
Journal of Modern Applied Statistical
Methods

Volume 14 | Issue 2 Article 11

11-1-2015

Bayesian Analysis Under Progressively Censored
Rayleigh Data
Gyan Prakash
Department of Community Medicine, S. N. Medical College, Agra, India., ggyanji@yahoo.com

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Prakash, Gyan (2015) "Bayesian Analysis Under Progressively Censored Rayleigh Data," Journal of Modern Applied Statistical Methods:
Vol. 14 : Iss. 2 , Article 11.
DOI: 10.22237/jmasm/1446351000

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol14/iss2/11?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol14%2Fiss2%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 

November 2015, Vol. 14, No. 2, 110-122. 

Copyright © 2015 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Gyan Prakash is an Assistant Professor in the department of Community Medicine at S. 
N. Medical College. Email him at ggyanji@yahoo.com. 

 

110 

Bayesian Analysis Under Progressively 
Censored Rayleigh Data 

Gyan Prakash 

Department of Community Medicine 
S. N. Medical College, Agra, U. P., India 

 

 
The one-parameter Rayleigh model is considered as an underlying model for evaluating 
the properties of Bayes estimator under Progressive Type-II right censored data. The 
One-Sample Bayes prediction bound length (OSBPBL) is also measured. Based on two 
different asymmetric loss functions a comparative study presented for Bayes estimation. 
A simulation study was used to evaluate their comparative properties. 

 
Keywords: Rayleigh model, Bayes estimator, Progressive Type-II right censoring 
scheme, ISELF, LLF, OSBPBL. 

 

Introduction 

The Rayleigh distribution is considered as a useful life distribution. It plays an 

important role in statistics and operations research. Rayleigh model is applied in 

several areas such as health, agriculture, biology and physics. It often used in 

physics, related fields to model processes such as sound and light radiation, wave 

heights, as well as in communication theory to describe hourly median and 

instantaneous peak power of received radio signals. The model for frequency of 

different wind speeds over a year at wind turbine sites and daily average wind 

speed are considered under the Rayleigh model. 

The probability density function and distribution function of Rayleigh 

distribution are 
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Here, the parameter σ is known as location parameter. The considered model 

is useful in life testing experiments, in which age with time as its failure rate and 

is a linear function of time. The present distribution also plays an important role 

in communication engineering and electro-vacuum device. 

The focus is on measurement of One-Sample Bayes prediction bound length 

based on Progressive Type-II right censored data. A comparative study of Bayes 

estimation under two different asymmetric loss functions is presented. For 

evaluation of performances of the proposed procedures, a simulation study carries 

out also. 

A great deal of literature is available on Rayleigh model under different 

criterions, such as Sinha (1990), Bhattacharya & Tyagi (1990), Fernandez (2000), 

Hisada & Arizino (2002), Ali-Mousa & Al–Sagheer (2005), Wu, Chen, and Chen 

(2006), Kim & Han (2009), Prakash & Prasad (2010), Prakash & Singh (2013). 

Soliman, Amin, and Abd-El Aziz (2010) presented results on estimation and 

prediction of inverse Rayleigh distribution based on lower record values. Recently, 

Prakash (2013) presented Bayes estimators for inverse Rayleigh model. Bayesian 

analysis for Rayleigh distribution was also discussed by Ahmed, Ahmad, and 

Reshi (2013). 

The progressive Type-II right censoring  

The progressive censoring appears to be a great importance in planned duration 

experiments in reliability studies. In many industrial experiments involving 

lifetimes of machines or units, experiments have to be terminated early and the 

number of failures must be limited for various reasons. In addition, some life tests 

require removal of functioning test specimens to collect degradation related 

information to failure time data. 

Progressive censored sampling is an important method of obtaining data in 

lifetime studies. Live units removed early on can be readily used in others tests, 

thereby saving cost to experimenter and a compromise can be achieved between 

time consumption and the observation of some extreme values. The Progressive 

Type-II right censoring scheme is describes as follows. 

