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The application of survival analysis has extended the importance of statistical methods 
for time to event data that incorporate time dependent covariates. The Cox proportional 
hazards model is one such method that is widely used. An extension of the Cox model 
with time-dependent covariates was adopted when proportionality assumption are 
violated. The purpose of this study is to validate the model assumption when hazard rate 
varies with time. This approach is applied to model data on duration of infertility subject 
to time varying covariate. Validity is assessed by a set of simulation experiments and 
results indicate that a non proportional hazard model performs well in the phase of 

violated assumptions of the Cox proportional hazards. 
 
Keywords: Survival time, non-proportional hazards, time-dependent covariate, semi 
parametric model. 

 

Introduction 

In survival or life testing experiments, the assumption of Cox model (1972), 

may not hold. Example of this is when effect of a treatment on survival 

diminishes in the course of time to event. Different systems have different 

prognostic factors, some are time fixed although some are time varying. One 

advantage of Cox proportional regression models is the ability to incorporate time 

varying coefficients and time varying covariates (Cox, 1972, Therneau & 

Grambsch, 2000). The former refers to a variable that is measured at baseline and 

whose values remain fixed to a variable whose value remains fixed over the 

duration of follow-up. Although, its effects on hazards is allowed to change over 

the follow-up period. The later refers to a variable whose value itself varies over 

time of follow-up. Example of time varying covariate includes the exposure of a 

pharmaceutical agent to cumulative dosage of radiation, duration of relationship 
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as a measure of duration of infertility in marriage, the receipt of an organ 

transplant. The natures of time varying covariate are very important and take 

major role of this work. In the above example, the first and second are continuous 

time variates whose value is non-decreasing over the time, the third example 

which is the receipt of an organ is also a time varying covariate but dichotomous 

in nature because the subject may be exposed or unexposed to the treatment. 

Recently a number of studies have been directed towards modelling time 

varying covariates as well as stratification which are semi-parametric non-

proportional hazard models (Austin, 2012, Lehr, 2004, Abrahamowicz, 2007, 

Bender, Augustin, & Blettner, 2005, Ata & Sozer, 2007, Austin, 2012, Zhou, 

2001). A more advanced method of generating time varying covariate is the work 

of Zhou (2001) where the use of an exponential distribution was examined in 

conjunction with a transformation to the Cox model including time varying 

covariate. A piecewise exponential distribution was used to obtain a dichotomous 

or step function covariate which was in turn incorporated into the Cox model and 

analysed through a semi-parametric approach. 

Bender et al. (2005) generated survival data that follows Cox proportional 

hazard model using three parametric distributions namely: exponential, Weibull 

and Gompertz and limited his study to only time fixed covariate. New extensions 

of Cox model with time varying covariate have been developed by Sylvestre and 

Abrahmowicz (2007) due to an undiscovered and complicated nature of 

longitudinal data structure where validation is made through simulation. They 

described and evaluated two alternatives for generation of survival times 

conditional on time varying covariate. 

Applications of Cox model with time varying covariate are likely to 

continue to become increasingly important in medical research. The methods put 

forth by Sylvester and Abrahmowicz are however not presented in a close form. 

Leemis (1987), Leemis, Shih and Ryertson (1990), and Shih and Leemis, (1993) 

have offered different frameworks for generation of survival time that follow a 

Cox model with time varying following accelerated life and proportional hazards 

models where his procedures adopted one time varying covariate and no time 

fixed covariates. A recent study on Cox regression model in the presence of non-

proportional hazards was carried out by Ata and Sozer (2007), where they worked 

on alternative different models in the violation of proportional assumption. Our 

study extend the work of Bender et al. (2005), and Zhou (2001), with an 

additional argument that allows for a fixed covariate, continuous time varying 

covariate and a step function covariate using exponential model see Austin (2012). 
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Non-proportional hazards models 

Recall the Cox proportional hazards model with time fixed covariate x 

 

        0, expi ih t h t x h t x    (1) 

 

where h0(t) is a non-parametric baseline hazard function β’ = (β1, β2, …,βp) is a 

vector of regression coefficients, and xi = x1, x2,…,xp is a vector of time fixed 

covariates for ith subject. 

