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The transmuted Weibull distribution, and a related special case, is introduced. Estimates 
of parameters are obtained by using a new method of moments. 
 
Keywords: Transmuted Weibull distribution, moment generating function, sample 

coefficient of variation, Standard deviation, Skewness and kurtosis 

 

Introduction 

The Weibull distribution was introduced by the Swedish Physicist Waloddi 

Weibull in 1939. He applied this distribution to analyze the breaking strength of 

materials. This distribution has been extensively used in lifetime and reliability 

problem. The Weibull family is a generalization of the exponential family and can 

model data exhibiting monotone hazard rate behavior, i.e., it can accommodate 

three types of failure rates, namely increasing, decreasing and constant. Its 

application in connection with lifetimes of many types of manufactured items has 

been widely advocated (e.g., Weibull, 1951; Berrettoni, 1964), and it has been 

used as a model with diverse types of items such as vacuum tubes (Kao, 1959), 

ball bearings (Lieblein & Zelen, 1956), and electrical insulation. It is also widely 

used in biomedical applications. 

A simple explanation of the Weibull distribution and its applications can be 

found in Franck (1988). A comprehensive review of this model is available in 

Johnson, Kotz, and Balakrishnan (1995). A generalization of the Weibull 

distribution with application to the analysis of survival data is given by 

Mudholkar, Srivastava, and Kollia (1996). Inferences from grouped data in the 

three-parameter Weibull models is introduced by Hirose and Lai (1997). Lawless 
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(2002) provided statistical models and methods for lifetime data. Al-Athari (2011) 

and Hossain and Zimmer (2003) did some comparative studies on the estimation 

of Weibull parameters using complete and censored samples. Nadarajah and Kotz 

(2005) presented a procedure on some recent modifications of Weibull 

distribution. 

For deriving new moment estimators of three parameters transmuted 

Weibull distribution, a similar approach to that of Huang and Hwang (2006) was 

used. Nadarajah and Kotz (2005) discussed products and ratios of Weibull 

random variables. Gokarna and Tsokos (2009) proposed a method on the 

transmuted extreme value distribution with application. Ahmad and Ahmad 

(2013) presented a procedure of Bayesian analysis of Weibull distribution. 

A random variable x is said to have a Weibull distribution with parameters 

α > 0 and β > 0 if its pdf is given by 

 

   1 exp 0, 0, 0
x

g x x x



 

 

  
     

 
  

 

The cdf of Weibull distribution is given by 

 

    
0

x

G x g x dx    

 

   1

0

exp

x
x

G x x dx




 

  
  

 
   

 

 ⇒   1 exp
x

G x




 
   

 
  (1) 

 

Transmuted Weibull distribution 

In order to obtain the pdf of transmuted Weibull distribution, use the following 

cdf which is given by 

 

        
2

1F x G x G x      (2) 
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where G(x) is the cdf of base distribution. If λ = 0, we have the distribution of 

base random variable. 

Now using equation (1) in equation (2), 

 

    

2

1 1 exp 1 exp
x x

F x
 

 
 

      
            

      
  

 

 ⇒     21F x k k      

 

where  

 

 1 exp
x

k




 
   

 
  

 

 ⇒    1F x k k     

 

 ⇒     1 1F x k k    

 

 ⇒   1 exp 1 exp
x x

F x
 


 

       
         
       

 (3) 

 

This is the required cdf of Transmuted Weibull distribution. 

In order to find the pdf of Transmuted Weibull distribution, first 

differentiate equation (3) w.r.t. x which is given by 

 

     
d

f x F x
dx

   

 

 ⇒   1 exp 1 exp
d x x

f x
dx

 


 

        
          

         
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Figure 1. The cdfs of various transmuted Weibull distributions. 

 

 

After differentiating the above equation w.r.t. x, 

 

   1 exp 1 2 exp
x x

f x x
 


 

  


     

        
     

  (4) 

 

which is the required pdf of Transmuted Weibull distribution with parameters α, β 

and λ. 
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Figure 2. The pdfs of various Transmuted Weibull distributions. 
 

 

Special cases 

 

1) If λ = 0, then Transmuted Weibull distribution reduced to two 

parameter Weibull distribution with parameters α and β. 

