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Reliability in classical test theory is a population-dependent concept, defined as a ratio of 
true-score variance and observed-score variance, where observed-score variance is a sum 
of true and error components. On the other hand, the power of a statistical significance 
test is a function of the total variance, irrespective of its decomposition into true and error 

components. For that reason, the reliability of a dependent variable is a function of the 
ratio of true-score variance and observed-score variance, whereas statistical power is a 
function of the sum of the same two variances. Controversies about how reliability is 
related to statistical power often can be explained by authors’ use of the term “reliability” 
in a general way to mean “consistency,” “precision,” or “dependability,” which does not 
always correspond to its mathematical definition as a variance ratio. The present note 
shows how adherence to the mathematical definition can help resolve the issue and 

presents some derivations and illustrative examples that have further implications for 
significance testing and practical research. 
 
Keywords: Reliability, power, hypothesis test, error of measurement, true score, 
error score, observed score, difference score 

 

 

The relation between the reliability of measurement, as the concept is defined in 

classical test theory, and the power of statistical hypothesis tests, has been 

investigated for many years and has engendered controversy that has not been 
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completely resolved. Overall & Woodward (1975, 1976) observed that the paired-

samples t test based on difference scores can under some conditions have 

maximum power when the reliability of differences is zero. That finding led to 

discussion as to how the power of the t test and other familiar hypothesis tests 

depends on the reliability of dependent variables in experiments (Cleary & Linn, 

1959; Collins, 1996; Feldt & Brennan, 1989; Fleiss, 1976; Hopkins & Hopkins, 

1979; Kopriva & Shaw, 1991; Levin, 1986; Mellenbergh, 1996, 1999; Subkoviak 

& Levin, 1977; Sutcliffe, 1958; Zimmerman & Williams, 1986; Zimmerman, 

Williams, & Zumbo, 1993), with presentation of various inconsistent points of 

view. 

The methods introduced by Cohen (1988) have been applied widely to 

calculate the power of familiar hypothesis tests used in educational and 

psychological research. In the case of tests based on the normal distribution, such 

as the Student t and ANOVA F tests, those methods provide a good 

approximation to exact results obtained from noncentral t and F distributions. 

However, the concept of test reliability and validity defined in classical test theory 

has not been employed in power analysis with the same degree of precision (see 

Thomas & Zumbo, 2012). 

Researchers and test users often associate the concept of reliability with 

terms such as dependability, precision, repeatability, and so on, assuming they are 

consistent with the mathematical definition in classical test theory. The classical 

definition is based on the decomposition of scores in a population of individuals 

into true scores and error scores and the relative variability of those components. 

In the traditional theory, each individual’s test score is a sum of a true score and 

an error score, X = T + E, and the total variance (or observed-score variance) with 

respect to a population of individuals is a sum of the variances of the components, 
2 2 2

X T E    . Finally, reliability is defined as the ratio of the true-score variance 

and the total variance,  2 2 2 2 2/ / ,T X T T E         or equivalently as 

 2 , ,XX T  the squared correlation between observed scores and true scores 

(Gulliksen, 1950; Novick, 1966; Lord & Novick, 1968). It is also worth noting 

that the numerical value of reliability can always be found solely from the ratio of 

σT and σE, although the combined values of the two standard deviations may differ 

in size. This can be seen by defining ψ = σT / σE and dividing both the numerator 

and denominator of  2 2 2/T T E    by σT σE to obtain  1/      . 

The fact that reliability in classical test theory is a population-dependent 

concept has been emphasized by Mellenbergh (1996, 1999). The concept does not 
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apply to an individual examinee, and this fact is important in considering 

statistical power. Because reliability is defined as a ratio of two components of 

variance with respect to a population, a given numerical value of reliability can be 

associated with many different combinations of values of true-score variance and 

error-score variance. That fact has been at the root of many problems in analyzing 

how reliability is related to statistical power. 

