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One of the validity conditions of classical test statistics (e.g., Student’s t-test, the ANOVA 
and MANOVA F-tests) is that data be normally distributed in the populations. When this 
and/or other derivational assumptions do not hold, the classical test statistic can be prone 
to too many Type I errors (i.e., falsely rejecting too often) and/or have low power (i.e., 
failing to reject when the null hypothesis is false) to detect treatment effects when they are 
present. However, alternative procedures are available for assessing equality of treatment 
group effects when data are non-normal. For example, researchers can use robust 
estimators instead of the usual least squares estimators to test that treatment effects are 

equivalent across groups. As well, recent advances in statistical methodology allow 
researchers to test for equality of treatment group effects by assuming other distributional 
shapes for the data. One class of such analyses is generalized linear model techniques. On 
the other hand, researchers can adopt sequential analyses where they first assess the 
normality assumption and then depending on the result determine the type of analysis that 
should be adopted. The purpose of the present study was to compare the above approaches 
for assessing equality of treatment group effects in the presence of non-normal data. 

Simulation results which were based on various non-normal distributions and the values of 
group variances and sample sizes revealed that sequential analysis coupled with a 
generalized linear model solution were just as prone to inflated or depressed rates of Type 
I error as the classical ANOVA F-test. 
 
Keywords: Tests for equality of treatment effects, non-normal data, multi-group 
problem, goodness-of-fit statistic, skewed and kurtotic data, 5-point Likert data, 

familywise Type I error control 
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Introduction 

Classical procedures that test for the equality of treatment effects across 

independent groups [e.g., Student’s Two Independent Sample t-test, the analysis of 

variance (ANOVA) and multivariate analysis of variance (MANOVA) F-tests] 

provide reliable and valid results when their derivational assumptions hold or nearly 

hold. All of the aforementioned procedures require that (1) the observations are 

independent of one another (the independence of observations assumption), (2) the 

data are distributed normally in each of the treatment populations (the univariate 

and multivariate normality assumption), and (3) the population 

variances/covariance matrices are equal across treatment groups (the homogeneity 

of variances/covariance matrices assumption). When these derivational 

assumptions hold, the probabilities associated with performing a test of significance 

are exact; that is, the probabilities of making a Type I error (falsely rejecting the 

null hypothesis of treatment group equality) and Type II error (falsely accepting the 

null hypothesis) are known to the researcher. As well, the traditional effect size 

(ES) statistics and their confidence intervals (CIs) would be valid also. 

However, when the assumptions do not hold, either individually or jointly, 

the actual Type I error probability, as well as the Type II probability, will not be 

equal to their intended values (e.g., say 0.05 and 0.20, respectively). The 

consequence is that researchers no longer know the probabilities of inferential error 

associated with their test of significance for treatment group equality. That is, these 

errors of inference can be divergently different than those set by the researcher. For 

example, the probability of committing a Type I error, which is traditionally set at 

0.05, could in actuality be 0.60. A consequence of this would be that, when the null 

hypothesis of treatment group equality has been rejected, researchers would not 

know whether the hypothesis has been rejected erroneously because the probability 

of a Type I error is much larger than was set, as a result of violating one or more of 

the derivational assumptions, or whether the hypothesis was rejected because the 

population treatment effects are truly not equal across treatment groups. Clearly 

controlling the probabilities of statistical inference (i.e., Type I and II errors) is 

paramount when using inferential statistical procedures to assess the credibility of 

research hypotheses. Moreover the values for ES statistics and their CIs could be 

inaccurate as well. 

Based on the preceding, researchers in the behavioral, biological, and health 

sciences are encouraged to assess whether derivational assumptions hold prior to 

using a test of significance (e.g., see Lix & Keselman, 2009; Lix, Keselman, & 

Hinds, 2005; Kirk, 2013). Indeed, it is well known that psychological, biological, 
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and medical data are rarely normal in form (e.g., see Lix & Keselman, 2009; 

Micceri, 1989). For example, many psychologists collect reaction time data; this 

data typically will be positively skewed (not symmetric as would be the case with 

a normal distribution) because of large outlying values in the right hand tail of the 

distribution indicating large reaction times for some subjects.1 As well, Likert-type 

data is frequently collected in social science and medical research and such data is 

clearly non-normal. 

