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Invited Article 
In (Partial) Defense of .05

Thomas R. Knapp 
University of Rochester 
Rochester, NY 

 

 

 

 
Researchers are frequently chided for choosing the .05 alpha level as the determiner of 
statistical significance (or non-significance). A partial justification is provided. 
 
Keywords: .05 level, statistical significance, R. A. Fisher 

 

Introduction 

For the last 50 or 60 years it has been fashionable to deride the insistence on using 

an alpha level of .05 for testing the statistical significance of a sample finding. It 

is commonplace to read critical comments such as “The current obsession 

with .05” (Skipper, Guenther, & Nass, 1967, p. 16; see also Labovitz, 1968) and 

“God loves the .06 nearly as much as the .05” (Rosnow & Rosenthal, 1989, p. 

1277). In the spirit of Robinson, Funk, Halbur, and O'Ryan (2003) I would like to 

provide an explanation for ‘why .05?’ and an argument in favor of its prevailing 

use. Near the end of the paper I will give a similar argument for 95% confidence 

(.05's interval estimation counterpart), and I will conclude with a few cautionary 

statements regarding total devotion to .05 and/or 95%. 

A bit of history 

Although there is some evidence for earlier recommendations of .05 as a 

defensible level of statistical significance, most people claim that it was first 

suggested by Fisher (1926): 

 

[T]he evidence would have reached a point which may be called the 

verge of significance; for it is convenient to draw the line at about the 
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level at which we can say 'Either there is something in the treatment or 

a coincidence has occurred such as does not occur more than once in 

twenty trials.' This level, which we may call the 5 per cent level point, 

would be indicated, though very roughly, by the greatest chance 

deviation observed in twenty successive trials... If one in twenty does 

not seem high enough odds, we may, if we prefer it, draw the line at 

one in fifty (the 2 per cent point) or one in a hundred (the 1 per cent 

point). Personally, the writer prefers to set the low standard of 

significance at the 5 per cent point, and ignore entirely all results 

which fail to reach this level. (p. 504) 

 

There are several things to note about what Fisher said: 

 

1. He used the interesting phrase “the verge of significance”. As far as I 

have been able to determine, none of his critics have commented 

about that choice of words.  

2. He did not insist on .05, as the second part of the quote indicated. 

Many of his critics unfairly charged him with being unwavering 

regarding .05. 

3. Surprisingly, he confused probability with odds (and high with low). 

The alpha level of .05 has to do with a probability of one in twenty; 

the corresponding odds are one to nineteen (in favor) or nineteen to 

one (against). 

 

Fisher didn’t write about .05 being the probability of making a Type I error. 

That concept (along with the probability of making a Type II error) was yet to 

come in the Neyman-Pearson approach to hypothesis testing. Also yet to come 

were several acrimonious arguments between Fisher and W. S. Gosset (who had 

previously developed the t-test), between Fisher and Karl Pearson, and between 

Fisher and both Jerzy Neyman and Egon Sharpe Pearson (Karl’s son), as 

documented by Fienberg and Tanur (1966), Cowles and Davis (1982), Inman 

(1994), Wainer and Robinson (2003), and others. 

In the intervening years between 1926 and the present there were several 

criticisms of .05, e.g., Cohen (1994), along with some defenders, e.g., Robinson, 

et al. (2003). Cohen (1994) was particularly puzzling (see the collection of 

comments regarding it in the December, 1995 issue of American Psychologist). 

The title is difficult to understand. Was he trying to be clever in considering “The 

earth is round” as a null hypothesis that should be rejected at the .05 level, 
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because it is actually slightly elliptical rather than perfectly round? He also made 

an error where he claimed many people believe a p-value is the probability that 

the null hypothesis is false. No; some people mistakenly believe that a p-value is 

the probability that the null hypothesis is true; no one believes p is the probability 

of a false null. 