Reliability and variance heterogeneity 

A familiar formula in classical test theory enables one to find reliability in one 

population with a particular observed-score variance when knowing reliability in 

another population with a different observed-score variance. The formula is  

 

  1

2

2

2 12
1 1

X

X


 


     (1) 

 

where the subscripts 1 and 2 denote the respective populations. This equation was 

derived under the assumption that the change in observed-score variance is 

accounted for by a change in true-score variance, while error-score variance 

remains constant (Gulliksen, 1950, p 111; Lord & Novick, 1968, p 130). 

In contrast to the familiar approach, if a change in observed-score variance 

is accounted for by a change in error-score variance, while true-score variance 

remains constant, the results are described by the equation 

 

 1

2

2

2 12

X

X


 


   (2) 

 

which can be derived easily, although equation (1) is prominent in test theory. 

Whether it is more reasonable to regard a difference in the observed scores of two 

groups as resulting from different true-score variances or different error-score 

variances is problematic. Curiously, test theorists have assumed constant error-

score variance in deriving equation (1), but when considering how reliability 

influences statistical power, have adopted implicitly the assumption underlying 

the relatively unknown equation (2).  

It is well understood in statistics that the power of an hypothesis test is 

inversely proportional to the variance of any dependent variable, assuming that 

other determinants, including significance level, sample size, and directionality of 
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the hypothesis, remain constant. Expressed otherwise, the power of an hypothesis 

test is inversely proportional to the observed-score variance considered in test 

theory, irrespective of how that variance is partitioned into true score variance and 

error-score variance. For this reason, if observed-score variance does not change, 

the power of a significance test remains the same, even when the value of the 

reliability coefficient changes extensively over a wide range. 

Although equations (1) and (2) show how reliability changes as observed-

score variance changes, for present purposes in considering statistical power, we 

need just the reverse, that is, equations showing how observed-score variance 

changes as reliability changes. Simply rearranging equations (1) and (2), we can 

write 

 

 2

1

2

1

2

2

1
,  and

1

X

X

 

 





  (3) 

 

 2

1

2

1

2

2

X

X

 

 
   (4) 

 

These forms show immediately that, if error-score variance is constant, 

observed-score variance is proportional to reliability, and, if true-score variance is 

constant, observed-score variance is inversely proportional to reliability. In turn, 

because of what is known about power functions, that means that, if error-score 

variance is constant, statistical power is inversely proportional to reliability, and, 

if true-score variance is constant, statistical power is directly proportional to 

reliability. 

It is possible for a test to have high reliability and still have low power, or, 

conversely, to have low reliability and have high power (see, for example, the 

paradox originally discussed by Overall and Woodward (1975, 1976) in the 

context of difference scores). Furthermore, it is possible for the same reliability 

coefficient to be associated with different degrees of power and for different 

reliability coefficients to result in the same power.  

A simple example illustrates some possibilities. Table 1 compares 

hypothetical tests, each having a large number of scores with distributions like 

those shown in the table. In section A, the test on the left apparently has high true 

scores and low error scores, so that its reliability might be expected to be high, but, 

because the variance of T1 is much higher than that of E1, reliability is only .096. 

In the test on the right, the reverse is true, and the reliability is .904, even though 



RELIABILITY AND STATISTICAL POWER 

13 

the true scores at first glance look small. Nevertheless, despite the difference in 

reliability, the two tests have the same statistical power, because the observed-

score variances are the same. In section B, the two tests have the same 

reliability, .645, because the variances of T and E, although different, have the 

same ratio. However, the observed-score variances are different, and the statistical 

power of the test on the left is greater. 
 
 
Table 1. A) Score components of two tests having substantially different reliability 

coefficients and the same statistical power; B) Score components of two tests having the 
same reliability coefficients and substantially different statistical power. 
 

