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Two Stage Robust Ridge Estimators based on robust estimators M, MM, S, LTS are 
examined in the presence of autocorrelation, multicollinearity and outliers as alternative 
to Ordinary Least Square Estimator (OLS). The estimator based on S estimator performs 
better. Mean square error was used as a criterion for examining the performances of these 
estimators. 
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Introduction 

Multiple regressions routinely assess the degree of relationship between one 

dependent variable and a set of independent variables. The Ordinary Least 

Squares (OLS) Estimator is most popularly used to estimate the parameters of 

regression model. Under certain assumptions, the estimator has some very 

attractive statistical properties which have made it one of the most powerful and 

popular estimators of regression model. A common violation in the assumption of 

classical linear regression model is the non-normal error terms. OLS estimator 

produces unstable prediction estimates when the assumption of normality of 

errors is not met (Ryan, 1996). Multiple regression methods also yield unstable 

results in the presence of outlier data points. When outliers occur in the data, the 

assumption of normally distributed errors is violated. An alternative strategy to 

deal with outliers is to accommodate them. Accommodation is accomplished by 

using any one of several robust regression estimation methods. 
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Also, the problem of autocorrelated error is another violation to the 

assumption of independence of error terms in classical linear regression model. 

The term autocorrelation may be defined as correlation between members of 

series of observations ordered in time as in time series data (Gujarati 1995). In the 

regression context, the classical linear regression model assumes that such 

autocorrelation does not exist in the disturbances εi. Symbolically 

 

   0i jE i j       (1) 

 

When this assumption breaks down, this is autocorrelation problem. A 

number of remedial procedures that rely on transformations of the variables have 

been developed. In order to correct for autocorrelation, one often uses Feasible 

Generalized Least Square (FGLS) procedures such as the Cochrane-Orcutt or 

Prais-Winsten two-step or the Maximum Likelihood Procedure or Two stage least 

Squares which are based on a particular estimator for the correlation coefficient 

(Green, 1993; Gujarati, 2003).  

Another serious problem in regression estimation is multicollinearity. It is 

the term used to describe cases in which the explanatory variables are correlated. 

The regression coefficients possess large standard errors and some even have the 

wrong sign (Gujarati, 1995). In literature, there are various methods existing to 

solve this problem. Among them is the ridge regression estimator first introduced 

by Hoerl and Kennard (1970). Keijan (1993) proposed an estimator that is similar 

in form but different from the ridge regression estimator of Hoerl and Kennard. 

Ayinde and Lukman (2014) proposed some generalized linear estimator (CORC 

and ML) and principal components (PCs) estimator as alternative to 

multicollinearity estimation methods. 

Inevitably, these problems can exist together in a data set. Holland (1973) 

proposed robust M-estimator for ridge regression to handle the problem of 

multicollinearity and outliers. Askin and Montgomery (1980) proposed ridge 

regression based on the M-estimates. Midi and Zahari (2007) proposed Ridge 

MM estimator (RMM) by combining the MM estimator and ridge regression. 

Samkar and Alpu (2010) proposed robust ridge regression methods based on M, S, 

MM and GM estimators. Maronna (2011) proposed robust MM estimator in ridge 

regression for high dimensional data. Eledum and Alkhaklifa (2012) proposed 

Generalized Two Stages Ridge Estimator (GTR) for the multiple linear model 

which suffers from both problem of autocorrelation AR (1) and multicollinearity.  
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The main objective of this study is to re-examine the study of Eledum and 

Alkhaklifa (2012). Efforts are made to correct the various assumptions violations 

of classical regression model which could have led into misleading conclusions. 

In this study, Two Stage Robust Ridge methods based on M, S, MM, LTS 

estimators are examined in the presence of outliers, autocorrelated errors and 

multicollinearity. A real life data considered in the study of Eledum and 

Alkhaklifa (2012) was used.  

