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The sequential composite hypothesis contrast multiple-comparison procedure is introduced 
for comparing two treatment conditions with one or two control conditions on one or two 
outcome measures. The procedure deserves consideration insofar as its power advantage 
over other commonly applied multiple-comparison methods can be sizable. 
 
Keywords: Multiple-comparison procedures, sequential hypothesis testing, logical 

implications, comparison of means, analysis of variance contrasts 

 

 

In the course of a recent research investigation―a single-case intervention study 

conducted by Hwang, Levin, and Johnson (2016)―we stumbled upon an 

interesting data-analysis situation that was reminiscent of one that had been 

considered a generation ago (Levin, Serlin, & Seaman, 1994). To summarize the 

take-home message of that 1994 article: Starting with a univariate K = 3 

independent means one-way layout, we demonstrated that: (a) When an initial 

omnibus hypothesis test (of, for example, “All μk are equal”) is rejected based on a 

Type I error probability of α, (b) if any sub-hypothesis subsumed by the rejected 

hypothesis is tested at α, then (c) the resulting familywise Type I error probability 

(αFW) associated with entire set of tested hypotheses is equal to α. 

The assertion follows, chronologically, from Fisher’s (1935) least significant 

difference (LSD) protected multiple-comparison procedure when applied in a 

three-mean context; Fletcher’s (personal communication, October 3, 1981) 

perceptive insights about that particular application of the procedure; Shaffer’s 

(1986) introduction to, and cogent discussion of, the notion of logical implications 
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of subsumed hypotheses; and the Monte Carlo simulation demonstrations of 

Seaman, Levin, and Serlin (1991), Zhou and Levin (2004), and others. 

Consider a snapshot of logical implications in terms of controlling αFW at α 

through Fisher’s two-stage LSD procedure applied to a one-way ANOVA test of 

the equality of three independent means, μA, μB, and μC. In that situation, there are 

only three possible configurations of the three population means: (1) all differ from 

one another; (2) all are equal; and (3) two means are equal but they differ from the 

third mean. Let us consider each of these possibilities in turn, in the context of 

performing an omnibus one-way ANOVA F-test based on ν1 = 2 and ν2 = N – 3 

degrees of freedom. 

In Stage 1, the researcher conducts the omnibus F-test of H0: All μk are equal. 

If, and only if, that hypothesis is rejected, the researcher proceeds to Stage 2 and 

applies a t-test to whichever mean differences (i.e., pairwise or complex contrasts) 

are of interest, each with a Type I error probability of α. If all population means 

differ, as in (1) above, and the omnibus-test hypothesis is rejected, then no Type I 

error can be made in the subsequent set of multiple comparisons because a Type I 

error can occur only when the means being compared are equal. Note that, in theory 

only, the researcher could declare that all means differ from each other without 

even conducting formal t-tests of the differences. Similarly, if the omnibus-test 

hypothesis is not rejected, no Type I error is made because the error incurred would 

be a Type II error. 

If all population means are equal, as in (2) above, then the Stage 1 omnibus 

F-test provides the required αFW control of the hypothesis tested. If the hypothesis 

is not rejected, that is a correct decision, no Type I error is committed, and no Stage 

2 multiple comparisons are examined. If, on the other hand, the hypothesis is 

rejected, then a Type I error has been made with probability α. In that case, in Stage 

2, any comparisons of interest can subsequently be examined because, with 

“familywise” referring to “at least one”, the Type I error for the family has already 

been made and so it doesn’t matter whether one, two, or a dozen more occur. Note 

that, in theory only, one could again declare that all means differ from one another 

without the formal t-tests. 

Finally, if only two population means are equal, as in (3) above, if the Stage 

1 omnibus hypothesis is not rejected then that again is a Type II error and the 

process is terminated. If, however, the hypothesis is rejected, then that is a correct 

decision and no Type I error has been made. Moreover, insofar as there is only one 

pair of means that are equal, there is only one opportunity for committing a Type I 

error in the subsequent set of Stage 2 t-tests. Thus, if each test is conducted based 

on a Type I error of α, then αFW is also equal to α. 
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After detailing the underlying basis for the Fisher LSD procedure in the one-

way ANOVA three-mean case, Levin et al. (1994) provided several extensions to 

other ν1 = 2 degree-of-freedom hypothesis-testing situations (e.g., main effects and 

interactions in 3 × 2 factorial designs, χ2 tests in 3 × 2 contingency tables, 

Hotelling’s T2 two-group or MANOVA with two dependent variables). It is 

important to note that the same familywise Type I error control for the Fisher 

procedure does not hold for K > 3 or ν1 > 2 situations, even though Shaffer’s (1986) 

logical implications and sequential testing procedures do (Levin et al., 1994; 

Seaman et al., 1991). Subsequently, similar sequential-testing logic associated with 

Scheffé’s (1970) modified multiple-comparison procedure (Klockars & Hancock, 

2000) was illustrated and extended by Zhou and Levin (2004) to hypothesis-testing 

situations with multiple independent or dependent variables (e.g., tests of P partial 

regression coefficients, K-group MANOVA with P dependent variables). 