A 
 

B 

Score Components   Score Components   Score Components   Score Components 

T1 E1 X1 
 

T2 E2 X2 
 

T1 E1 X1 
 

T2 E2 X2 

100 1 101 
 

0 99 99 
 

50 5 55 
 

100 10 110 

101 6 107 
 

5 100 105 
 

52 6 58 
 

104 12 116 

100 2 102 
 

1 99 100 
 

51 4 55 
 

102 8 110 

102 7 109 
 

6 101 107 
 

53 6 59 
 

106 12 118 

101 2 103 
 

1 100 101 
 

52 4 56 
 

104 8 112 

100 7 107 
 

6 99 105 
 

50 6 56 
 

100 12 112 

102 1 103 
 

0 101 101 
 

53 5 58 
 

106 10 116 

100 6 106 
 

5 99 104 
 

51 6 57 
 

102 12 114 

               
Variance of T1 − 0.786 

 
Variance of T2 − 7.429 

 
Variance of T1 − 1.429 

 
Variance of T2 − 5.714 

Variance of E1 − 7.429 
 

Variance of E2 − 0.786 
 

Variance of E1 − 0.786 
 

Variance of E2 − 3.143 

Variance of X1 − 8.214 
 

Variance of X2 − 8.214 
 

Variance of X1 − 2.214 
 

Variance of X2 − 8.857 

               
Reliability − .096 

 
Reliability − .904 

 
Reliability − .645 

 
Reliability − .645 

                              

 

Power as a composite function of reliability  

For investigating the relation of reliability and power, it is more convenient to 

examine changes in reliability with changes in true-score variance and error-score 

variance, as opposed to changes in observed-score variance as given by equations 

(1) and (2). It is then possible to express observed-score variance as a 1-1 function 

of reliability, provided either true-score variance or error-score variance is held 

constant. Then, because power is a 1-1 function of observed-score variance, it is 

possible in turn to express power as a composite function. Under those conditions, 

power is a monotonic decreasing function of observed-score variance and a 

monotonic increasing or decreasing function of reliability depending on which 
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component is constant. Of course, the form of the functions depends on properties 

of the particular hypothesis test considered.  

First, begin with the equations  
1 1

2 2 2

1 1 /E T E       and 

 
2 2

2 2 2

2 1 /E T E      , solve both for 2

T , assumed to be constant, and set the 

two expressions equal. The result is  

 

 1 2

2 2

1 2

1 21 1

E E   

 


 
 

 

Then, solving for ρ2 gives the result  

 

 

2

1

2 2

2

1

1

1
1 1

E

E




 


 

  
 

  (5) 

 

This equation indicates how reliability changes as the variance of the error 

component changes, while the true-score variance remains fixed. 

Alternatively, if 2

T  changes while 2

E  is constant, a similar derivation give 

 
1 1

2 2 2

1 /T T E      and  
2 2

2 2 2

2 /T T E     , so that 

   
1 2

2 2

1 1 2 21 / 1 /T T        . Solving for ρ2 gives the result 

 

 

1

2

2 2

2

1

1

1
1 1

T

T




 


 

  
 

  (6) 

 

This equation indicates how reliability changes as true-score variance changes, 

while error-score variance is constant. Equations (5) and (6) clearly indicate that 

changes in reliability resulting from changes in either true-score variance or error-

score variance depend only on the ratios 
2 1

2 2/E E   or 
1 2

2 2/T T   relating the old and 

new score components and not on the individual variances considered separately.  
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Changes in observed score variability and power with 
changes in reliability 

Table 2 contains results found from equations (5) and (6). The first row at the top, 

labeled “Initial ρ” is the value of the reliability coefficient, denoted by ρ1 in the 

equations, and the entries in the right-hand section of the table are the values of 

the new reliability coefficient, ρ2, after a designated change in the error-score 

variance or true-score variance. The ratio of old-to-new error-score variance, 

1 2

2 2/E E  , is located in the first column, and the entry in the table gives the value 

of the new reliability after the change, assuming that true-score variance remains 

constant. The same entry in the table is also the value of the new reliability if a 

change shown by the adjacent entry in the second column is made in the ratio 

1 2

2 2/T T  , assuming that error-score variance remains constant. That is, the ratios 

in the second columns are inverses of those in the first column, and the same 

change in reliability corresponds to both ratios. 
 
 
Table 2. Modification of reliability and observed-score variance by changes in error-score 

variance ( E E1 2

2 2/ ) and in true-score variance ( T T1 2

2 2/ ). Entries in the five right-hand 

columns are the modified reliability values (ρ2) corresponding to variances and variance 
ratios in the first four columns. 
 