With regard to the assumption that data in the treatment populations are 

normally distributed, researchers can use a test for normality (e.g., Shapiro-Wilk, 

Kolmogorov-Smirnov – see D’Agostino & Stephens, 1986; SAS Institute, Inc., 

2010b, p. 357). If the results of the preliminary test indicate that the empirical data 

in each treatment group conforms to a theoretical normal distribution, researchers 

can go on to test for equality of treatment group effects with the t- or F-test 

(assuming that the other assumptions are examined and believed to be true as well); 

additionally, the size of ES statistics and their CIs would be accurate and 

meaningful. However, if the result of the test for normality indicates the empirical 

data are not normally distributed within treatment groups, researchers must take 

remedial action. 

Until recently, the choices available to researchers for dealing with non-

normal data were to: (1) transform their data to achieve normality (see Box & Cox, 

1964), (2) use a procedure that does not require the data to be normally distributed 

(a rank transformation test – see Akritas, Arnold, & Brunner, 1997), or (3) use a 

procedure (Welch-James – WJt) that can perform accurately in the presence of non-

normality (e.g., procedures that use robust estimators, such as trimmed means and 

Winsorized variances, rather than the usual least squares estimators in the test 

statistic) (see Erceg-Hurn, Wilcox, & Keselman, 2013; Keselman, Algina, Lix, 

Wilcox, & Deering, 2008a; 2008b). Prior empirical research indicates that these 

alternative methods can be quite successful in controlling Type I and Type II errors, 

and accurate in calculating ES statistics and setting CIs around them when data are 

non-normal in the treatment populations (see Keselman et al., 2008a; 2008b; Lix & 

Keselman, 1998). Nonetheless, some of the better approaches [e.g., alternative (3)] 

are not available in the major statistical packages and therefore are not typically 

used by researchers (Keselman et al., 2008b have provided a software program to 

implement the WJt procedure). 

However, now researchers have methods for dealing with non-normal 

distributions when testing hypotheses via generalized linear models (i. e., GLM – 

see Stroup, 2013). In particular, the SAS Institute, Inc. (2010a; 2010b) and PASW 

(SPSS, Inc., 2009) systems of statistical programs allows users to conduct tests for 
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equality of treatment group effects where the data need not be presumed to be 

normal in form (see e.g. the SAS GLMMIX procedure), through generalized linear 

models (GLMs) (see Breslow & Clayton, 1993; Nelder & Wedderburn, 1972; 

Stroup, 2013). Indeed, GLMs allow users to perform tests for treatment group 

equality for data that can be lognormal, exponential, beta, or gamma, etc. 

distributed. Furthermore, researchers can even adopt a GLM (e.g., see SASs 

GLIMMIX procedure) that specifies that data in the treatment groups has varied 

forms; e.g., in some groups the data are normally distributed while in others they 

are exponentially distributed. Clearly, this approach for dealing with non-normal 

data could provide researchers with a remarkably reliable and valid way of testing 

for treatment group equality where data are not normal in form. However, 

researchers typically do not know how their data are distributed in the parent 

populations and, accordingly, must rely on (statistical) methods to determine the 

appropriate shape of their data.2 The two most popular statistical packages 

employed by behavioral sciences and biological researchers (e.g., the SAS and 

SPSS systems), in addition to providing appropriate plots of the empirical data (e.g., 

normality probability plots, box-plots, etc.), provide users with test statistics that 

can be used to test for normality and tests that examine the fit of the data to various 

theoretical distributions. 

