
Journal of Modern Applied Statistical
Methods

Volume 14 | Issue 2 Article 4

11-1-2015

Inferences About the Skipped Correlation
Coefficient: Dealing with Heteroscedasticity and
Non-Normality
Rand Wilcox
University of Southern California, rwilcox@usc.edu

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Wilcox, Rand (2015) "Inferences About the Skipped Correlation Coefficient: Dealing with Heteroscedasticity and Non-Normality,"
Journal of Modern Applied Statistical Methods: Vol. 14 : Iss. 2 , Article 4.
DOI: 10.22237/jmasm/1446350580

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss2/4?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 

November 2015, Vol. 14, No. 2, 2-8. 

Copyright © 2015 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Dr. Wilcox is Professor of Psychology at the University of Southern California. Email 
him at rwilcox@usc.edu. 

 

 

2 

Invited Article 
Inferences About the Skipped Correlation 
Coefficient: Dealing with Heteroscedasticity 
and Non-Normality

Rand Wilcox 
University of Southern California 

Los Angeles, CA 

 
 

 

 
A common goal is testing the hypothesis that Pearson’s correlation is zero and typically 
this is done based on Student’s T test. There are, however, several well- known concerns. 
First, Student’s T is sensitive to heteroscedasticity. That is, when it rejects, it is 
reasonable to conclude that there is dependence, but in terms of making a decision about 

the strength of the association, it is unsatisfactory. Second, Pearson’s correlation is not 
robust: it can poorly reflect the strength of the association. Even a single outlier can have 
a tremendous impact on the usual estimate of Pearson’s correlation, which can result in a 
poor indication of the strength of the association among the bulk of the points. Numerous 
robust correlation coefficients have been proposed that deal with outliers among the 
marginal distributions, but these methods do not take into account the overall structure of 
the data in terms of dealing with outliers. A skipped correlation addresses this concern 

and methods for testing the hypothesis that this correlation is zero have been studied. 
However, there are serious limitations associated with one of these methods and extant 
studies regarding an alternative percentile bootstrap method do not address practical 
concerns reviewed in the paper. A minor goal is to report situations where this percentile 
bootstrap method can be unsatisfactory. The main result is that an alternative percentile 
bootstrap method performs well in simulations. 
 

Keywords: Robust measures of association, level robust methods, non-normality, 
heteroscedasticity 

 

Introduction 

A basic goal is testing the hypothesis that the strength of the association between 

two random variables is zero. Certainly the best-known strategy is to test the 

hypothesis that Pearson’s correlation is zero, using Student’s T test. 
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There are, however, well known concerns with this approach. First, 

Student’s T assumes homoscedasticity. In practical terms, it provides a reasonable 

test of the hypothesis that two variables are independent, but in terms of making 

inferences about ρ, it can be unsatisfactory. For example, even when the null 

hypothesis is true, the probability of rejecting can increase as the sample size 

increases when there is heteroscedasticity (e.g., Wilcox, 2012). Roughly, the 

reason is that Student’s T uses the wrong standard error when there is 

heteroscedasticity, given the goal of testing (1).  

Another concern is that r, the usual estimate of ρ, is not robust. Even a 

single outlier can result in a poor reflection of the strength of the association 

among the bulk of the points. Numerous robust estimators have been proposed for 

dealing with outliers among the marginal distributions (e.g., Wilcox, 2012, 

chapter 9). Certainly the two best-known approaches are Kendall’s tau and 

Spearman’s rho. But a known concern with these measures of association is that 

they do not deal with outliers in a manner that takes into account the overall 

structure of the data. That is, based on the random sample (X1, Y1), …, (Xn, Yn), 

situations are encountered where no outliers are detected among X1, …, Xn, 

ignoring Y, and no outliers are detected among Y1, …, Yn, ignoring X, yet there are 

outliers that can have a substantial impact on Kendall’s tau, Spearman’s rho and 

other measures of association that do not deal with the overall structure of the data 

(e.g., Wilcox, 2012, chapter 9). A measure of the strength of an association that 

deals with this issue is the skipped correlation coefficient. The basic strategy is to 

use some outlier detection method that takes into account the overall structure of 

the data, remove any outliers that are found, and then compute Pearson’s 

correlation using the remaining data. 