Although h0(t) is chosen arbitrarily with no distribution attached, the fact 

that  exp x  is a parametric exponential function that assumes parametric forms 

of the predictors on hazards makes model in (1) a semi-parametric model. 

Proportional hazard assumption 

In linear regression modelling, the measure of effect is usually regression 

coefficient β, in logistic regression the measure of effect is an odds ratio, Walker 

and Duncan(1976), Hosmer and Lemeshow (2000), Agresti (2007), Adeleke and 

Adepoju (2010), the log of which is β, but in survival analysis, the measure of 

effect is the hazard ratio (Tableman and Kim, 2004). Proportional hazards 

assumption states that the hazard ratio is constant over time or the hazard for an 

individual is proportional to the hazard for any other individual (Kleinbaum and 

Klein, 2005). For example, if 𝑥 and 𝑥∗ are the covariates for two individual then 
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  (2) 

 

The hazard ratio in (2) can also be expressed as HR  , which implies that 

the hazard ration is time-independent. 

Now let the effect of a time varying covariate on survival probability at a 

time t(βt) depend on the value of this variable at the same time, then an extended 

version of (1) by Cox (1972) can be given by 

 

       
1 2

0 1 1
, , exp

p p

i i i ih t z t x h t x z t      (3) 
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which can be written as HR t  

Let the proportional hazard for a survival time T be given by 

 

      0expih T X x h t   (4) 

 

Then the cumulative distribution of Ti can be given as 

 

         0expT iF t P T t P x h t t      (5) 
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Now if ST(t) = 1 - FT(t) 
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Let Yi be a uniform random variable with cumulative distribution function F 

and density function f, then 
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Also 

 

      exp exp 0,1U H T x U  
 

  

 

    1 log expT H U x   
 

  (8) 

 

where U is a uniform random variable (Bender et al, 2005). However, the survival 

time T does not involve time varying variable(s). By introducing the second 

covariate with time change when covariate is dichotomous, following the 

formulation of Zhou (2001) and Austin (2012), we define 
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then the hazard function with dichotomous time changed covariate is 

 

       0 expg ih Y h t x z t      (9) 

 

A natural problem is when time varying covariate is not dichotomous or step 

function but continuous. Zhou (2001) did not consider this, and Sylvestre and 

Abrahamowicz (2007) found the method was limited in applicability. For a case 

open to both time fixed and time varying covariate which is flexible for both step 

function and continuous system, see Austin (2012).  

The cumulative hazard function and survival function H(.) and S(.) are: 
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      , , exp , ,S t z t x H t z t x  
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Suppose the covariate follows a step function for t ≥ t0 i.e right censored data, 

then supposed the time is partitioned into two such that 
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Let D = domain and D1 = [0, t0) and D2 = [t0, ∞) then, 

for t < t0, 
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Using Bender et al. (2005), we obtain survival time 
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By Austin (2012), when t ≥ t0, using the condition above, the hazard function in 

(9) becomes  

 

When D2 = t ≥ t0, from 5, Z(u) = 1 then 6 becomes 
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by transformation 

 

        0log exp 1 exp expU x t x T               
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The survival time obtained from the inverse cumulative hazards is 
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If however covariate is continuous the cumulative hazards is 
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Assume that  z s  is proportional to t such that  z s kt  where k > 0. Hence the 

cumulative hazard from the above becomes 

 

 

     

   

 
 

 

0

0

, exp

exp exp

exp
, , exp 1

t

t

H t z t x x z s ds

x ks ds

x
t k x kt

k

  

  

 




  




   



   (15) 

 

Hence 
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so that  
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Equations (12) and (13) and (16) will be used to obtain survival times for 

dicotonomous time varying covariate and continuous time varying; U can be 

obtained from R. 
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Non-parametric estimation 

Follow the formulation of Kaplan and Meier (K-M) (1958) for estimating 

censored data. The method provides alternative way to life table approach where 

each interval contains only one observation. 

