epjst/e2012-01637-8

Marsaglia, G. (1985). A current view of random number generators. In L.

Billard (Ed.), Computer science and statistics: proceedings of the Sixteenth

Symposium on the Interface, Atlanta, Georgia, (pp. 3–10). Amsterdam: North-

Holland.

Marsaglia, G. (2003). Random number generators. Journal of Modern

Applied Statistical Methods, 2(1), 2–13.

http://digitalcommons.wayne.edu/jmasm/vol2/iss1/2/

Matsumoto, M., & Nishimura, T. (1998). Mersenne Twister: A 623-

Dimensionally Equidistributed Uniform Pseudo-Random Number Generator.

ACM Transactions on Modeling and Computer Simulation, 8(1), 3–30.

Matsumoto, M., & Nishimura, T. (2000). Dynamic creation of

pseudorandom number generators. In H. Niederreiter & J. Spanier (Eds.), Monte

Carlo and Quasi-Monte Carlo Methods, 1998: Proceedings of a Conference Held

at the Claremont Graduate University, Claremont, California, USA (pp. 55–69).

New York: Springer-Verlag, Inc.

Nandapalan, N., Brent, R.P., Murray, L. M., & Rendell, A. P. (2012). High-

performance pseudo-random number generation on graphics processing units. In

R. Wyrzykowski, J. Dongarra, K. Karczewski, & J. Waśniewski (Eds.), Lecture

Notes in Computer Science 7203: Parallel Processing and Applied Mathematics

(9th International Conference, PPAM 2011, Torun, Poland, September 11-14,

2011, Revised Selected Papers, Part I) (pp. 609–18). New York: Springer-Verlag.

doi:10.1007/978-3-642-31464-3_62

http://dx.doi.org/10.1016/S0378-4754(02)00234-3
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1140/epjst/e2012-01637-8
http://digitalcommons.wayne.edu/jmasm/vol2/iss1/2/
http://dx.doi.org/10.1007/978-3-642-31464-3_62

AGNER FOG

333

Nishimura, T. (2000). Tables of 64-Bit Mersenne twisters. ACM

Transactions on Modeling and Computer Simulation, 10(4), 348–57.

doi:10.1145/369534.369540

Panneton, F., L'Ecuyer, P., & Matsumoto, M. (2006). Improved long-period

generators based on linear recurrences modulo 2. ACM Transactions on

Mathematical Software, 32(1), 1–16. doi:10.1145/1132973.1132974

Passerat-Palmbach, J., Mazel, C., Mahul, A., & Hill, D. (2010). Reliable

Initialization of GPU-Enabled Parallel Stochastic Simulations Using Mersenne

Twister for Graphics Processors. In G. K. Janssens, K. Ramaekers, & A. Caris

(Eds.), European Simulation and Modelling 2010, Essen, Belgium (pp. 187–95).

Ostend, Belgium: Eurosis.

Passerat-Palmbach, J., Mazel, C., & Hill, D. R. C. (2011). Pseudo-random

number generation on GP-GPU. In S. Strassburger (Ed.), 2011 IEEE Workshop

on Principles of Advanced and Distributed Simulation (PADS), (pp. 1–8). New

York: IEEE. doi:10.1109/PADS.2011.5936751

Popper, K. (1963). Conjectures and refutations: the growth of scientific

knowledge. London, U.K.: Routledge.

Press, W. H. (2007). Numerical recipes: the art of scientific computing (3rd

Ed.). Cambridge, U.K.: Cambridge University Press.

Saito, M. (2014). Personal communication.

Saito, M., & Matsumoto, M. (2008). SIMD-oriented fast Mersenne twister:

a 128-Bit pseudorandom number generator. In A. Keller, S. Heinrich, & H.

Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, (pp.

607–22). New York: Springer. doi:10.1007/978-3-540-74496-2_36

Saito, M., & Matsumoto, M. (2009). A PRNG specialized in double

precision floating point numbers using an Affine transition. In P. L’Ecuyer and A.

B. Owen (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, (pp. 589–

602). New York: Springer. doi:10.1007/978-3-642-04107-5_38

Saito, M., & Matsumoto, M. (2013). Variants of Mersenne twister suitable

for graphic processors. ACM Transactions on Mathematical Software, 39(2), 12.

doi:10.1145/2427023.2427029

Salmon, J. K. (2011). Parallel random numbers: as easy as 1, 2, 3. In J.

Costa & W. Kramer (Program Chairs), Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis,

Seattle, WA. doi:10.1145/2063384.2063405

http://dx.doi.org/10.1145/369534.369540
http://dx.doi.org/10.1145/1132973.1132974
http://dx.doi.org/10.1109/PADS.2011.5936751
http://dx.doi.org/10.1007/978-3-540-74496-2_36
http://dx.doi.org/10.1007/978-3-642-04107-5_38
http://dx.doi.org/10.1145/2427023.2427029
http://dx.doi.org/10.1145/2063384.2063405

PSEUDO-RANDOM NUMBER GENERATORS

334

Saule, E., Kamer, K., & Çatalyürek, Ü. V. (2013). Performance Evaluation

of Sparse Matrix Multiplication Kernels on Intel Xeon Phi (arXiv:1302.1078).

http://arxiv.org/abs/1302.1078.

http://arxiv.org/abs/1302.1078

	Journal of Modern Applied Statistical Methods
	5-1-2015

	Pseudo-Random Number Generators for Vector Processors and Multicore Processors
	Agner Fog
	Recommended Citation

	Introduction
	Choice of hardware
	Parallel generation of pseudo-random numbers in vector processors
	Parallel generation of pseudo-random numbers in independent streams
	Advantages of combined generators
	How much can be proven?
	Quantization effects
	Why is the output interval half open?
	Requirements for good generators
	Construction of a generator satisfying these requirements
	Practical implementation
	Tests of the constructed generator
	Conclusion
	Scope for future research
	References