    
Initial Reliability (ρ1) 

 E E1 2

2 2/  σ2 
1 2

2 2/T T   σ2 .10 .30 .50 .70 .90 

0.250 5.000 4.000 1.250 .027 .097 .200 .368 .692 

0.286 4.500 3.500 1.286 .031 .109 .222 .400 .720 

0.333 4.000 3.000 1.333 .036 .125 .250 .438 .750 

0.400 3.500 2.500 1.400 .043 .146 .286 .483 .783 

0.500 3.000 2.000 1.500 .053 .176 .333 .538 .818 

0.667 2.500 1.500 1.667 .069 .222 .400 .609 .857 

1.000 2.000 1.000 2.000 .100 .300 .500 .700 .900 

1.500 1.667 0.667 2.500 .143 .391 .600 .778 .931 

2.000 1.500 0.500 3.000 .182 .462 .667 .824 .947 

2.500 1.400 0.400 3.500 .217 .517 .714 .854 .957 

3.000 1.333 0.333 4.000 .250 .562 .750 .875 .964 

3.500 1.286 0.286 4.500 .280 .600 .778 .891 .969 

4.000 1.250 0.250 5.000 .308 .632 .800 .903 .973 

 
 

The values of ρ2 in the right-hand section always increase as values of 

1 2

2 2/E E   increase and also as those of 
1 2

2 2/T T   decrease. At the same time, the 
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values of σ2 decrease (and therefore power increases), as those of ρ1 increase, and 

vice versa. Also, the same values of ρ2 are associated with different values of σ2 

(and therefore power). 

The relationship can be seen in more detail by plotting graphs of some 

power functions obtained from simulations. Figure 1 plots power functions of the 

one-sample Student t test under conditions where reliability was either increased 

or reduced by changing one component of the observed-score variance while the 

other remained constant. These simulations were programmed using Mathematica, 

version 4.1 (Wolfram, 1999), together with Mathematica statistical add-on 

packages. The program performed t tests on sums of “true-score” and “error-score” 

random variables, selected from N(0,1) and multiplied by constants in order to 

determine means, variances, and reliabilities. The means increased in increments 

of .32σ, and each data point in the figure was found from 20,000 iterations of the 

sampling procedure. 

In both sections of the figure, the true-score and error-score variances were 

initially equal, so that reliability was .50. The middle curves with filled circles 

represent these initial reliabilities. In the upper section, reliability was increased 

to .80 in two ways. In the top curve in that section (triangular symbols), error-

score variance was reduced, while true-score variance was constant. In the lower 

section (square symbols), true-score variance was increased while error-score 

variance was constant. 

In the lower graph, reliability was decreased to .20 in two ways. In the top 

curve (square symbols), true-score variance was reduced while error-score 

variance was constant. In the lower curve (triangular symbols), error-score 

variance was increased while true-score variance was constant. All these curves, 

with shapes typical of power curves, show that the sum of the two variance 

components, that is, the observed-score variance, determined the power of the 

hypothesis test irrespective of how reliability changed as a result of a change in 

the ratio of the two components. 
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Figure 1. Power functions of the one-sample t test when reliability was increased or 

decreased by changing component variances. Upper graph: reliability was increased 
from .50 to .80. The middle curve is for ρ = .50. In the upper curve, error-score variance 
was reduced while true-score variance remained constant. In the lower curve, true-score 
variance was increased while error-score variance remained constant. Lower graph: 
Reliability was reduced from .50 to .20. The middle curve is for ρ = .50. In the upper 
curve, true-score variance was reduced while error-score variance remained constant. In 
the lower curve, error-score variance was increased while true-score variance remained 
constant. 
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Relations, functions, and composite functions 

It is well known that statistical power is a function of several variables, some of 

which are under the direct control of an experimenter. These include sample size, 

N, the significance level, α, and the directionality of the hypothesis tested. Of 

course, different hypothesis tests, parametric and nonparametric, have different 

power characteristics under various conditions. The relations between N and 

power and between α and power are functional when the other variables are held 

constant; that is, each value in the domain of the relation is associated with a 

single value in its range. Some authors have considered it reasonable to add 

reliability to the list of determinants. However, as we have seen, reliability 

influences power only to the extent that it influences observed-score variance.  