Suppose an experiment in which n independent and identical units 

X1, X2, …, Xn are placed on a life test at the beginning time and first r; (1 ≤ r ≤ n) 

failure times are observed. At time of each failure occurring prior to the 
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termination point, one or more surviving units removed from the test. The 

experiment is terminated at time of rth failure, and all remaining surviving units 

are removed from the test. 

Let x(1) ≤ x(2) ≤ …≤ x(r) be the lifetimes of completely observed units to fail 

and R1, R2,…,Rr; (r ≤ n) are the numbers of units withdrawn at these failure times. 

Here, R1, R2,…,Rr; (r ≤ n) all are predefined integers follows the relation 

R1 + R2 + … + Rr + r = n. 

At the first failure time x(1), withdraw R1 units randomly from remaining 

n - 1 surviving units. Immediately after second observed failure time x(2), R2 units 

are withdrawn from remaining n – 2 –R1 surviving units at random, and so on. 

The experiments continue until at rth failure time xr, remaining units 
1

1

r

r j

j

R n r R




    are withdrawn. Here, 
     1 2 1 2 1 2, , , , , , , , ,

1: : 2: : : :, , ,r r rR R R R R R R R R

r n r n r r nX X X  be 

the r ordered failure items and (R1, R2,…,Rr) be progressive censoring scheme. 

Progressively Type-II right censoring scheme reduces to conventional 

Type-II censoring scheme when  
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and for complete sample case when 
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Based on progressively Type-II censoring scheme the joint probability 

density function of order statistics 
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Here, Kp is called as progressive normalizing constant and is defined as 
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Progressive Type-II censored sample is denoted by x ≡ (x(1) , x(2) , …, x(r)) and 

(R1, R2,…,Rr) being Progressive censoring scheme for the considered model. 

Simplifying (3) 
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The Bayes estimation  

There is no clear-cut way to determine if one prior probability estimate is better 

than the other. It is more frequently the case that attention is restricted to a given 

flexible family of priors, and one is chosen from that family that matches best 

with personal beliefs. However, there is adequate information about the parameter 

it should be used; otherwise it is preferable to use the non-informative prior. In 

present study, the extended Jeffrey’s prior proposed by Al-Kutubi & Ibrahim 

(2009) is considered: 
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Thus, the extended Jeffrey’s prior for present model is 
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Based on Bayes theorem, the posterior density is defined as 
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Using (4) and (6) in (7), the posterior density is obtain as 
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The selection of loss function may be crucial in Bayesian analysis. If most 

commonly used loss function, squared error loss function (SELF) is taken as a 

measure of inaccuracy, and then the resulting risk is often too sensitive to 

assumptions about behavior of tail of probability distribution. In Bayesian point of 

view, SELF is inappropriate in many situations. To overcome this difficulty, a 

useful asymmetric loss function based on SELF has selected. This asymmetric 

loss function is known as invariant squared error loss function (ISELF) and is 

defined for any estimate ̂  corresponding to the parameter σ as 

 

    
2

1ˆ ˆ, ; .L            (9) 

 

The Bayes estimator ˆ
I  for location parameter σ under ISELF is obtained as 
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Some estimation problems overestimation is more serious than the 

underestimation, or vice-versa. In addition, there are some cases when the positive 

and negative errors have different consequences. In such cases, a useful and 
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flexible class of asymmetric loss function (LINEX loss function (LLF)) is defined 

as 

 

    
** * * 11; 0, .aL e a a             (11) 

 

The shape parameter of LLF is denoted by 'a'. Negative (positive) value of 

'a' gives more weight to overestimation (underestimation) and its magnitude 

reflect the degree of asymmetry. It is seen that, for a = 1 the function is quite 

asymmetric with overestimation being more costly than underestimation. For 

small values of | a |, LLF is almost symmetric and is not far from SELF. 

The Bayes estimator ˆ
L  of location parameter under LLF is obtain by 

simplifying following equality 
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A closed form of Bayes estimator ˆ
L  does not exist. A numerical technique 

is applied here for obtaining the risk for the Bayes estimator corresponding to 

their loss. 

