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Open source programming languages such as R allow statisticians to develop and rapidly 

disseminate advanced procedures, but sometimes at the expense of a proper vetting 
process. A new example is the least trimmed squares regression available in R’s lqs() in 
the MASS library. It produces pretty regression lines, particularly in the presence of 
outliers. However, this procedure lacks a defined standard error, and thus it should be 
avoided. 
 
Keywords: R, lqs(), least trimmed squares regression 

 

Introduction 

As new methods appear software vendors race to disseminate them, providing a 

competitive edge in increasing sales. In the past half century there were numerous 

examples where this led to the inclusion of procedures that were inappropriate or 

destructive. For example, consider the mainframe version of SPSS’s general 

linear model command in the 1980’s. Option 9, a contrast coding least squares 

regression approach due to Overall and Spiegel (1969), was subsequently shown 

to test no known statistical hypothesis (see, e.g., Blair & Higgins, 1978a; Blair, 

1978; Blair & Higgins, 1978b). Another example is the R aov() function “when 

conducting analysis of covariance” which “does not work correctly” (Schumacker, 

2015, p. 288). 
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One of many modern approaches to regression is the least squared trimmed 

means, where the sum of squared residuals are replaced with the “sum of the q 

smallest squared residuals, where q is roughly n/2” (Verzani, 2004, p. 100). 

Hence, this is essentially an M (maximum likelihood) estimator. It is invoked in R 

via the lqs() function located in the MASS package.  

Rousseuw and Leroy (1987) indicated least trimmed means regression is 

resistant to outliers (see also Verzani, 2004, p. 100). Ripley (2004) noted that least 

trimmed squares is based on minimizing “the sum of squares for the smallest q of 

the residuals,” where q takes on various values (e.g., S+ and R sets q to 90% as 

the default). The result is a regression model that “maximizes accuracy to the q% 

of data. The quantile squared residual... [with] floor((n + p + 1)/2)“ (Ripley, n.d.), 

where n are data points and p are the regressors. lqs() is exact with one regressor. 

(For further details, see Fox, 2002. Note that this method is ill equipped to recover 

if there are no outliers, when ordinary regression should have been used. Once 

data are trimmed, they are removed from further calculations whether they should 

have been eliminated or not.) 

Unfortunately, the lqs() function is not associated with a defined standard 

error. (This is a common problem with maximum likelihood applications. For 

example, see Holford, (2002, p. 45) regarding a 2×2 table with zero frequencies in 

a cell). Hence, the purpose of this study is demonstrate this concern with respect 

to lqs(). 

Methodology 

The number of repetitions per experiment was 100,000, conducted on an Intel 

Sandy Bridge i7-2600K 3.4GHz CPU-based computer, with ultra-high speed 

Corsair Vengeance Low Profile 4x4GB RAM, Crucial M4 256GB solid state hard 

drive, and the Windows 7 Ultimate 64 bit operating system. This equipment was 

necessary due to the well known lack of speed of the R platform, and even so the 

results compiled in each table took more than 45 minutes to complete. Data were 

produced using R rnorm(). To determine the veracity of the coding, the normal 

theory ordinary least squares method was used for comparison using R’s lm(). 

Standard error of beta and the lqs() method. 

The t test is defined as beta divided by the standard error of beta (Brase & Brase, 

2013, p. 536; Mann, 1995, p. 667), which is then associated with df = N – 2 for 

the t (or Z for large samples) distribution. It is generally not optimal to use the 
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normal theory formula for the standard error (i.e., the standard deviation divided 

by the sample size), because it is not robust to non-normality distributed. (There 

are potential alternatives, such as the Winsorized sample standard deviation, or a 

jackknife or bootstrap approximation. See, e.g., Sawilowsky & Fahoome, 2003, p. 

22, 376 - 382. However, there are limitations to those alternatives.)  