The association between reliability and power, therefore, is a mathematical 

relation, but it is not a function or a functional relation. However, it becomes 

functional if the variance of one of the two variables determining reliability is 

held constant. In that case, if the variance of one score component is held constant, 

power is a composite of two functions, the one between a score component and 

observed-score variance, and the one between observed-score variance and power. 

The range of the first function is the domain of the second. 

As said before, still another way to express the same relationship is that, all 

other things equal, statistical power is a function of the sum of the variances of T 

and E, whereas reliability is a function of the ratio of those two variances. As 

noted earlier, reliability can be defined as ψ/(ψ+ψ−1), where ψ = σT/σE. That 

definition makes it clear that reliability can be either large or small at the same 

time the sum, which determines power, is either large or small, independently of 

the ratio. The fact that power is determined by the observed-score variance, which 

is comprised of the sum in the denominator of the expression  2 2 2/T T E      

shows that, for a fixed value of 2

E , power has its maximum value when ρ = 0. 

But for a fixed value of 2

T  power has a maximum when ρ = 1. 

Reliability of difference scores and statistical power 

In order to gain insight into paradoxes concerning difference scores, we shall 

pursue an approach similar to the above. Rather than directly seeking a 

relationship between the reliability of differences and the power of an hypothesis 

test employing differences, we first consider how both are related to observed-
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score variance and also the reliability coefficients of the two variables 

determining the differences.  

Once again, beginning with what is known, the power of tests on difference 

scores, X − Y, is certainly a decreasing function of the variance of the difference 

scores. However, reliability depends on partitioning that variance into true and 

error components and finding ratios, which in turn depend on the similar ratios of 

both X and Y. In all cases, both reliability and the power of an hypothesis test can 

be considered joint functions of the true-score variance and error-score variance 

of the difference scores. However, power is determined uniquely by their sum and 

reliability by their ratio, just as in the case of a single variable X.  

A familiar equation is  

 

 

2 2 2

2 2 2

2

2

D X Y X Y X YT T T T T T T

D

D X Y XY X Y

     


     

 
 

 
  (7) 

 

where D = X − Y, TX and TY are the true score components of X and Y, and ρD is 

the reliability of D. If 
2 2

X YT T   and 
2 2

X YE E  , this equation can be solved for 

2

D  and substitutions made using  2 2 2/
X X XX T T E     . The result is 

 

  
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2
2

1X

X Y

T

D T T X

X


  


    (8) 

 

and an equivalent result is 

 

  2 2 22 1
X YD T T T E      

 
  (9) 

 

Although the assumption that variances of X and Y are equal is often unrealistic in 

practice, it suffices to indicate the form of the relation between reliability and 

statistical power. Next, the reliability of differences can be written in the form 

 

 
 1

,  or
1

X Y

X Y

X T T

D

T T X

 


 





  (10) 
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 

 

2

2 2

1

1

X Y

X Y

T T T

D

T T T E

 


  




 
  (11) 

 

Equation (10) indicates that, if 0
X YT T  , the reliability of differences is the same 

as the common reliability of the components. 

Equations (8), (9), (10), and (11) have the desirable feature that all 

combinations of values of the variables on the right-hand side of the equation 

yield meaningful values of ρD and 2

D . That is not true in the case of several well-

known formulas that involve both ρXY and ρX, because the Cauchy-Schwarz 

inequality places limits on the values the two can have together (Zumbo, 1999). 

For example, the relation    / 1D X XY XY       is not meaningful for all 

values of ρXY and ρX. 

The above equations provide a convenient way to exhibit the relation 

between the reliability of differences and statistical power. Table 3 shows results 

of calculations using equations (9) and (11), comparing the reliability of 

component scores (ρX), the reliability of difference scores (ρD), and the observed 

variance of difference scores ( 2

D ), as a function of 2

T  while 2

E  is constant 

(upper section) and of 2

E  while 2

T  is constant (lower section). 