The idea of K-M estimator is given by the conditional probability (t ≤ t0) be 

the survival time of n randomly sampled individual study such that 

t1 ≤ t2 ≤ ,.., ≤ tn are of T1, T2, ..., Tn where S(t) ∼ b(n, p) and P = P(T ≥ t) then, 

for t ≤ ti+1 
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Assume that at the beginning of the study all subjects were alive so, 

P(T > t0 = 0) = 1, and  
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The Kaplan Meier estimator is 
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For detail, see Greenwood (1926), Kaplan and Meier (1958), Adeleke (2012). 

Semi-parametric estimation 

For proportional hazard model of equation (1) where h0(t) is non-distributional 

and exp(β’x) is a parametric function, we use partial likelihood estimate of Cox 

(1975) 
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Application to a data of infertility 

Data on period of infertility among women were obtained from a survey 

conducted in 2011 at Ijebu North Local Government (INLG) area of Ogun state. 

Information on the duration of infertility in years before a woman to get pregnant 

together with the causes of infertility were collected, along with covariates: 

duration of relationship (drelation) in years, respondent’s age in years, marital 

status (married, cohabiting and single) and previous infertility treatment such as 

(ovulation induction, tubal surgery, antibiotic for infection, intercourse during 

fertile period and assisted conception). 

Duration of infertility was measured as the time from marriage/first date of 

diagnose till fertile/date of first conception or the end of the study. 

Let δi = 1 if a woman i = 1, 2, …, n become fertile at time ti and δi = 0, if 

otherwise; let the survival time T = min (ti, Ci), where ti is the observed time and 

Ci is the censored time. Censored if either lost to follow-up or does not observe 

the event of interest (get pregnant) within the period of follow-up. First, consider 

the model of eqn (1) where age and duration of relationship and others were 

considered to be time fixed. The estimated regression coefficients are given in 

Table 1 together with associated p-values and Schoenfeld test result. As observed, 

intensity of being fertile is much higher for previous infertility treatment using 

ovulation induction and antibiotic for treatment of infections than when assisted 

with conception. Almost all the factors are negatively related with the hazards for 

the period of infertility. The aim is to know if model (1) is better used for the data 

or model 3 (i.e whether PH model assumption is satisfied or not). Age and 

duration of relationship were found to be significant. 

Table 2 gives the estimates when age and duration of relationship are 

categorized as 1 if age less than 19 years, i.e (1-18), 2 if between (19-35) years 

inclusive and 3 if greater than 35 years. The result is not different much from 

what we had in Table 1. An indication of a significant variable implies the 

possibility of the variable varying with time and that implies violation of PH 

model assumption subject to some tests. The last column of the table is a report 
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from Schoenfeld test with their respective p-values. The p-values for the 

correlation coefficient between time and covariates (duration of relationship) 

shows a significant relationship, supported by the Schoenfeld plot see fig 2. 

Another graphical test is log cumulative hazard plot. Log-cumulative hazard 

curves in fig 1 shows that only age of mothers is violating the assumption. 

Following the numerical test of the correlation coefficient between variable age of 

mothers and duration of relationship and time in Table 3, the p-values for both 

coefficients and Schoenfeld residual test for age of mothers and duration of 

relationship with time are indication that both age of mothers and duration of 

relationship are time varying.  

Having detected this, an extended version of model (1) (i.e model 3) was 

introduced with age and duration of relationship categorized to see the effect 

within the age group (0-18, 19-34 and above 35) as shown in Table 4. Here the 

model is stable with the global test of Schoenfeld test showing a sign of 

proportionality.  

Next, compare the two models, using Akaike’s information criterion (AIC) 

or -2loglikelihood function (-2loglik). The values of AIC and -2loglik for Cox 

regression and Extended Cox are given in Table 5. According to the results, 

Extended Cox model gives most suitable result for modelling time to infertility 

data in the presence of non-proportional hazards followed by Cox model. 