 

   1; , exp 0 , 0
x

f x x x



   

 

  
    

 
  

 

2) If λ = 0 and β = 1, then Transmuted Weibull distribution reduced to 

exponential distribution with parameter 
1



 
 
 

, i.e. 

 

  
1

exp 0, 0
x

f x x 
 

 
    

 
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3) If λ = 0 and α = β = 1, then Transmuted Weibull distribution reduced 

to standard exponential distribution, i.e. 

 

    exp 0f x x x     

Moments of Transmuted Weibull distribution 

Moments are the expected values of certain functions of a random variable. They 

serve to numerically describe the variable with respect to given characteristics for 

location, variation, skewness and kurtosis, to name a few. The expected value of 

xr is termed as rth moment about origin of the random variable x which is given by 

 

  
r

r E x    

 

Thus the rth moment of Transmuted Weibull distribution is given by 

 

  
0

; , ,r

r x f x dx   


     

 

 
1

0

exp 1 2 expr

r

x x
x x dx

 


  
  




     

         
     

   

 

After solving the above equation, 

 

  1 1 2
r r

r

r
    



 
      

 
  (5) 

Mean of the Transmuted Weibull distribution 

Setting r = 1 in equation (5) leads to the mean of the Transmuted Weibull 

distribution, which is given by 

 

  
1 1

1

1
1 1 2    



 
      

 
  (6) 
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Second moment of the Transmuted Weibull distribution 

Setting r = 2 in equation (5),  

 

  
2 2

2

2
1 1 2    



 
      

 
  (7) 

Variance of Transmuted Weibull distribution 

The variance of Transmuted Weibull distribution is given by  

 

    
2 2 1 2

2

2

2 1
1 1 2 1 1 2       

 

     
            

    
  (8) 

Third and fourth moments of Transmuted Weibull distribution 

Setting r = 3 in equation (5),  

 

  
3 3

3

3
1 1 2    



 
      

 
  

 

and 

 

 

 

 
 

 

3

3 2

1

1

3

2
2

3
1 1 2

2
3 1 1 2

1
1 1 2

1
2 1 1 2



 





 


   


 


 










  
     
  

   
       
      
       

               

  (9) 

 

If r = 4 in equation (5), 

 

  
4 4

4

4
1 1 2    



 
      

 
 

 

thus  
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 

 

 

 

 

 

4

3

4 1

1

2

1

2

4

3
3

4
1 1 2

3
4 1 1 2

1
6 1 1 2

1
1 1 2

2
1 1 2

1
3 1 1 2





 







 


 


   


 


 


 














  
     
  

   
      
   
                
       
           

   
   

       
    

  (10) 

 

MGF of Transmuted Weibull distribution 

The mgf of Transmuted Weibull distribution is given by 

 

    
0

tx

xM t e f x dx



    

 

  
     

 
2 3

0

1
2! 3! !

n

x

tx tx tx
M t tx f x dx

n

  
       

  
   

 

    
00

!

r r

x

r

t x
M t f x dx

r

 



   

 

    
0 0

!

r
r

x

r

t
M t x f x dx

r





    

 

  
0 !

r

x r

r

t
M t

r






   

 

Now by using the equation (5) in the above equation, we have 
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    
0

1 1 2
!

r r
r

x

r

t r
M t

r

   







 
     

 
   (11) 

 

This is the required mgf of Transmuted Weibull distribution. 

Standard deviation of Transmuted Weibull distribution  

The positive square root of the variance is called standard deviation. Symbolically, 

σ = 2 . From equation (8), the variance of Transmuted Weibull distribution is 

given as 

 

    
2 2 1 2

2 22 1
1 1 2 1 1 2       

 

     
            

    
 

 

 ⇒    
1 2 1 2

22 1
1 1 2 1 1 2       

 

     
            

    
 

 

 ⇒ 
1

2

2 1
      

 

where 

 

  1 1 2
k

k

k
  



 
     

 
  (12) 

 

Coefficient of variation of Transmuted Weibull distribution  

This is the ratio of standard deviation and mean. Usually, it is denoted by C.V. 

and is given by  

 

 . .C V



  
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 ⇒ 

   

 

1 2 1

1 1

2
22 1

1 1 2 1 1 2

. .
1

1 1 2

C V

  

 

    
 

  


 



    
            
    


 

    
 

 

 

 ⇒ 
2

2 1

1

. .C V
 




   (13) 