One-sample Bayes prediction bound length 

Consider the nature of future behavior of the observation when sufficient 

information about the past and the present behavior of an event or an observation 

is known or given. The Bayesian statistical analysis to predict the future statistic 

from the considered model is based on the Progressive Type-II right ordered data. 

Let x(1), x(2),…, x(r) be the first r observed failure units from a sample of size 

n under the Progressive Type-II right censoring scheme from underlying model 

(1). If y ≡ (y(1), y(2),…, y(s)) be the second independent random sample of future 

observations from same model. Then Bayes predicative density of future 
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observation Y is denoted by  h Y x  and obtained by simplifying the following 

relation 
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Let l1 and l2 are the lower and upper Bayes prediction limits for the random 

variable Y and 1 - ϑ is called the confidence prediction coefficient. Then (l1, l2) be 

the 100(1 - ϑ) % prediction limits for future random variable Y, if 

 

  1 2Pr 1 .l Y l       (14) 

 

Now, the Central Coverage Bayes Prediction lower and upper limits are obtain by 

solving following equality 
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      (15) 

 

Solving (15), the lower and upper Bayes prediction limits for the future random 

observation Y are obtain as 
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The One-Sample Bayes Prediction bound length under the Central Coverage 

is obtained as 

 

 
2 1.I l l    (16) 

 

Numerical illustration  

The procedure is illustrated by presenting a complete analysis under a simulated 

data set in present section. A comparative study of Bayes estimators based on 

simulation in terms of risk ratios under Progressively Type-II right censored data 

is presented as follows: 

 

1) Random values of parameter σ are generated from prior density (6) 

for selected parametric values of c (= 0, 0.50, 1.50, 2.00, 5.00) and 

n = 20. 

2) The value of c = 0 is used for Uniform distribution. For the values of 

c = 0.50 and c = 1.50 the analysis corresponding to the Jeffrey’s 

prior and Hartigan’s prior (Hartigan (1964)) respectively.  

3) Using generated values of σ obtained in step (1), generate a 

Progressively Type-II censored sample of size m form given values 

of censoring scheme Ri ; i = 1, 2, …, m, for considered model, 

according to an algorithm proposed by Balakrishnan and Aggarwala 

(2000).  

4) The censoring scheme for different values of m is presented in Table 

1. 

5) The risk ratio of the Bayes estimators are calculated form 1,00,000 

generated future ordered samples each of size n = 20 of Rayleigh 

model. 

6) For selected values of shape parameter a (= 0.25, 0.50, 1.00, 1.50) of 

LLF, a risk ratio between the Bayes estimator ˆ
L  and ˆ

I  are 

obtained for considered parametric values and presented in Tables 2-

3 under ISELF and LLF respectively. 

7) From both tables, note the risk ratios are smaller than unity. This 

shows that the magnitude of risk with respect to LLF is smaller than 

the ISELF, when other parameters values considered to be fixed. 



BAYESIAN ANALYSIS UNDER CENSORED RAYLEIGH DATA 

118 

8) A decreasing trend has been seen for risk ratio when c increases in 

both cases. Similar behavior also seen when censoring scheme m 

changed.  

9) Further, it is noted also that the risk ratios tend to be wider as shape 

parameter 'a' increases when other parametric values are consider to 

be fixed. 

10) The magnitude of risk ratio will be wider for ISELF as compared to 

LLF when other parametric values considered to be fixed.  

11) Further, the magnitude of the risk ratio for both case are robust. 

 

The random samples are generated for One-Sample Bayes Prediction Central 

Coverage bound length. The procedure and results are as follows. 

 

1) A set of 1,00,000 random samples of size n = 20 was drawn from the 

model for similar set of parametric values as consider earlier in step 

(1) to (5). 

2) For the selected values of level of significance ϑ = 99%, 95%, 90%; 

the central coverage Bayes prediction lengths of bounds were 

obtained and presented them in Table 4. 