Outliers in least square regression 

Barnett and Lewis (1994) define an outlier as an observation that appears 

inconsistent with the remainder of the data set. Outlier identification is important 

in OLS not only due to their impact on the OLS model, but also to provide insight 

into the process. These outlying cases may arise from a distribution different from 

the remaining data set. The distribution of the full dataset is contaminated in this 

instance. To statisticians, unusual observations are generally either outliers or 

‘influential’ data points. In regression analysis, generally they categorize unusual 

observation (outliers) into three: outliers, high leverage points and influential 

observations. In other words, Hawkins (1980) pointed out that, an outlier is an 

observation that deviates so much from other observations as to arouse suspicion 

that it was generated by a different mechanism.  

Outliers are classified in three ways: 

 

i. the change in the direction of response (Y) variable  

ii. the deviation in the space of explanatory variable(s), deviated points 

in X-direction called leverage points and are also referred to as 

exterior X-space observation in this research, and  

iii. The other is change in both directions (direction of the explanatory 

variable(s) and the response variable). According to Belsley, Kuh, 

and Welsch (1980), influential observations is one which either 

individual or together with several other observations have a 

demonstrably larger impact on the calculated values of various 

estimates than is the case for most of the other observations. 

Chatterjee and Hadi (1986) pointed out that, as with outliers, high 

leverage points need not be influential and influential observations 

are not necessarily high-leverage points. When an observation is 

considered to be both an outlier and influential, regression results are 

usually reported with and without the observation. When 
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observations are not outliers but are influential, it is less clear what 

should be done. 

Robustness ideas in regression 

One idea to deal with this problem is to identify outliers, remove them, and then 

to proceed as before assuming we now have an appropriate data set for the 

standard methods. If the true coefficients were known, then outliers would not be 

hard to detect. Look for the points corresponding to the largest residuals. The field 

of regression diagnostics attempts to address the issue of how to identify 

influential points and outliers, in the general case when we do not know the true 

coefficient values. When there is only have one outlier, some diagnostic methods 

work very well by looking at the effect of one at a time deletion of data points. 

Unfortunately it is much more difficult to diagnose outliers when there are many 

of them, especially if the outliers appear in groups. In these situations, it is 

necessary to deal with the phenomena of outlier masking. Outlier masking occurs 

when a set of outliers goes undetected because of the presence of another set of 

outliers. Often when outliers are used to fit the parameter values, the estimates are 

badly biased, leaving residuals on the true outliers that do not indicate that they 

actually are outliers. Once there are several outliers, deletion methods are no 

longer computationally feasible. Then it is necessary to look at the deletion of all 

subsets of data points below a suitably chosen maximum number of outliers. 

Another approach to dealing with outliers is robust regression, which tries to 

come up with estimators that are resistant or at least not strongly affected by the 

outliers. In studying the residuals of a robust regression, perhaps true outliers can 

be found. In this field many different ideas have been proposed, including Least 

Trimmed Squares (LTS), Least Median of Squares (LMS), M-estimators, and 

GM-estimators or bounded-influence estimators and S-estimators. 

Robust regression and outlier diagnostic methods end up being very similar. 

They both involve trying to find outliers and trying to estimate coefficients in a 

manner that is not overly influenced by outliers. What is different is the order in 

which these two steps are performed. When using diagnostics, look for the 

outliers first and then once they have been removed use OLS on this clean data set 

for better estimates. Robust regression instead looks to find better robust estimates 

first and given these estimates, we can discover the outliers by analyzing the 

residuals. 
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Methodology 

The data set was extracted from the study of Eledum and Alkhaklifa (2012); it 

represents the product in the manufacturing sector, the imported intermediate, the 

capital commodities and imported raw materials, in Iraq in the period from 1960 

to 1990. An econometric model for this study is specified as follows:  

 

 
1 1 2 2 3 3 , 1,2, ,31tY X X X t          (2) 

 

Where 

 

Y = Product value in the manufacturing sector 

X1 = The value of the imported intermediate 

X2 = Imported capital commodities 

X3 = Value of imported raw materials 

β1, β2, β3 are the regression coefficients. 