Results from infertility data 

 
 
Table 1. Result from Cox model with Age, duration of relationship continuous 

 

Variables β (p-value) Schoenfeld Test (rho) )(p-value 

 Age  -0.086(1.4e-05) 0.169(0.198) 
married -1.67(0.108) -0.024(0.840) 

Cohabiting -18.0(0.996) -0.004(1.000) 
drelation  -0.065(0.007) 0.287(0.028) 

Ovulation 0.680(0.503) 0.066(0.591) 
Tubla.S  -18.2 (0.998) 0.112(0.999) 

Antibiotic 0.401 (0.697) 0.021(0.859) 
Intercourse -0.626 (0.659) 0.110(0.356) 

  Global (0.0368) 
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Table 2. Result from Cox model with Age, duration of relationship categorized. 

 
Variables β (p-value)  Schoenfeld Test (rho)(p-value) 

Age<=18 -0.777(0.460) 0.083(0.52) 
Age>35 -1.225(4.30E-05) -0.006(0.956) 
Married -1.69(0.103) -0.011(0.93) 

cohabiting -17.827(1.00) 0.031(1.00) 
dlv.cat1 0.447(0.110) -0.201(0.0146) 

Ovulation 0.862(0.400) 0.068(0.584) 
Tubla.S  -17.448(1.00) 0.127(1.00) 

Antibiotic 0.49(0.630) 0.026( 0.584) 
intercourse -0.38(0.790) 0.087(0.479) 

  Global (0.0506) 

 
 
Table 3. Test for age and duration of relationship as time varying covariates 

 
Variables β (p-value)  Schoenfeld Test (rho)(p-value) 

married -1.0271(0.320) -0.053(0.661) 
cohabiting -17.277(1.000) -0.053(1.00) 
Ovulation 0.94(0.360) 0.031(0. 802) 

Tubla.S  -18.594(1.000) 0.086(1.00) 
Antibiotic 0.617(0.550) 0.003(0. 980) 

intercourse -0.638(0.650) 0.130(0.283) 
Age* time -0.0187(0.000) 0.613(1.23E-09) 

Drelation*time -0.0055(0.021) 0.295(3.16E-03) 
  Global(1.41E-06) 

 
 
Table 4. Extended Cox model with age and duration of relationship as time varying. 

 
Variables β (p-value)  Schoenfeld Test (rho)(p-value) 

married -0.986(0.340) 0.0128(0.918) 
cohabiting -6.713(0.760) 0.0006(1.00) 
Ovulation 1.384(0.180) 0.078(0.528) 

Tubla.S  -8.640(0.940) 0.136(0.988) 
Antibiotic 1.0257(0.320) 0.049(0.689) 

intercourse -0.275(0.840) 0.12908(0.296) 
Age<=18*time  -4.612(1.70E-06) 0.194(0.548) 
age.cat2*time  -4.717(1.0E06) 0.183(0.56) 
Age>35*time  -4.713(9.70E-07) 0.198(0.544) 
Time*dlv.cat1 0.001(0.980) 0.102(0.366) 

  Global (0.982) 

 
 
Table 5. AIC and -2loglik values. 

 
 PHM NPHM Extended Cox 

AIC 525.813 311.6885 
Loglik 509.813 291.688 
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Results from Simulation 

 
Table 6. Mean values of the estimated regression coefficients for continuous time varying 

covariate model (16). 
 

% cens ̂   ̂   AIC loglik 

C=0.0 -0.849(0.007)  0.724(0.151) 473.392 -309.929 
C=0.5 -0.976(0.112) 2.016(0.0003) 158.962 -105.449 
C=0.8 -0.770(0.261) 2.389(0.049) 62.032 -50.788 

 
 
Table 7. Sample variances of the estimated regression coefficients for continuous time 

varying covariate model (16). 
 

% cens ̂  ̂  

C=0.0 0.0619 0.0552 
C=0.5 0.1793 0.2073 
C=0.8 0.4580 0.5744 

 
 
Table 8. Mean values of the estimated regression coefficients for dicotonomous time 

varying (t ≥ t0); model 13. 
 