The Composite Hypothesis Contrast Procedure 

In what follows, a novel sequential testing approach is proposed that is 

fundamentally different from both the Fisher LSD procedure and the planned 

Bonferroni-type procedures that were comprehensively reviewed by Shaffer (1986), 

Seaman et al. (1991), and Levin et al. (1994). Yet, the present approach obeys 

precisely the same type of successive logical implications that was just presented 

for the Fisher LSD procedure as applied to ν1 = 2 hypothesis-testing situations. 

With this new approach, a test of a single degree-of-freedom comparison (what we 

have termed a “composite hypothesis contrast”) serves as a Stage 1 screening 

device, which, if proven to be statistically significant, leads directly to a set of 

logically implied αFW-controlled additional contrasts. The procedure is so named 

because it essentially provides a framework for testing two linked hypotheses, first 

in combination and then individually. 

The utility of the Stage 1 test of the composite hypothesis contrast is the same 

as that of initial omnibus tests associated with conventional multiple-comparison 

procedures, including those of Fisher (1935), Scheffé (1970), and Tukey (1953), 

among others. Specifically, if the Stage 1 test is statistically significant, it allows 

for αFW-controlled follow-up testing of two focal hypotheses of interest. The 

fundamental assumption underlying application of the procedure is that two 

different experimental conditions are associated with similar differences or effects 

on the outcome measure(s), relative to other control or comparison conditions. 

Consider the approach for a few different comparison-of-means situations by 

beginning with a one-way layout with three independent conditions and a single 
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dependent variable, as would be applicable for the Fisher LSD procedure that we 

have been considering. Although the following discussion assumes equal sample-

size situations, special comments on unequal sample sizes are included in the final 

part of the article. 

Design 1: Three Conditions, One Outcome Measure. 

In the three-condition case with two experimental conditions and one control 

condition, it is posited that the difference between each experimental condition and 

the control condition is of a comparable magnitude and in the same direction – but 

see the addendum that follows. (As an aside, the following discussion could 

alternatively assume that there is one experimental condition and two control 

conditions.) In the first stage of the procedure, the two experimental means are 

combined (i.e., averaged) and tested against the control mean as a composite 

hypothesis contrast based on a Type I error probability of α, via a t-test with the 

MSW based on ν = N – K serving as an estimator of the population within-group 

variance. If statistically significant, in the second stage the two experimental 

conditions’ means are separately compared with the mean of the control condition, 

each based on a Type I error probability of α. It is suggested both the composite 

hypothesis contrast and the follow-up separate contrasts typically be conducted as 

one-tailed tests insofar as a researcher would likely not be adopting this procedure 

without a solid rationale for and understanding of the direction of the treatment 

effects. 

With αFW controlled through logical implications, the procedure affords an 

efficient alternative to standard procedures for assessing both the aggregated and 

separate effects of the two experimental conditions. Specifically, the logical 

implications here are as follows: (1) If, in the population, either of the two 

experimental means differs from the control mean, then no Type I error is made 

with the Stage 1 test. Thus, if the Stage 1 hypothesis is rejected, then at most only 

one Type I error will be made with the two Stage 2 tests. (2) If, in the population, 

there is no difference between either of the two experimental means and the control 

mean, then a rejected Stage 1 hypothesis is a Type I error and, following the 

familywise Type I error concept, it does not matter whether zero, one, or two 

additional Type I errors occur during the Stage 2 testing. 

 

Addendum. If (1) the outcome measure represents an interval scale, and (2) none 

of the to-be-described transformed data will fall beyond the measure’s attainable 

upper or lower limits, then predicted experimental vs. control effects in opposite 



COMPOSITE HYPOTHESIS CONTRAST PROCEDURE 

6 

directions can also be accommodated in the first stage test of the composite 

hypothesis contrast. For example, suppose it is predicted that the mean of one 

experimental condition will be higher than the control condition mean (μE1 > μC) 

and the mean of the other experimental condition will be lower (μE2 < μC). Further 

suppose that the actual sample means are in the predicted directions, with E1 

exceeding C by 10 points and C exceeding E2 by 8 points. In that case, the E2 data 

could be transformed for the Stage 1 test by adding a constant of 16 (2 × 8) to all 

of the scores in that condition. As a result, the E2 mean will now be 8 points above 

the C mean, rather than 8 points below it, and the E1 and E2 means could be 

meaningfully combined for the composite hypothesis contrast test in the manner 

that was just described.  