 

M-estimation procedure 

The most common general method of robust regression is M-estimation, 

introduced by Huber (1964) that is nearly as efficient as OLS. Rather than 

minimize the sum of squared errors as the objective, the M-estimate minimizes a 

function ρ of the errors. The M-estimate objective function is, 

 

 
1 1

ˆ
min min

n n
i i i

i i

e y X

s s


 

 

  
        

    (3) 

 

where s is an estimate of scale often formed from linear combination of the 

residuals. The function ρ gives the contribution of each residual to the objective 

function. A reasonable ρ should have the following properties:  

           0, 0 0, ,  and e  for i i i ie e e e e e               

the system of normal equations to solve this minimization problem is found by 

taking partial derivatives with respect to β and setting them equal to 0, yielding, 
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where ψ is a derivative of ρ. The choice of the ψ function is based on the 

preference of how much weight to assign outliers. Newton-Raphson and 

iteratively reweighted Least Squares (IRLS) are the two methods to solve the 

M-estimates nonlinear normal equations. IRLS expresses the normal equations as, 

 

 ˆX WX X Wy    (5) 

 

MM estimator 

MM-estimation is special type of M-estimation developed by Yohai (1987). 

MM--estimators combine the high asymptotic relative efficiency of M-estimators 

with the high breakdown of class of estimators called S-estimators. It was among 

the first robust estimators to have these two properties simultaneously. The ‘MM’ 

refers to the fact that multiple M-estimation procedures are carried out in the 

computation of the estimator. Yohai (1987) describes the three stages that define 

an MM-estimator: 

 

1. A high breakdown estimator is used to find an initial estimate, which 

we denote   the estimator need to be efficient. Using this estimate 

the residuals,   T

i i ir y x    are computed. 

2. Using these residuals from the robust fit and 
1

1 n
i

i

r
k

n s




 
 

 
  where 

k is a constant and the objective function 𝜌, an M-estimate of scale 

with 50% BDP is computed. This     , ,i ns r r   is denoted sn. 

The objective function used in this stage is labeled ρ0. 

3. The MM-estimator is now defined as an M-estimator of β using a 

redescending score function,  
 1

1

u
u

u








, and the scale estimate 

sn obtained from stage 2. So an MM-estimator ̂  defined as a 

solution to  

 

 1

1

0, 1, , .
Tn

i i
ij

i n

y x
x j p

s






 
   

 
   (6) 
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S estimator 

Rousseeuw and Yohai (1984) introduced S estimator, which is derived from a 

scale statistics in an implicit way, corresponding to s(θ) where s(θ) is a certain 

type of robust M-estimate of the scale of the residuals e1(θ), …, en(θ). They are 

defined by minimization of the dispersion of the residuals: minimize 

    1
ˆ, , nS e e   with final scale estimate     1

ˆˆ , , nS e e   . The 

dispersion     1
ˆ, , ne e   is defined as the solution of 

 

 
1

1 n
i

i

e
k

n s




 
 

 
   (7) 

 

K is a constant and ie

s

 
 
 

 is the residual function. Rousseeuw and Yohai (1984) 

suggest Tukey’s biweight function given by: 

 

  

2 4 6

2 4

2

 for 
2 2 6

 for 
6

x x x
x c

c c
x

c
x c




  

 
 


  (8) 

 

Setting c = 1.5476 and K = 0.1995 gives 50% breakdown point (Rousseeuw & 

Leroy, 1987). 

LTS estimator 

Rousseeuw (1984) developed the least trimmed squares estimation method. 

Extending from the trimmed mean, LTS regression minimizes the sum of trimmed 

squared residuals. This method is given by, 

 

  ˆ arg minLTS LTSQ    (9) 

 

where   2

1

h

LTS i

i

Q e


  such that        
2 2 2 2

1 2 3 n
e e e e     are the ordered squares 

residuals and h is defined in the range 
3 1

1
2 4

n n p
h

 
   , with n and p being 
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sample size and number of parameters respectively. The largest squared residuals 

are excluded from the summation in this method, which allows those outlier data 

points to be excluded completely. Depending on the value of h and the outlier 

data configuration. LTS can be very efficient. In fact, if the exact numbers of 

outlying data points are trimmed, this method is computationally equivalent to 

OLS. 