3) It is observed from Table 4 that the Central Coverage Bayes 

prediction bounds lengths under One–Sample plan tend to be wider 

as c increases when other parametric values are fixed (except for 

c = 5.00). 

4) The bound length expended also, when progressive censoring plan m 

changed. 

5) Note the length of bounds tends to be closer when level of 

significance ϑ decreases when other parametric values are fixed. 

6) The magnitudes of lengths are smaller or nominal. This shows that 

the central Coverage Bayes prediction criterion is robust. 
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Table 1. Censoring scheme for different values of m 
 

Case m Ri ; i = 1, 2, …, r 

1 10 1 2 1 0 0 1 2 0 0 0 

2 10 1 0 0 3 0 0 1 0 0 1 

3 20 1 0 2 0 0 1 0 2 0 0 0 1 0 0 0 1 0 0 1 0 

 
 

Table 2. Risk ratio between ˆ
L  and ˆ

I  under ISELF 

 

m ↓ c ↓ a → 0.25 0.5 1 1.5 

10 0 0.7765 0.7842 0.7915 0.7988 

 
0.5 0.7583 0.7659 0.773 0.7802 

 
1.5 0.7148 0.722 0.7287 0.7354 

 
2 0.6124 0.6186 0.6243 0.63 

 
5 0.385 0.3889 0.3925 0.3961 

10 0 0.7522 0.7597 0.7668 0.7738 

 
0.5 0.7346 0.742 0.7488 0.7556 

 
1.5 0.6924 0.6993 0.7059 0.7123 

 
2 0.5933 0.5992 0.6049 0.6104 

 
5 0.373 0.3767 0.3802 0.3837 

20 0 0.7288 0.7359 0.7429 0.7496 

 
0.5 0.7117 0.7187 0.7255 0.7322 

 
1.5 0.6707 0.6774 0.6838 0.6901 

 
2 0.5747 0.5803 0.5857 0.5912 

  5 0.3613 0.3649 0.3682 0.3717 
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Table 3. Risk ratio between ˆ
L  and ˆ

I  under LLF 

 

m ↓ c ↓ a → 0.25 0.5 1 1.5 

10 0 0.7741 0.7819 0.7891 0.7964 

 
0.5 0.7561 0.7636 0.7707 0.7776 

 
1.5 0.7125 0.7198 0.7265 0.7332 

 
2 0.6105 0.6166 0.6225 0.6281 

 
5 0.3838 0.3878 0.3913 0.3948 

10 0 0.6748 0.6815 0.6879 0.6941 

 
0.5 0.659 0.6655 0.6717 0.6778 

 
1.5 0.6211 0.6273 0.6332 0.6389 

 
2 0.5321 0.5375 0.5426 0.5475 

 
5 0.3346 0.3378 0.3411 0.3441 

20 0 0.5898 0.5957 0.6013 0.6068 

 
0.5 0.5759 0.5817 0.5871 0.5926 

 
1.5 0.5429 0.5483 0.5534 0.5585 

 
2 0.4651 0.4698 0.4742 0.4785 

 
5 0.2924 0.2952 0.2981 0.3008 

 
 
Table 4. One-Sample Central Coverage Bayes Prediction Bound Length 
 

m ↓ c ↓ ϑ → 99% 95% 90% 

10 0 0.4195 0.3246 0.2711 

 
0.5 0.6243 0.4796 0.4021 

 
1.5 0.7737 0.5961 0.4988 

 
2 1.0101 0.7785 0.6516 

 
5 0.385 0.3839 0.3825 

10 0 0.441 0.3409 0.2853 

 
0.5 0.637 0.4905 0.4115 

 
1.5 0.7859 0.6062 0.507 

 
2 1.0193 0.7864 0.6578 

 
5 0.373 0.3707 0.3682 

20 0 0.45 0.3465 0.2901 

 
0.5 0.6436 0.4958 0.4149 

 
1.5 0.7899 0.609 0.51 

 
2 1.0231 0.7885 0.6602 

 
5 0.3713 0.3699 0.3678 
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