Design 2: Four Conditions, One Outcome Measure. 

The composite hypothesis contrast procedure can be applied to test for differences 

involving four condition means in a manner similar to what was detailed for the 

three-condition case. Consider, for example, a study with two experimental 

conditions (E1 and E2) and two control conditions (C1 and C2). In addition, each 

experimental condition is conceptually linked to its own control condition: (e.g., 

E1 is linked to C1 and E2 is linked to C2). The researcher is testing for two similar 

treatment effects, one based on an ultimate comparison of E1 and C1 and the other 

based on an ultimate comparison of E2 and C2. The omnibus composite hypothesis 

contrast is initially tested at α in Stage 1 based on a comparison of the average of 

the E1 and E2 means with the average of the C1 and C2 means. If statistically 

significant, in Stage 2 the two separate contrasts are each tested at α, with the 

familywise Type I error rate controlled at α via logical implications analogous to 

those described for the three-group situation. In that regard, it is important to note 

that additional comparisons (e.g., of E1 and C2 or of E2 and C1) are not allowed as 

they would inflate the specified familywise Type I error rate. 

Design 3: Two Conditions, Two Outcome Measures. 

Now suppose that there are two conditions, experimental and control, and two 

different outcome measures of interest, X and Y. Moreover, it is assumed that 

similar treatment effects will be manifested on X and Y. Following the rationale of 

Marascuilo and Levin (1983) for creating an equally weighted linear combination 

of separate dependent variables by standardizing and adding (or averaging) them, 

a researcher could do the same here. In Stage 1, the composite hypothesis contrast 

procedure would initially compare the experimental and control condition on their 
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respective mean linear combinations (here, averages) of the X and Y measures, 

either standardized or unstandardized, depending on how comparable the two 

measures are assumed to be, based on a Type I error probability of α. If statistically 

significant, by logical implications in Stage 2 the experimental and control 

conditions means could be compared on the original X and Y outcome measures 

separately, each based on α, and thereby controlling αFW at α.  

Design 4: Four Conditions, Two Outcome Measures 

A situation that incorporates aspects of Designs 2 and 3 was implemented in the 

previously cited Hwang et al. (2016) study where, in the context of a single-case 

crossover design (Levin, Ferron, & Gafurov, 2014), four different learning 

strategies (two experimental and two control) were predicted to have similar effects 

on two different outcome measures. Moreover, in that single-case design, the 

outcome measures of interest were the amounts of change/improvement between 

the baseline (A) phase and the intervention (B) phase of the study. In Stage 1 of the 

present statistical procedure, based on α = 0.05, a one-tailed test of the composite 

hypothesis contrast proved to be statistically significant (p = 0.020). This result 

indicates that the composite hypothesis contrast (consisting of the two combined 

experimental strategies vs. the two combined control strategies), as applied to the 

change on the averaged two outcome measures, represented a detectable effect that 

was in the predicted direction. In Stage 2, for the two strategies’ “comparison of 

change” tests on the two separate outcome measures, each at α = 0.05, although 

both experimental strategies yielded effects that were in their expected directions, 

one of these was reasonably large and statistically significant (p = 0.012) while the 

other was considerably smaller and not statistically significant (p = 0.087). 

The Dangers Lurking Beneath: Power Considerations 

Just because the composite hypothesis contrast procedure can be implemented does 

not indicate that it is statistically advantageous or optimal to do so, relative to 

alternative αFW-controlled multiple-comparison procedures that could be conducted 

instead. In particular, statistical power considerations would be advised when 

determining whether or when to use this approach. 

Consider, for instance, the hypothetical examples presented in Table 1. There 

it is found that with a three-mean effect size defined as f 2 = ω2/(1 – ω2), both where 

f is held constant at 0.471 in Parts A and B of Table 1 and as a general rule: (1) 

when the two averaged experimental means are equal and different from the control 
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mean (Panel A), Stage 1 of the present composite hypothesis contrast (CHC) 

approach overpowers at least three of its would-be competitors, namely, Fisher’s  
 
 
Table 1. Stage 1 powers for Fisher’s LSD and the composite hypothesis contrast 

procedure, as well as powers to detect the larger of the two pairwise comparisons for the 
Holm-Bonferroni and Dunnett Procedures 
 

A. Two means (E1 and E2) equal, each different from the third mean (C) by 1σ; three-mean effect size given 

by f = 0.471 

n Fisher Holm (2T) Holm (1T) Dunnett (2T) Dunnett(1T) CHC (2T) CHC (1T) 