If 2

E  is fixed, an increase in ρX comes from an increase in 2

T , and if 2

T  is 

fixed, it comes from a reduction in 2

E . Those outcomes are apparent in the table: 

As 2

T  increased from 0 to 1.8, the reliability coefficients ρX and ρD both 

increased, and also the variance of observed scores increased, so that statistical 

power decreased. The same was true for all three values of the correlation 

between true scores, ρ(TX,TY). On the other hand, as 2

E  increased from 0 to 1.8, 

ρX and ρD both decreased, but the variance of observed scores still increased, so 

that power again decreased. As 2

T  varied, power was greatest when the 

reliability of differences was 0. However, as 2

E  varied, power was greatest when 

the reliability of differences was 1. 
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Table 3. Changes in observed variance and reliability of difference scores associated 

with changes in reliability of component scores. 
 

  
ρ(TX,TY) = −.60 

 
ρ(TX,TY) = 0 

 
ρ(TX,TY) = .60 

  T

2
 ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
0.0 .000 .000 2.000 

 
.000 .000 2.000 

 
.000 .000 2.000 

 
0.2 .167 .242 2.640 

 
.167 .167 2.400 

 
.167 .074 2.160 

 
0.4 .286 .390 3.280 

 
.286 .286 2.800 

 
.286 .138 2.320 

 
0.6 .375 .490 3.920 

 
.375 .375 3.200 

 
.375 .194 2.480 

1 E

2
 0.8 .444 .561 4.560 

 
.444 .444 3.600 

 
.444 .242 2.640 

 
1.0 .500 .615 5.200 

 
.500 .500 4.000 

 
.500 .286 2.800 

 
1.2 .545 .658 5.840 

 
.545 .545 4.400 

 
.545 .324 2.960 

 
1.4 .583 .691 6.480 

 
.583 .583 4.800 

 
.583 .359 3.120 

 
1.6 .615 .719 7.120 

 
.615 .615 5.200 

 
.615 .390 3.280 

 
1.8 .643 .742 7.760 

 
.643 .643 5.600 

 
.643 .419 3.440 

                          

  
ρ(TX,TY) = −.60 

 
ρ(TX,TY) = 0 

 
ρ(TX,TY) = .60 

  
E 2

 ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
ρX ρD  D

2
 

 
0.0 1.000 1.000 3.200 

 
1.000 1.000 2.000 

 
1.000 1.000 0.800 

 
0.2 .833 .889 3.600 

 
.833 .833 2.400 

 
.833 .667 1.200 

 
0.4 .714 .800 4.000 

 
.714 .714 2.800 

 
.714 .500 1.600 

 
0.6 .625 .727 4.400 

 
.625 .625 3.200 

 
.625 .400 2.000 

1T 2
 0.8 .556 .667 4.800 

 
.556 .556 3.600 

 
.556 .333 2.400 

 
1.0 .500 .615 5.200 

 
.500 .500 4.000 

 
.500 .286 2.800 

 
1.2 .455 .571 5.600 

 
.455 .455 4.400 

 
.455 .250 3.200 

 
1.4 .417 .533 6.000 

 
.417 .417 4.800 

 
.417 .222 3.600 

 
1.6 .385 .500 6.400 

 
.385 .385 5.200 

 
.385 .200 4.000 

  1.8 .357 .471 6.800   .357 .357 5.600   .357 .182 4.400 

 
 

Consider now the relation between increases in reliability and power, 

reading from top to bottom in the columns in the upper section of the table and 

from bottom to top in the lower section. When the reliability coefficients of the 

component tests increased, the reliability of differences also increased, as long as 

just one column is considered. However, note that the same reliability of the 

components in many cases is associated with decidedly unlike reliabilities of the 

differences, depending on whether the change is attributable to a change in true-

score variance or error-score variance. Often the values were far apart. 

Furthermore, the reliability of differences is either greater or less than that of the 

components, depending on whether the correlation between true scores, ρ(TX,TY), 

is positive or negative. As the absolute value of that correlation increases, the 

discrepancy is greater. 
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The observed scores of the differences, and hence the statistical power, 

increases as reliability increases if the change is attributable to a change in error-

score variance and decreases if it is attributable to a change in true-score variance. 