Wilcox (1996) provided alternatives in computing the standard error for 

other hypothesis tests (e.g., the sample median), but that was only after a test was 

presented using the robust estimator in the numerator combined with the normal 

curve theory standard error in the denominator (see, e.g., p. 120). The same 

approach could be used here, with the p-value associated with beta obtained from 

lqs() determined via the normal curve theory standard error (i.e., which is 

produced by the lm() routine).  

Results 

Using the standard error under lm(y ~ x) (i.e., beta associated with the ordinary 

least squares regression) as the denominator for the test of beta obtained from 

lqs() was found to be unsatisfactory, with inflated Type I errors from between 7.3 

and 104 times nominal alpha, as noted in Table 1 below. 
 
 
Table 1. Type I error rates for n1 = n2 = 30; r = 0.0; 100,000 repetitions 

 

α 
Test 

lm() lqs() 

0.050 0.04972 0.36455 

0.010 0.01041 0.21966 

0.001 0.00102 0.10248 
 

Note: Values in bold exceed Bradley's (1978) liberal definition of robustness. 

 
 

An attempt was made to improve the standard error used in lqs() by 

replacing the original y values with the fitted values of y obtained from lqs(). The 

standard error of the estimate (SEE, or residual standard deviation) was based on  
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where y' was obtained as fitted values from lqs() instead of the fitted values from 

lm(). The standard error of beta (SEb) is determined by 
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Assembling the t test on beta as a ratio of beta divided by (2), 

 t =
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the obtained t is significant if 
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Although as noted in Table 2 there was improvement in the Type I error rates, the 

inflation was nevertheless from between 5.8 and 39.4 times nominal alpha, which 

is not acceptable. (Note the values for lm() differed slightly from those in Table 1 

above due to the change in the seed number). 
 
 
Table 2. Type I error rates for n1 = n2 = 30; r = 0.0; 100,000 repetitions 

 

α 
Test 

lm() lqs() 

0.050 0.05029 0.29371 

0.010 0.01061 0.14499 

0.001 0.00109 0.04151 
 

Note: Values in bold exceed Bradley's (1978) liberal definition of robustness. 

 
 

Regarding the least median squares (lms) option (i.e., “method = lms” 

option in lqs(), which can be used to invoke a variety of robust methods), 

subsequent to a Monte Carlo simulation Paranagama (2010) concluded, "In 

practice, the use of LMS is limited by the absence of formulas for standard errors” 

(p. 35). This difficulty applies to the default method (least trimmed squares), and 

hence, lqs() must be abandoned if the purpose of conducting the linear model is to 
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compute a t test on beta until an adequate standard error for the least squares 

regression algorithm can be found.  

Conclusion 

An appropriate standard error has not been derived for the lqs() method. Because 

the t test on β requires the standard error, various options were considered: (1) the 

p-value associated with β obtained from lqs() was determined via the normal 

curve theory standard error via the lm() procedure, which failed because it 

produced Type I errors as large as 104 times nominal α, and (2) the standard error 

was obtained by replacing the original y values with the fitted values of y obtained 

from lqs(), which was an improvement, but also failed because it produced Type I 

errors as large as 39.4 times nominal α.  

The lqs() procedure produces pretty regression equations, and visually fits 

data in situations with outliers better than the normal theory lm(). However, the 

absence of a defined standard error precludes its usage in practice. Moreover, the 

method is not even being close to maintaining nominal alpha. The matter will 

become increasingly serious as applied researchers continue to be attracted to its 

highly publicized robustness regression lines, ease of availability in R, and 

implement it in applied work. For example, lqs() was used by Fan, Lu, Madnick, 

and Cheung (2001) in a study on data integration in information systems, Abo-

Khalil and Abo-Zied (2012) in a study of sensorless control of wind turbines, and 

Gidnaa and Domínguez-Rodrigo (2013) in a study of human femoral length from 

fragmented specimens. 

In conclusion, new methods should be avoided until such time that they are 

fully vetted. If this caution was true in the past with expensive, major commercial 

software such as SPSS, then how much more so caution should be invoked when 

using free, open source software such as R. 
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