There are many outlier detection methods that take into account the overall 

structure of the data. In the context of a skipped correlation, a projection type 

outlier detection method has been the focus of attention. No single outlier 

detection method dominates, but the projection-type method used here appears to 

perform relatively well in terms of avoiding masking and detecting truly unusual 

points (e.g., Wilcox, 2012). Masking refers to missing outliers due to their very 

presence. For example, in the univariate case, detecting outliers using the mean 

and standard deviation can result in masking. The basic problem is that outliers 

inflate the sample standard deviation, which in turn can result is missing even 

extreme outliers. 
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Based on the projection type method for detecting outliers, let ξ denote the 

population analog of the skipped correlation and consider the goal of testing 
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A very simple approach is described in Wilcox (2012, Section 9.4.4). 

However, the method is limited to testing at the α = 0.05 level and it assumes 

homoscedasticity. More recently, Pernet, Wilcox and Rousselet (2013) studied a 

bootstrap method when sampling from a bivariate normal distribution. But the 

impact of non-normality and heteroscedasticity was not addressed. A minor goal 

in this paper is to report results indicating situations where the Pernet et al. 

method can be unsatisfactory when dealing with non-normality and 

heteroscedasticity. The primary goal is to report simulation results on an 

alternative bootstrap method that provides good control over the Type I error 

probability for a broader range of situations. 

Description of the methods to be compared 

This section describes the projection outlier detection method followed by the two 

percentile bootstrap methods that were studied when testing (2). For brevity, just 

an outline of the method is provided. Complete computational details can be 

found in Wilcox (2012, section 6.4.9). Included is an R function called outpro for 

applying it, which is used here. 

The projection method begins by estimating the center of the data cloud, say 

̂ . Here this is done using the marginal medians. Then for fixed i, project all n 

points onto the line connecting ̂  and (Xi, Yi). Based on the projected points, let 

Dj (j = 1, …, n) be the distance between the projection of (Xj, Yj) and the center, ̂ . 

Next, check for outliers using the usual boxplot rule based on the Dj values. That 

is, if q1 and q2 are estimates of the lower and upper quartiles, respectively, based 

on D1, …, Dn, declare Dj an outlier if Dj < 1.5(q2 − q1) or if Dj > 1.5(q2 − q1), in 

which case (Xj, Yj) is declared an outlier as well. This process is performed for 

each i (i = 1, …, n) and (Xj, Yj) is declared an outlier if its projected distance is 

flagged as an outlier for any i. 

The percentile bootstrap method used by Pernet et al. (2013) is applied as 

follows: 
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1. Remove any points flagged as outliers using the projection method. 

Let m denote the sample size after outliers are removed. 

2. Generate a bootstrap sample from the remaining data by resampling 

with replacement m points. 

3. Compute Pearson’s correlation based on this bootstrap sample 

yielding r*. 

4. Repeat steps 2-3 and B times yielding r1
∗ , …, rB

∗. 

5. Put the values r1
∗, …, rB

∗ in ascending order and label the results 

(1) ( )Br r   . 

6. Let l = αB/2, rounded to the nearest integer and u = B − l. Then the 

1 − α confidence interval for ξ is taken to be (r(l + 1), r(u)). This will be 

called method B1 henceforth. 

 

An unusual feature of method B1 is that the process of generating bootstrap 

samples does not exactly mimic the manner in which the data are generated and 

the skipped correlation is computed. A percentile bootstrap method that does 

mimic the way data are generated, labeled method B2 here, begins by generating 

a bootstrap sample from all n points, removing any points flagged as outliers and 

then computing *̂ , Pearson’s correlation based on the remaining data. That is, in 

the description of method B1, replace steps 1-3 with 

 

1. Generate a bootstrap sample by resampling with replacement n 

points from the entire sample of size n. 

2. Remove any points from the bootstrap sample in step 1 that are 

flagged as outliers using the projection method. 

3. Compute Pearson’s correlation using the points not flagged as 

outliers in step 2. 

 

As done in step 4 of method B1, this process is repeated B times only now 

the results are labeled 
* *

1
ˆ ˆ, , B  . The 1 − α confidence interval for ξ is taken to be 

  * *

1
ˆ ˆ, ul
 


. 