% cens ̂  ̂  AIC loglik 

C=0.0 -0.363(0.211) 0.299(0.238) 625.857 -233.696 
C=0.5 -0.348(0.363) 0.692(0.201) 240.578 -75.969 
C=0.8 -0.184(0.411) 0.572(0.313) 107.576 -28.016 

 
 
Table 9. Sample variances of the estimated regression coefficients for dicotonomous 

time varying (t ≥ t0); model 13. 
 

% cens ̂  ̂  

C=0.0 0.0537 0.0457 
C=0.5 0.1271 0.1132 
C=0.8 0.2664 0.2086 

 
 
Table 10. Mean values of the estimated regression coefficients for time fixed covariate 
(t ≥ t0); model 12. 
 

% cens ̂  ̂  AIC loglik 

C=0.0 -0.998 (2e-16) 0.043 (0.165) 11619.89 -5807.947 
C=0.5 -1.058 (2e-16) 2.152 (2e-16) 5313.93 -2654.965 
C=0.8 -8.060(2.4e-15) -1.94(2e-16) 2585.184 -1290.592 
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Table 11. Sample variances of the estimated regression coefficients time fixed covariate 

(t ≥ t0); model 12. 
 

% cens ̂  ̂  

C=0.0 0.0047 0.00097 
C=0.5 0.0088 0.0061 
C=0.8 1.0365 0.0114 

 
 
Table 12. Absolute Bias continuous TVC model 16. 

 

% cens    Abs Bias MSE 

C = 0.0 
β = -1 0.150 0.069 

γ = 0 0.723 0.751 

C = 0.5 
β = -1 0.023 0.201 

γ = 2 0.015 0.257 

C = 0.8 
β = -1 0.229 0.659 

γ = 3 0.611 1.465 

 
 
Table 13. Absolute Bias for dicotonomous time varying (t ≥ t0); model 13. 

 

% cens   Abs Bias MSE 

C = 0.0 
β = -1 0.636 0.471 

γ = 0 0.298 0.143 

C = 0.5 
β = -1 0.651 0.611 

γ = 2 1.308 1.994 

C = 0.8 
β = -1 0.815 0.996 

γ = 3 2.428 6.143 

 
 
  



ADELEKE ET AL. 

81 

Table 14. Absolute Bias for time fixed covariate (t ≥ t0); model 12. 

 

% cens   Abs Bias MSE 

C = 0.0 
β = -1 0.002 0.918 
γ = 0 0.043 0.211 

C = 0.5 
β = -1 0.058 0.221 
γ = 2 0.152 1.133 

C = 0.8 
β = -1 7.06 1.110 
γ = 3 4.94 2.720 

 
 

 
Figure 1. Log cumulative hazards for age and duration of relationship. 
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Figure 2. Schoenfeld Plots of residuals 

 

 

In purpose of the simulation was to investigate the violation of the 

assumption and the use of Non-proportional hazard Model for different values of 

the true parameters β and γ, at different level of censoring. Hypothesis about the 

regression coefficients β and γ of the model 1.0 in various situations was tested. 

Each simulation consists of 80 replicates. The set-up of the simulated data 

resembles that of right censored and truncated data. For each sample, 1000 

samples of survival times (months) were generated. 

Given a time *t , the time u were generated from a uniform  *0, t  

distribution although the baseline survival time ti were generated from an 

exponential distribution for fixed and time varying covariates in term of 

continuous and dichotomous covariates as define in eqn 12, 13 and 16. Two 

covariates; a time fixed and a binary with P(z = 0) = P(z = 1)= ½ and the other is 

distributed as normal and varies with time. Only the data that satisfy the condition

*i iu t t   were kept in the sample given rise to right truncated data. The survival 

time is not only right truncated but also right censored. The simulation was 

carried out at three different percentage of censoring viz: 0%, 50% and 80%.  
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The true values of regression coefficients β, γ were taken to be either (-1, 0), 

(-1, 2), (-1, 3) in the simulation each at different level or percentage of censoring. 