After discussing some of the historical origins of the use of an alpha level 

of .05, Robinson, et al. (2003) provided the results of empirical studies in which 

students were asked how many heads in each of the first n flips of a coin would 

lead them to claim that the coin was not “fair”. The modal response in most of 

those studies was five. The probability of heads on the first five tosses of a fair 

coin is .03125, which is close to the traditional .05 (see Figure 1 below). 

A rationale for .05 

Although Fisher didn't use the following argument, some of the students in the 

Robinson, et al. (2003) studies apparently did, implicitly if not explicitly. 

(Comparable arguments have been made by Tintle, et al., 2014 and at the 

EMBstats website, http://www.embstats.com. See Figure 1 below for the latter.) 

Suppose you were asked your opinion about the fairness of a coin. You want to 

make a decision if its probability of landing as heads is equal to .5. How many 

heads would have to be obtained in the first five tosses for you to call a halt and 

conclude it’s not a fair coin? The probability of one head in one toss of a fair coin 

is .5. (You wouldn’t call a halt.) The probability of two heads in two tosses 

is .5 × .5 = .25, and the probability of three heads in three tosses 

is .5 × .5 × .5 = .125. (Still no clear decision to halt.) The probability of four heads 

in four tosses is .5 × .5 × .5 × .5 = .0625. (Perhaps the decision to halt is near, and 

note .0625 is close to .05.) If you want to wait for the result of one more toss, the 

probability of five heads in five tosses is .5 × .5 × .5 × .5 × .5 = .03125. At this 

point you are likely to claim that the coin is not fair. (The difference 

between .0625 and the .03125 is .046875, which is very close to .05.) However, 

you know you might be wrong. 

Figure 1 details the argument presented at the EMBstats website. Note the 

interpretations of “Unusual” (for 4 heads in 4 tosses), “Surprising” (for 5 heads in 

5 tosses), “Strange” (for 6 heads in 6 tosses), and “I don't believe it!” (for 7 heads 

in 7 tosses). Fisher’s .05 would come between “Unusual” and “Surprising”. He 

avoided the matter of proof and exhibited a commendable tolerance for 

uncertainty. Similarly, statisticians are so comfortable with uncertainty that they 

occasionally advocate the use of the randomized response technique for 

http://www.embstats.com/
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estimating a proportion where only some of the respondents to a survey actually 

answer the question of interest (Campbell & Joiner, 1973). 
 
 

 
 
Figure 1. EMBstats dialogue on tossing a coin (http://www.embstats.com). 

 

 

95% confidence intervals 

In the last 25 or 30 years there has been a pronounced shift from an emphasis on 

significance testing to a preference for confidence intervals. Some methodologists 

suggest reporting both; some journal editors require it. (Reporting both is not a 

good idea. See the third statistics commandment in Knapp & Brown, 2014). But 

the continuing choice of 95% for confidence (the interval estimation counterpart 

to .05 for hypothesis testing) has not been subject to the same sort of scrutiny that 

has been directed at .05. Why is that? 

Perhaps consumers are more convinced by a 95% confidence argument than 

by the .05 significance argument. Consider the coin-tossing problem above, but 

change it to a desire for estimating the degree of bias associated with the coin 

rather than testing its fairness. If the coin-tosser got five heads in five tosses and 

was interested in estimating the population proportion of heads for that coin, he 

could get a confidence interval by using Pezzullo’s online computing routine 

(http://www.statpages.org) based on Clopper and Pearson’s (1934) formulas, 

tables, and graphs.  

Testing: Is my coin fair? 

Formally: We want to make some inference about 
P(head) 

Try it: Toss coin several times (say 7 times). Assume 
that it is fair (P(head) = 0.5), and see if this 
assumption is compatible with the observations. 