Accordingly, whether GLM analyses will work well when adopting this two 

stage strategy will depend, in part, on how good these preliminary tests for 

normality and fit perform. Evidence regarding the accuracy of these tests is varied 

(e.g., see Dufour, Farhat, Gardiol, & Khalaf, 2010; Kowalchuk, Keselman, Wilcox, 

& Algina, 2006; Keselman, Othman, & Wilcox, 2013; 2014; Rochon & Kieser, 

2011; Schoder, Himmelmann, & Wilhelm, 2006). For example, in the one-group 

pretest-posttest-design, Schoder et al. (2006) found that the Kolmogorov-Smirnov 

(K-S) goodness of fit test did not have enough power to detect non-normal 

distributions unless sample size was greater than 100. On the other hand, in the 

same design, Keselman et al. (2014) found that the Anderson-Darling (A-D) 

goodness of fit test did have sufficient power (≥ 0.80) if researchers set the level of 

significance at values greater than 0.05 (e.g., α = 0.15 or α = 0.20). Again 

comparing goodness of fit statistics for detecting non-normal distributions in the 

multi-group (3) problem, Keselman et al. (2014) also found that the A-D test 

provided good power to detect non-normal distributions even while adopting 

familywise Type I error control over the three tests of normality with overall 

significance controlled at 0.15 and 0.20. 

Nonetheless, perhaps the most crucial aspect of adopting GLMs is the fact 

that, in order to use them appropriately (correctly) (e.g., the GLIMMIX procedure), 
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researchers must correctly specify the ‘link function’ which will determine how the 

analysis is to be conducted in order to properly assess equality of treatment group 

effects; a misspecification of the ‘link function’ results in the wrong hypothesis 

being tested and consequently incorrect results (see Stroup, 2013, Chapter 3).3 

Thus it must be determined whether testing for normality is a good 

preliminary strategy prior to assessing treatment group equality. It could be the case 

that uniformly adopting the ANOVA F-test, GLM, or WJt might be a better strategy 

than choosing a method of analysis based on a preliminary test for normality or fit. 

As well, if users incorrectly specify the link function results will be incorrect 

(Cerrito, 2005; Stroup, 2013). That is, we do not know whether this approach to 

handling non-normal data results in better tests for equality of treatment group 

effects compared to the previously enumerated methods that are available to 

researchers. Consequently, the purpose of this investigation is to examine this 

question. 

Methods 

A simulation study was conducted to examine GLM analyses when dealing with a 

single factor one-way univariate design having three groups. Researchers can adopt 

various GLMs in two ways: One approach first examines the empirical data and 

compares this data to theoretical distributions, e.g., the normal distribution. Based 

on this preliminary test, researchers then go on to use GLMs (e.g., GLIMMIX), 

specifying the shape of the distribution that should be presumed to hold in the 

population treatment groups (e.g., normal, exponential, lognormal, etc.) through a 

link function. For example, users could test whether the data are normally 

distributed in each of the treatment groups and, if the test for normality (SAS 

provides four tests; users would typically select one – A-D) indicate the data are 

normally distributed, researchers would then go on to the usual linear model which 

assumes data are normally distributed (i.e., the ANOVA F-test) when it tests for 

equality of treatment group effects (SASs general linear model analysis through the 

General Linear Model Procedure). If, however, the test for normality does not 

indicate that the data are normally distributed within each treatment group, 

researchers then frequently try to determine how the data are distributed. They can 

accomplish this by examining whether the empirical data conform to other 

theoretical distributions (e.g., lognormal, exponential, gamma, etc.). If, for example, 

analyses indicates that the data are exponentially distributed by examining fit 

statistics (e.g., A-D, Cramer-von Mises (CvM), K-S – see D’Agostino & Stephens, 

1986; SAS Institute, Inc., 2010b, p. 279) researchers would then go on to adopt a 
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GLM model analysis (e.g., GLIMMIX, and through its syntax, tell the program that 

the data is not normal but exponentially distributed). If one adopts the GLIMMIX 

procedure it will then perform a test of significance for treatment group equality 

with estimation procedures that presume the data are exponentially distributed. As 

indicated in the introduction, GLIMMIX even allows researchers in its estimation 

methodology to specify that the data are distributed in different forms within each 

of the treatment groups. 