That means that simply selecting a value of reliability, either of differences or the 

component tests, does not in itself provide information about the statistical power 

of the differences as a dependent variable. Just as in the case of a single test, the 

relation between reliability and power is not a functional relation unless the 

variance of one of the components of the scores is held constant.  

These conclusions about the relation between power and the reliability of 

differences are consistent with results obtained by May & Hittner (2003), Overall 

& Woodward (1975, 1976), and Nicewander & Price (1978, 1983) using different 

methods. The so-called paradox of low reliability being associated with high 

power becomes more understandable from inspection of Table 3. That problem 

also is closely related to another issue that has been extensively treated in the 

literature, that of the reliability of differences often being considerably less than 

the reliability of the components. As the table shows, that is not always true, and 

again, looking at the reliability of the components alone, without further 

information, is one source of the trouble. The approach in Table 3, in which 

reliability coefficients are first related to the variances of true scores and error 

scores, makes it possible to focus on values that realistically would be likely to 

occur. At any rate, it is clear that an hypothesis test of differences can be powerful 

even if the reliability of a dependent variable is quite low. 

How to increase statistical power: some practical 
implications 

As mentioned before, a possible reason for the controversies surrounding the 

relation of reliability and statistical power is ambiguity about the precise meaning 

of the term “reliability” in practical research. The term often is used in a way that 

conforms to popular usage, and even to widespread usage in various scientific 

fields, but does not match the mathematical definition given in classical test 

theory. The root of the difficulty is the fact that reliability, as defined in test 

theory, is a property of populations of individuals, that is a ratio of statistics 

applicable to populations, but not to a single individual or experimental object. 

The “reliability” of a scientific instrument, especially in physical sciences, often 

refers to its consistency in measuring a single physical object of a certain kind, 

but that is not the way the term is used in classical test theory. 
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When one asks the question “How does reliability influence power?” 

investigators in psychology and education often assume the question is similar to 

“How does reliability influence validity?” or “How does test length influence 

reliability?” What is typically desired is a function relating changes in the first 

variable to changes in the second variable, and many such functions are known in 

test theory. On the other hand, a researcher in another field, or a statistician, may 

assume the question is similar to “How does sample size influence power?” or 

“How does the significance level influence power?” having in mind well-known 

functions relating those variables. 

As emphasized in the present note, there is not a unique way of making the 

increments in reliability needed to exhibit power as a function of reliability. We 

can conclude that increasing an instrument’s reliability will contribute to greater 

power in hypothesis testing only if the change occurs through a reduction of error-

score variance that exceeds any increase in true-score variance occurring at the 

same time.  

Suppose a researcher has a choice between two instruments, one with a 

known reliability coefficient of .90 and the other .80. Before assuming 

automatically that the first instrument is the better choice, it is prudent to look at 

the variance of scores that can be expected. If the instrument with lower reliability 

typically produces scores with considerably less variability, it could still be the 

better choice. That is especially true if the experiment is designed to detect 

possible differences among large groups of subjects with respect to an 

independent variable and is not concerned with short-term fluctuations in 

measures of individuals. 

Another way to look at the problem is to recall that an hypothesis test is 

essentially a determination, based on probability, of whether or not a difference 

found between samples can be attributed to chance variability. However, an 

hypothesis test is blind to the partitioning of variability into contributions from 

separate components, such as “true scores” and “error scores.” A test statistic such 

as t typically is computed as a ratio of an obtained value to an estimate of 

variability based on a sampling distribution. 

Recommending that the reliability coefficient be increased whenever 

possible is not always good advice in hypothesis testing, although the 

conventional emphasis on practical measures to reduce error variance still applies. 

All other things being equal, the more error of measurement can be avoided in an 

experiment, the better, and that task certainly should be considered along with 

other well-known methods of increasing power (see, for example, Wilcox, 2003) 

that are useful in research. But reducing error is productive, we have seen, only if 



ZIMMERMAN & ZUMBO 

24 

the same practical steps also reduce observed-score variance. If a more 

heterogeneous group is tested at the same time error of measurement is less, 

power does not necessarily increase. For practical usefulness, eliminating error 

and thereby increasing reliability for a particular population of examinees can be 

effective, provided the change is made without altering the population.  
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