Comparison were made using absolute bias Tables 6 to 11 showed the estimated 

mean values of ̂  and ̂ , p-values as well as the sample variances. The result in 

Tables 6 and 9 are from the analysis of (3) through the use of survival time 

obtained in (16) for fixed and continuous time varying covariates of (3). The 

estimated coefficients ̂ is for the fixed covariate although ̂  is for the time 

varying (continuous or binary). The coefficients are significant at 50% and 80 % 

censoring and slightly overestimate its true value as percentage of censoring 

increases resulting in higher variance than the estimator of the other coefficient 

which appear to be more stable with lower variance than γ. Absolute Bias (AB) of 

Tables 12 to 14 showed the sensitivity of the model to change in percentage of 

censoring. At 0 percent censoring, model with time fixed covariate has the 

minimum AB followed by model with continuous time varying covariate. Also at 

50% censoring, model with continuous time varying covariate has the minimum 

AB, followed by model with time fixed covariate. At 80% censoring, model with 

continuous time varying covariate has the minimum AB next is model with 

dicotonomous time varying covariate and least is time fixed model. 

Checking the parameter of the time varying coefficient, as the values of the 

parameter γ increases from 0 to 3, At γ = 0, the AB of the parameter is minimum 

for model with time fixed covariate, followed by a model with dicotonomous time 

varying covariate and maximum for model with continuous time varying 

covariate. At γ = 2, AB is minimum for semi-parametric model via continuous 

time varying covariate (model 16), followed by a time fixed and maximum for 

semi-parametric model with dicotonomous time varying covariate. Lastly at γ = 3 

AB increases from model with continuous time varying covariate to semi-

parametric model with time fixed covariate. Hence, as parameter of time varying 

coefficient increase from 0-3, the semi-parametric model with continuous time 

varying covariate showed the minimum AB followed by dicotonomous time 

varying covariate and maximum with time fixed covariate model. This actually 

showed an evidence of time varying both in the coefficient and covariate. 

For Mean Square Error (MSE), Semi-parametric model with continuous 

time varying covariate has being the best (with min MSE) among the three 

models as percentage of censoring increases from 0% to 80 percent. Also as 

parameter of time varying coefficient increases from 0 to 3, parameters of the 

semi-parametric model with continuous time varying coefficient showed the 

minimum MSE, and perform best. Followed by the parameters of time fixed 
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covariate model and maximum MSE with model with dicotonomous time varying 

covariate. 

Discussion 

The result is more encouraging at 80% of censoring resulting from the outcome of 

the AIC and log-likelihood estimates of model selection criteria and generally 

accepted for all other results. Percentage of censoring contributes to the outcome 

and conclusion in that as the level of censoring increases from 0% through 50% to 

80%. The coefficients of time varying covariates varying from zero to three (0-3). 

See Tables 6 and 10, the result also give a good sign of a well satisfactory size 

and power. The higher the percentage of censoring, the more closely the violation 

of PHM. It implies that at 80% censoring which is generally accepted from the 

results of our simulated data there exist an outright violation of the assumption of 

proportionality and this assume a semi-parametric non proportional hazard model. 

In Tables 8, 9, 10, and 11 models 12 and 13 were used to generate survival 

time when both covariates are dichotomous and continuous, although time 

varying. The time varying covariate Z(t) is zero when t < t0 and 1 when t ≥ t0 as 

stated in the model, our t0 is the maximum time it takes a woman to conceive (i.e 

24 months), see Esther, Eunice , Kelly, CHESRenee, and Lee (2009), Ekwere, et 

al (2007) and Yusuff (2006). (When t < t0, we obtain our survival time as we have 

in (12) and when t ≥ t0, it resulted in survival time of (13) as we notice from the 

estimated mean values and variances of Tables 8 and 9. None of the coefficients 

at any level of censoring is significant judging from the PH values of the 

coefficient. An indication of satisfying PH model assumption, but when t ≥ t0 

(dicotonomous), the estimated mean values and sample variances of regression 

coefficient does not satisfy PH model assumption following parameters 

significant properties of the coefficients from the p-values. 

The model with continuous time varying covariate (model 16) performed 

better (min AB and MSE) followed by model with dicotonomous time varying 

covariate and least with model with time fixed covariate see Tables 12 to 14. The 

same result follows when parameters of the time varying coefficient increase from 

0-3. 
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