The second manner in which researchers can locate and specify the form of 

the non-normal data within GLM analyses is to perform a number of analyses 

specifying different shapes for the data and select the analysis that provides the best 

fit to the data [SAS allows users to select from a number of fit (Information Criteria) 

statistics, e.g., Akakie, Schwarz – see Keselman, Algina, Kowalchuk, & Wolfinger, 

1998]. That is, within GLM analyses users can request the program to compute fit 

statistics that then enable users to compare different analyses which specify 

different shapes for the distribution of the data. Consequently, researchers can 

compare the fit statistics across the different analyses and pick the results (for the 

test of equality of treatment group effects) that provided the best fit statistic result. 

Thus, GLM model analyses appear to be very versatile tools for examining 

equality of treatment group effects for data that are not normal in form. However, 

there is limited published information regarding the effectiveness of the procedure 

for dealing with non-normal data (see e.g., Schoder et al., 2006; Keselman et al., 

2013; 2014); that is, the effectiveness of the procedures for dealing with non-normal 

data will depend, in part, on how good are the tests for normality, the Information 

Criteria, and fit in identifying the correct form of the distribution of the data (some 

published studies report unfavorable results – see e.g., Rochon & Kieser, 2011; 

Schoder et al., 2006). As a result, if the analyses/procedures cannot identify the 

correct shape for the distribution(s) of the data to be specified in the link function, 

GLM analyses will give erroneous conclusions with regard to the test for equality 

of treatment group effects. However, in many other instances encountered by 

applied researchers, the nature of the data collected will automatically determine 

the form of the analysis – the link function. For example, for Likert data, it is 

obvious that the distribution modelled is the multinomial distribution with 

cumulative logit as the link function (see SAS Institute, Inc., n.d., p. 64).4 

Consequently, in our study, we manipulated: (1) the procedure used to assess 

the shape of a distribution and, in particular, we used the A-D test for normality and 

also employed the Akaike (1974) fit-statistic (available through the SAS system) 

(see Keselman, Algina, et al., 1998); (2) the shapes of distributions (15 g-and-h 

distributions, 6 contaminated normal mixture models, and 4 multinomial models); 
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(3) the sample sizes: (i) three groups of equal sizes, 20, 40, and 80 per group; (ii) 

three groups of unequal sizes with total sample size of 120. The g- and h-

distributions were simulated for (i) and (ii) (Table 1). However, the contaminated 

mixed normal and the Likert scale distributions were simulated for total sample size 

120 in (i) and (ii) (Tables 2 and 3), and (4) the level of significance for the A-D 

statistic (i.e., α = 0.15 and 0.20). 

Choices for non-normal distributions are modifications from Schoder et al. 

(2006), Zimmerman (2010), and Keselman et al. (2013; 2014). These authors 

investigated a normal distribution with a single outlier, a normal distribution with 

10% of the data containing outliers, skewed distributions with varying skewness, 

and an ordinal 5-point Likert scale with varying multivariate probabilities (common 

they state in psychological and medical investigations). 

Many non-normal distributions were investigated via g-and-h distributions 

(see Headrick, Kowalchuk, & Sheng, 2008; Hoaglin, 1983; 1985; Kowalchuk & 

Headrick, 2010; Tukey, 1960). These distributions with their values for skewness 

and kurtosis are enumerated in Table 1. We chose a range of values of g and h to 

cover as broad a spectrum of non-normal distributions that could occur in medical, 

psychological, and behavioral science experiments (e.g., see Keselman, Huberty, et 

al., 1998; Micceri, 1989; Wilcox, 2012). 