# tosses # heads Comment Probability 

1 1 OK 0.50 

2 2 OK 0.25 

3 3 OK 0.12 

4 4 Unusual 0.06 

5 5 Surprising 0.03 

6 6 Strange 0.02 

7 7 I don't believe it! 0.01 

 

http://www.embstats.com/
http://www.statpages.org/


IN (PARTIAL) DEFENSE OF .05 

31 

For example, at http://www.statpages.org for Exact Binomial Confidence 

Intervals input 5 heads (the numerator) in 5 tosses (the denominator, chose 95% 

confidence (the default). The results returned are 1.0000 as the statistic and .4782 

to 1.0000 as the confidence interval. A choice of 99% confidence (corresponding 

to .01 significance) or 99.9% confidence (corresponding to .001 significance) 

serves only to reduce the lower limit (.3466 for 99% and .2187 for 99.9%) and 

therefore provides more confidence. Could it be that some people regard 99% 

confidence intervals and 99.9% confidence intervals to be too wide and are 

willing to stick with 95% for its greater precision despite its lesser confidence? 

Asterisks 

Consider the still-common practice of labeling with a single asterisk a finding for 

which p < .05, two asterisks for p < .01, and three asterisks for p < .001 (or what 

Leahey, 2005 refers to as the three-star system”, Abstract). That is not sound 

practice (see Slakter, Wu, & Suzuki-Slakter, 1991), because if an alpha of .05 has 

been used in a power analysis to select an appropriate sample size, then all that is 

necessary to determine is whether p is less than or greater than .05. (Similarly, for 

alphas of .01 and .001.) Some journal editors require the reporting of the actual p, 

and that is the preferred practice according to the American Psychological 

Association manual (APA, 2010), which is not perfect, but is more sound than 

using asterisks. 

To be consistent, why aren’t asterisks or similar symbols used in the tables 

where authors report 95%, 99%, or 99.9% confidence intervals? If this statistic is 

significant at the .05 level and that statistic is significant at the .01 level, doesn’t it 

make sense to put a 95% confidence interval around the first statistic and a 99% 

confidence interval around the second statistic? 

All of the references so far have been to journal articles. There are three 

books on this topic that are recommended: Fisher (1925), Salsburg (2001), and 

Moye (2006). These three authors addressed the choice of .05 for statistical 

significance. Fisher (1925) contained some of the same views later expressed in 

Fisher (1926). Salzburg related Fisher’s classic experiment regarding a lady’s 

ability to determine whether milk has been added to tea or tea added to milk. 

Moye provided a thorough discussion of the advantages and disadvantages of 

p-values (mostly disadvantages). Both Salzburg and Moye gave fascinating 

accounts of Fisher’s battles with Neyman and Pearson (and with Gosset). Moye 

noted that Fisher was not wedded to .05, as stated above. 

http://www.statpages.org/
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Some cautions 

Continuing to emphasize .05 as the cut-off between statistical significance and 

non-significance is not all that bad. The same holds for continuing to emphasize 

95% for confidence intervals. But there are exceptions. 

 

1. If there might be very serious consequences should a Type I error be 

made, a more stringent alpha is necessary. For example, suppose a 

randomized clinical trial (RCT) were to be carried out comparing the 

effectiveness of a new and very expensive drug with an existing 

much less expensive drug. Suppose further that a decision might be 

made to reject the null hypothesis of no effect because of a 

statistically significant effect in favor of the new drug, but in reality 

it is no better. That could lead to the adoption of a drug that is not 

only no better than the existing drug but could result in an 

unnecessary cost of thousands or millions of dollars. In that case an 

argument could be made to use .01 or .001 or an even smaller 

significance level. 

2. If the committing of a Type II error would have much greater 

consequences than a Type I error, the argument is reversed; i.e., 

change alpha to a more liberal level, such as .20. An example of this 

would be a medical diagnosis of no disease if a patient is in fact ill. 

Generally, it would be worse to not treat a patient who has a disease 

than to treat a patient when the disease is not present. 

3. If the estimate of a population parameter must be both precise and 

defendable, a confidence coefficient of 99.9% might be chosen, as 

well as a huge sample size. For example, if an estimate of the 

proportion of people who are below the poverty line is to be made, 

we might want to do that in order to have both politically defensible 

and morally desirable evidence for so doing. 
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