Two Stage Robust Ridge Estimator 

Two Stage Ridge Regression approach used by Eledum and Alkhaklifa (2012) 

and Robust Ridge Regression Methods adopted by Samkar and Alpu (2010) are 

combined in this study to obtain Two Stage Robust Ridge Regression. This 

method is adopted to deal with the problem of autocorrelated error, outliers and, 

multicollinearity sequentially. Consider the Linear regression model: 

 

 
tY X u    (10) 

 

X is an n × p matrix with full rank, Y is a n × 1 vector of dependent variable, β is a 

p × 1 vector of unknown parameters, and ε is the error term such that E(ε) = 0 and 

E(εε’) = σ2I and assume that the error term follows the AR(1) scheme, namely, 

 

 
1 , 1 1t t tu u         (11) 

 

εt is a white noise error term such that εt ~ N(0, σ2I) 

Premultiply equation (10) by 𝑃 we obtain: 

 

 PY PX PU    (12) 

 

Equivalently, equation (12) becomes: 

 

 Y X U      (13) 

 

P is a non-singular matrix such that PΩP’ = I which implies PP’ = Ω-1, 

U* ~ N (0, σ2I), Y* = PY, X* = PX, and U* = PU. 

Therefore, we can apply Robust Estimators to the transformed model (5) 

and obtain Two Stage Robust Estimator. 
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    
1

1ˆ
TRE X X X Y X P PX X P PY


            

 

  
1

1 1ˆ
TRE X X X Y


       (14) 

 

The variance-covariance matrix becomes: 

 

      
1

2 1ˆ 3.6TREV X X 


   (15) 

 

where  
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2 1
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2 2 2 3
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and the inverse of Ω is  

 

 

2

1 2

2

1 0

0
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1
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0 1
1
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 
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 
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Consider, (n – 1) × n matrix P* for transformation. 
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 *

1 0 0

0 1 0

0 0 0

0

0 0 0 1

P







 
 


 
  
 
 
  

  

 

Therefore, P*’P* = P by adding a new row with 21   in the first position and 

zero elsewhere. 

 

 

2 0 0 0

1 0 0

0 1 0

0

0 1

1
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 
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Then 
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2

2

1 0 0

1 0

0 1 0

0

0 0 0 1

 P P



  

 


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 

 
 
 

    
 
 
  

 

 

However, the estimate obtained from applying Robust Estimators to the 

transformed model is used to obtain the ridge parameter K which is used in the 

Ridge Estimator since the estimates obtain from OLS will be inefficient when we 

have the problem of outliers or non-normal error term. 

Results 

From Table 1, it can be seen that estimation based on the OLS estimator produces 

residuals that reveals the problem of autocorrelation (DW p-value=0.0005) and 

multicollinearity (VIF>10) simultaneously. The problem of multicollinearity 

might be the reason for the wrong sign in the value of imported raw materials. We 

handle the problem of autocorrelation in Table 2 by transforming the data set. The 

original data set is transformed using ˆ 0.547   (from Table 1) to correct the 

problem of autocorrelation by applying Two Stage Least Squares. Table 2 shows 

that the new data set obtain through transformation suffered the problem of non-

normal error term using Jarque-Bera Statistic and Table 3 also shows the presence 

of bad leverages using robust diagnostics which might be the reason for the non-

normality of the error term. The data set still suffered the problem of 

multicollinearity (VIF>10) as revealed in Table 2. Due to the presence of bad 

leverages OLS will not correctly estimate the parameters in the model. This 

prompts the use of the Two Stage Robust Estimators in Table 4. LTS and S 

estimators perform better than other estimators when we have leverages and 

outliers in y axis (bad leverages) in terms of the MSE (B). But the coefficient of 

LTS seems to be much different from the class of other estimators. We then prefer 

to consider S estimator in its stead. Due to the occurrence of both problem of 

multicollinearity and bad leverages in the new data set, we then use the Ridge 

combined with S estimator adopted from the concept of Samkar and Alpu (2010) 

to compute the ridge parameter. Geometric version of the ridge parameter 
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proposed by Kibria (2003) was used 
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 where 
2̂  is the variance 

obtained from S estimator and αi is the obtained coefficient.  
 