 

where  
1

1 1 2k

k
  



 
     

 
  

 

Skewness and kurtosis of Transmuted Weibull distribution 

The most popular way to measure the skewness and kurtosis of a distribution 

function rests upon ratios of moments. Lack of symmetry of tails (about mean) of 

frequency distribution curve is known as skewness. The formula for measure of 

skewness given by Karl Pearson in terms of moments of frequency distribution is 

given by  

 

 
2

3
1 3

2





   

 

 

After using equation (8) and equation (9) in the above equation, we have 

 

 

 

 
 

 

   

3

2

1

1

2 1

2

2
2

1 3
2

2

3
1 1 2

2
3 1 1 2

1
1 1 2

1
2 1 1 2

2 1
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







 

 


 


 


 




   
 









 

  
     
  

   
      
      
       

               
    
            
    
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 ⇒ 
  

 

2
2

3 1 2 1

1 3
2

2 1

3   


 

 



 

 

where 

 

  
1

1 1 2k

k
  


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Therefore  

 

 1 1    

 

 ⇒ 
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3
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1
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2 1

3   


 

 



  

 

If γ1 < 0, then the frequency curve is negatively skewed. If γ1 > 0, then the 

frequency curve is positively skewed. 

 

Kurtosis 

The formula for measure of kurtosis is given by 

 

 4
2 2

2





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After using equation (8) and equation (10) in the above equation,  
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where 
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and 
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If γ2 > 0, then the frequency curve is leptokurtic. If γ2 < 0, then the frequency 

curve is platykurtic. If γ2 = 0, then the frequency curve is mesokurtic, or we can 

say that there is no kurtosis. 
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Harmonic mean of Transmuted Weibull distribution 
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After substitution, 

 

 
 

1 1

0 0

11 1 1 2
exp 2 exp

z z
dz dz

H z z 

 

   
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After solving the above equation  
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1 1 2
H

   
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 
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 ⇒ 

 
1 1

1

1
1 1 2

H
   






 

    
 

  (14) 

New moment estimator of the Transmuted Weibull distribution 

For deriving new moment estimators of three parameters transmuted Weibull 

distribution, we need the following theorem obtained by using the similar 

approach of Huang and Hwang (2006). 

 

Theorem 1.  Let n ≥ 3 and let X1, X2, X3, …, Xn be n positive identical 

independently random variables having probability density function f (x). Then 

the independence of the sample mean nX  and the sample coefficient of variance 
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n
n

n

S
V

X
  is equivalent to that f (x) is a Transmuted Weibull density where Sn is the 

sample standard deviation. 

The next theorem requires the derivation of the expectation and the variance 

of 

2

2 n
n

n

S
V

X

 
  
 

, where nX  and Sn are respectively the sample mean and the 

sample standard deviation. 

 

Theorem 2.  Let X1, X2, X3, …, Xn be n positive identical independently 

distributed random samples drawn from a population having Transmuted Weibull 

density 
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Proof: Because the rth moment of a random variable x about origin is given by 
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After solving the above equation, 
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r r

r

r
    



 
      

 
  

 

If r = 1 in the above equation, 
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Also if r = 2 in the above equation,  
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Thus 
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  (16) 

 

where nX  and 
2

nS  are respectively the sample mean and the sample variance. 

 

Theorem 3. Let X1, X2, X3, …, Xn be n positive identical independently 

distributed random samples drawn from a population having Transmuted Weibull 

density 
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where nX  and 
2

nS  are respectively the sample mean and the sample variance. 

 

Proof: By using the theorem (1), we have 
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Now using equations (15) and (16) in equation (17), we have 

 



STRUCTURAL PROPERTIES OF WEIBULL DISTRIBUTION 

157 

 

 

 

 

   

2

1

2

1

2
2

2

2

2
2

2
1 1 2

1
1 1 2

2
1 1 2

1
1 1 1 2

n

n

n

S
E

X

n









 


 


 


 










  
     
   
 

            
         

  
  
       
   

 

 

 

 

2

1

2

2 2
2

2
1 1 2

1
1

1 1 2

n

n

S
E

X





 


 






  
     

      
         

  

 

 

as n  and that this limit is the square of the population coefficient of 

variation. Thus, 
2

2

n

n

S

X
 is an asymptotically unbiased estimator of the square of the 

population coefficient of variation. 
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