SAS Institute, Inc. (2013) was used to generate g-and-h data. To generate data 

from a g and h distribution, standard unit normal variables Zij were converted to g 

and h distributed random variables via 

 

 
  2exp 1

exp
2

ij ij

ij

gZ hZ
Y

g

  
   

 
  

 

when both g and h were non-zero. When g was zero, 
2

exp
2

ij
ij ij

hZ
Y Z

 
  

 
. The Zij 

scores were generated by using RANNOR from SAS (2010a). These equations 

generate symmetric (g = 0) and asymmetric distributions (g ≠ 0), respectively. As 

Kowalchuk and Headrick (2010) noted, “The parameter ± g controls the skew of a 

distribution in terms of both direction and magnitude. The parameter h controls the 

tail weight or elongation of a distribution and is positively related with kurtosis” (p. 

63). As well, Type I error rates were investigated when data were obtained from a 

normal distribution [g = h = 0, the standard normal distribution (skewness and 

kurtosis = 0)]. 
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A number of different contaminated mixed-normal distributions, such as 

those reported in Zimmerman (2010), were examined. Contaminated mixed-normal 

distributions have one or more outlying values that deviate from the central mean 

of the distribution by some amount measured in standard deviation units (D). For 

example, Zimmerman (2010) examined a mixed-normal distribution consisting of 

samples from N(0, 1) with probability 0.95 and from N(0, 400) with probability 

0.05. Tukey (1960) suggested that outliers are a common occurrence in 

distributions, and others have indicated that skewed distributions frequently depict 

psychological data (e.g., reaction time data). Accordingly, eight contaminated 

mixed-normal distributions were examined that had one, two, or four outlying 

values which were five or ten standard deviations from the mean value. These 

distributions are enumerated in Table 2. 

Finally, like Schoder et al. (2006), and Keselman et al. (2013; 2014), a 5-point 

Likert scale was simulated; such data is frequently gathered in medical, 

psychological (e.g., from clinical, personality, and social psychology) and other 

behavioral science investigations. As well, there has been much discussion in the 

medical and social science literatures regarding the analysis of outcomes with 5 -

point Likert data and classical methods of analysis (see e.g., Roberson, Shema, 

Mundfrom, & Holmes, 1995; Jameson, 2004; Nanna & Sawilowsky, 1998). 

Consequently, the same conditions as Schoder et al. (2006) and Keselman et al. 

(2014) were investigated. Specifically, (1) an even distribution (p = .2 for each 

category 1 – 5); (2) a symmetric distribution (p1 = 0.1, p2 = 0.2, p3 = 0.4, p4 = 0.2, 

p5 = 0.1); (3) a moderately skewed distribution (p1 = 0.5, p2 = 0.3, p3 = 0.15, 

p4 = 0.04, p5 = 0.01); and (4) a heavily skewed distribution (p1 = 0.7, p2 = 0.2, 

p3 = 0.06, p4 = 0.03, p5 = 0.01). Thus for the 5-point Likert scale data there were 4 

multinomial distributions that were simulated (See Table 3). 

We did not investigate the same sample size conditions as Schoder et al. 

(2006) but did include a reasonable range of values (i.e., n = 20, 40, 80) depending 

on the condition. Specifically,  

 

(i) For the 5 g-and-h distributions, sample sizes of 20, 40, and 80 were 

chosen. 

(ii) For 6 contaminated normal distributions, 0.95N(0, 1) + 0.05N(0, k), 

0.9N(0, 1) + 0.1N(0, k), and 0.975N(0, 1) + 0.025N(0, k), k = 25, 100, 

a sample size of 40 was chosen. 

 

Because in preliminary testing it would be important to guard against a Type 

II error (falsely accepting the null hypothesis that the data are normal in form), we 
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selected significance levels of 0.15, and 0.20 when testing assumptions (we believe 

that the 0.05 level would not be appropriate in preliminary testing). Because some 

might find that these levels of significance would be too large with multiple tests 

for normality (one for each group examined), familywise error control with a level 

of significance of 0.15 or 0.20 was adopted using Hochberg’s (1988) sequentially 

rejective Bonferroni procedure, setting the overall rate of Type I error at either 0.15 

or 0.20. Hochberg’s procedure, as indicated, has been found to control the overall 

rate of Type I error over a set of statistical tests and provides greater power to reject 

non-null hypotheses than the classical Bonferroni method (see e.g., Hochberg & 

Tamhane, 1987). 