10 0.58 0.46 0.58 0.47 0.60 0.70 0.81 

15 0.78 0.66 0.76 0.68 0.78 0.87 0.93 

20 0.90 0.80 0.87 0.81 0.88 0.95 0.98 

        

B. All means different in steps of 0.577σ (E1 > E2 > C); three-mean effect size given by f = 0.471 

n Fisher Holm (2T) Holm (1T) Dunnett (2T) Dunnett(1T) CHC (2T) CHC (1T) 

10 0.58 0.59 0.70 0.60 0.72 0.58 0.70 

15 0.78 0.80 0.87 0.80 0.88 0.76 0.85 

20 0.90 0.91 0.95 0.90 0.95 0.87 0.93 
 

Note: CHC = the present Composite Hypothesis Test; 2T = two-tailed test; 1T = one-tailed test 

 
 

LSD Stage 1 omnibus test, along with Holm’s (1979) sequential Bonferroni 

procedure and Dunnett’s (1955) “each vs. one” multiple-comparison procedure 

applied to the larger of the two second-stage experimental vs. control comparisons; 

and (2) when the three means are more equally separated within the three-mean 

interval (Panel B), the one- and two-tailed test powers of the CHC approach are 

only slightly lower than those of the corresponding Holm and Dunnett powers, with 

the CHC approach’s one-tailed powers still remaining higher than those of Fisher’s 

LSD test. 

In a previous study, Serlin and Mailloux (1999) investigated the analysis of 

designs with two conditions and two outcome measures, analogous to Design 3 

above. They added together the two standardized outcome measures to form a 

composite that is similar to the composite that was described earlier here. 

Consistent with the our power results and conclusions, Serlin and Mailloux found 

that, if the univariate effect sizes associated the two measures are similar, with the 

smaller being at least half or more in size as the larger, then the Stage 1 screening 

test on the composite outcome measure followed by univariate tests in Stage 2 (as 

was presented here) is a more powerful procedure than both the multivariate 

Hotelling T2 test and either Holm’s (1979) or Shaffer’s (1986) “sequentially 

rejective” procedures. Consequently, we have good reason to believe that, in the 
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present four-group application described earlier, that if the smaller of the separate 

E-C comparisons is at least half the size of the larger, the composite hypothesis 

contrast approach will also be more powerful than the alternative multiple-

comparison procedures that were considered here. 

Thus, there is a trade-off between the increased power resulting from the 

composite hypothesis contrast procedure based on the average of two equal or near-

equal experimental means and reduced power resulting from a shrunken composite 

as the two averaged experimental means get further and further apart. In fact, we 

have determined that, as long as the ratio of the smaller to the larger experimental 

mean is at least 0.50, then as far as statistical power is concerned the CHC approach 

would likely be the hypothesis-testing method of choice in this three-mean situation. 

It is important to note nonetheless that the just-reported powers are not directly 

comparable. Those associated with the CHC and Fisher’s LSD are Stage 1 omnibus 

test powers and those of Holm and Dunnett are Stage 2 powers for the larger of the 

two contrasts of interest. Yet it can be concluded that, because the Stage 2 critical 

values for the CHC are smaller than those for either Holm or Dunnett, if the CHC 

Stage 1 hypothesis is rejected, then the Stage 2 contrasts will be detected more often 

with the former procedure than they will with the two latter procedures. 

Caveat 

When constructing the composite hypothesis contrast, one must exercise caution in 

calculating the combined group mean in the case of unequal sample sizes, lest one 

fall prey to confounding due to what is known as Simpson’s (1951) paradox. The 

paradox is perhaps easiest to envision as resulting from a third-variable influence 

in a two-way layout, wherein the unequal sample sizes are considered a function of 

a factor not considered in the design. In the earlier discussed Designs 2 and 3 with 

four conditions and one or two dependent variables, if weighted-by-sample-size 

means are used to form the Stage 1 composite hypothesis contrast, it is easy to show 

that, even if the E1 and C1 means were equal, as were the E2 and C2 means, then 

the combined E and C means in the composite could differ, in which case the logical 

implications required for the validity of the method do not hold. The solution, of 

course, would be to create the composite using unweighted means (i.e., the simple 

average of the E1 and E2 means minus the simple average of the C1 and C2 means). 
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Conclusion 

The two-stage composite hypothesis contrast procedure is not a statistical panacea 

for all researchers in all multiple-comparison situations. It may, however, represent 

a useful statistical tool for some researchers in the situations for which it was 

intended, typically where two experimental treatments are expected to produce 

comparable effects (relative to one or two control conditions) on one or two 

outcome measures. The procedure is recommended for those situations because it 

provides a straightforward, more powerful statistical alternative to other commonly 

applied multiple-comparison methods. 
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