It is noted that a p-value is readily computed when testing (2), which is 

motivated by general results in Liu and Singh (1997). Let Q* be the proportion of 
*̂  values that are less than zero. Then a p-value is p = min(2Q*, (1 − 2Q*). 
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Simulation results 

Four types of distributions are considered: normal, symmetric and heavy-tailed 

(roughly meaning that outliers tend to be common), asymmetric and relatively 

light-tailed, and asymmetric and relatively heavy-tailed. More specifically, g-and-

h distributions (Hoaglin, 1985) are used, which arise as follows. Let Z be a 

random variable having a standard normal distribution and let 
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Then W has a g-and-h distribution, where g and h are parameters that 

determine the first four moments. The four distributions used here are the 

standard normal (g = h = 0), a symmetric heavy-tailed distribution (h = .2, g = 0), 

an asymmetric distribution with relatively light tails (h = 0, g = .2), and an 

asymmetric distribution with heavy tails (g = h = .2). Table 1 summarizes the 

skewness (γ1) and kurtosis (γ2) of these distributions. 

The number of bootstrap samples was taken to be B = 1000. Bradley (1978) 

suggests that as a general guide, when testing at the .05 level, the actual level 

should be between .025 and .075. Preliminary simulations based on B = 500 

indicated that method B2 does not satisfy this criterion; increasing B to 1000 gave 

more satisfactory results. 
 
 
Table 1. Some properties of the g-and-h distribution. 

 
g h κ2 κ1 

0.0 0.0 0.00 3.00 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 

 
 

Observations were generated according to the model Y = λ(X)ε, where both 

X and ε have one of the g-and-h distributions in Table 1 and λ(X) is used to model 
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heteroscedasticity. Three choices for λ(X) were used: λ(X) ≡ 1 (homosecdasticity), 

λ(X) = |X| + 1 (so the conditional variance of Y, given X, is smallest when X is 

close to its mean), and λ(X) = 1/(|X| + 1) (in which case the conditional variance of 

Y, given X, is largest when X is close to its mean. For convenience these three 

choices for λ will be called variance patterns (VP) 1, 2 and 3, respectively. 

The simulation estimates of the actual Type I error probabilities were based 

on 2,000 replications. A common suggestion is that ideally, simulation estimates 

be based on 10,000 replications. However, when using method B2, a single 

replication takes a little over 14 seconds using the software R on a MacBook Pro 

with a 2.5 GHz processor. So 10,000 replications would require over 38 hours of 

execution time. To add perspective on the precision of the estimates, assuming 

Bradley’s criterion is reasonable, consider the issue of whether the actual level is 

less than or equal .075. Using the method in Pratt (1968), it can be seen that based 

on a two-sided .95 confidence interval for the actual level, the confidence interval 

will not contain .075 if ̂  ≤ .063. In a similar manner, based on a two-sided .95 

confidence interval, the confidence interval for the actual level does not 

contain .025 if ̂   ≥ .0325. 
 
 
Table 2. Estimated Type I error probabilities, n = 40, α = .05 

 
g h VP B2 B1 

0.0 0.0 

1 0.022 0.066 

2 0.022 0.071 

3 0.028 0.055 

0.0 0.2 

1 0.022 0.070 

2 0.024 0.080 

3 0.024 0.046 

0.2 0.0 

1 0.027 0.066 

2 0.024 0.072 

3 0.030 0.056 

0.2 0.2 

1 0.021 0.072 

2 0.024 0.080 

3 0.022 0.045 

 
 

Table 2 shows the estimated Type I error probabilities when n = 40 and 

α = .05. As can be seen, method B2 tends to be conservative, meaning that the 

estimated Type I error probability is always less than the nominal .05 level. The 

estimates are consistently close to .025 over all of the situations considered. So 

there is some possibility that the actual level drops below .025, but there is no 

strong indication that this is the case. In contrast, the estimates using method B1 
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are always greater than or equal to .05 with the two largest estimates equal to .08. 

So all indication are that in terms of avoiding a Type I error probability greater 

than the nominal level, B2 performs better than B1. 

Concluding remarks 

Some positive features of method B1 are that it reduces execution time compared 

to method B2 and it performs reasonably well in simulations when there is 

homoscedasticity and sampling is from a bivariate normal distribution. For most 

situations, it was estimated that the actual level using method B1 is less than .075, 

but for variance pattern VP 2 this is not the case when dealing with distributions 

with heavy-tails. In contrast, method B2 avoids Type I error probabilities greater 

than .05 among all of the situations considered, the only concern being that the 

actual level was estimated to be as low as .022 with a sample size of n = 40. That 

is, there is some possibility that B2 does not satisfy Bradley’s criterion that the 

actual level should be at least .025. The main result for the goal of avoiding an 

actual level well above .05, all indications are that B2 is preferable to B1. 
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