 
Table 1. Ordinary Least Square (OLS) 

 

Variable Coefficient Std. Error p-value VIF 
X1 0.208 0.218 0.348 128.26 
X2 0.921 0.196 0.000 103.43 
X3 -1.34 0.162 0.415 70.87 

R-squared 0.9896 DW  0.0005  
Jarque-Bera p-value 0.2493 σ2 0.0111  

RHO 0.547    

 
 
Table 2. Two Stage Least Square (TS) 

 

Variable Coefficient Std. Error p-value VIF 
X1T 0.200 0.160 0.2211 26.839 
X2T 0.963 0.191 0.0000 38.358 
X3T -0.1790 0.127 0.1687 16.904 

R-squared 0.9735 DW p-value 0.2332  
Jarque-Bera p-value 0.0732 σ2 0.028  

RHO 0.11    

 
 
Table 3. Robust Diagnostics 

 

Observation Mahalanobis 
Robust MCD 

Distance 
Leverage 

Standardized 
Robust Residual 

Outlier 

12 1.5024 5.8641 * 4.7737 * 
14 0.9716 3.0421  4.9055 * 
15 4.6559 29.4708 * 9.1178 * 
16 1.0615 8.2135 * 11.2653 * 
17 1.6992 8.6846 * 1.4033  
18 2.2534 19.0971 * -0.5591  
20 3.0865 24.3649 * -2.4415  
21 3.8595 26.6181 * 0.4649  
22 1.2315 8.8886 * 0.4301  
30 3.421 3.0381  16.2649 * 
31 1.2827 1.1007  -8.5191 * 
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Table 4. Two Stage Robust Estimators and OLS 

 

Variables OLS TS M MM S LTS 
X1T 0.208 0.200 0.329 0.328 0.346 0.032 
X2T 0.921 0.963 0.976 0.976 0.963 1.723 
X3T -1.34 -0.1790 -0.228 -0.228 -0.221 -0.648 

R-squared 0.9896 0.9735 0.7918 0.7939 0.8023 0.9951 
σ2 0.0111 0.028 0.0102 0.019 0.017 0.003 

MSE(B) 0.1122 0.0782 0.0324 0.0303 0.0272 0.029 

 
 
Table 5. Two Stage Robust Ridge Estimators 
 

Variables Coefficient VIF 
X1 0.3443 1.2972 
X2 0.4278 1.0011 
X3 0.1836 1.5526 

MSE(β) 0.071687  
K 0.097  

 

Conclusion 

OLS performs better than other estimators when there is no violation of 

assumptions in Classical Linear Regression Model. In this study the problem of 

autocorrelation was handled using Two Stage Least Square. The problem of 

multicollinearity and outlier are still presents. OLS will not be efficient because of 

the present of both problem therefore we apply Robust Methods to the 

transformed data. S and LTS estimators perform better than other Robust Methods 

in terms of the MSE. S estimator was chosen because LTS does not correctly 

estimate the model when compared with other estimators. Ridge parameter K is 

then obtained using the estimates obtain from S estimation. Robust ridge estimates 

was computed. Two stage robust ridge estimator performs better than the 

Generalized Two stage ridge regression proposed by Hussein et al (2012). This is 

because after the problem of autocorrelation was corrected in the study of Hussein 

et al (2012), the data sets still suffered the problem of multicollinearity and outlier. 

This was corrected in this study by obtaining the ridge parameter using a robust 

estimator instead of OLS. 
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