 

Hochberg’s Step-Up Sequentially Acceptive Bonferroni 

 

Hochberg’s (1988) step-up Bonferroni procedure is another example of a stepwise 

Bonferroni method of Type I error control and hence can also be better than the 

usual Dunn-Bonferroni method (see Kirk, 2013, p. 180). In this procedure, the p-

values corresponding to the m statistics for testing the hypotheses H(1),…, H(m) are 

ordered from smallest to largest p(1) ≤ p(2) ≤…≤ pm. Then, for any i = m, m – 1,…, 1, 

if pi ≤ α / (m – i + 1), the Hochberg procedure rejects all  iH i i
  . According to 

this procedure, therefore, one begins by assessing the largest p-value, pm. If pm ≤ α, 

all hypotheses are rejected. If pm > α, then H(m) is accepted and one proceeds to 

compare p(m – 1) ≤ α / 2. If p(m – 1) ≤ α / 2, then all Hi = (i = m – 1,…,1) are rejected; 

if not, then H(m – 1) is accepted and one proceeds to compare p(m – 2) with α / 3, and 

so on. 

Each condition in the investigation was replicated 5,000 times  We intended 

to collect Type I error rates for nine methods of testing treatment group equality 

(preliminary results indicated that we did not need to collect data for the WJt 

procedure based on trimmed means and Winsorized variances). 

Nuances to the Study 

Nuances to this study included (1) forcing the estimation and inference method to 

be maximum likelihood (ML) for all response variables and (2) matching the 

distributions of the simulated data with those of the response variables, i.e. 

symmetric data with symmetric response variables and skewed data with the 

lognormal  response variable only (that is, using the proper link function). 
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Method 

When the response variables were modeled using only the “dist=” option in the 

model statement (from SASs GLIMMIX Procedure), the default estimation and 

inference method for lognormal and normal responses is restricted maximum 

likelihood (REML). For the exponential, gamma, inverse Gaussian, multinomial 

and tcentral (SASs nomenclature for a central t distribution) response variables, the 

default estimation and inference method is ML. In the present study, only the 

maximum likelihood method was used; hence ML was invoked with SAS syntax 

when the response variable was lognormal and normal. 

Matching Distribution 

Initially, it was observed that the exponential and gamma response variables 

consistently produced the lowest AIC values, thus dominating the determination of 

the p-values of these procedures, usually inflating them, at times by an excessive 

amount, when most of the p-values of GLIMMIX modelled on these responses were 

less than 0.05. To avoid this anomaly, simulated data were matched with the 

response variable modelled. Thus, instead of considering the minimum AIC of all 

modeled link function responses, we considered the minimum AIC of symmetric 

modeled responses on data simulated from symmetric distributions. In the case of 

skewed data, we stuck to the lognormal response variable only. 

Specific Tcentral Response Variables 

The only response variable that can be modeled with parameter values is the tcentral 

response variable (see SAS Institute, Inc., n. d., p. 66). For g = 0 and h = 0.225 

simulated data, we decided to model two tcentral responses: t(3) and t(4.039). The 

subscripted numbers in parentheses represent the degrees of freedom of the tcentral 

distribution. Three is the default degrees of freedom (in GLIMMIX), while 4.039 

was obtained from solving 6/(v – 4) = 154.84. The left hand side of the equation is 

the kurtosis of the t(v) distribution while the right hand side is the kurtosis of the 

g = 0, h = 0.225 distribution. Similarly, we also modelled the simulated 

contaminated mixed-normal distribution with specific tcentral response variables 

by solving equations involving the variance of the t distribution 6/(v – 4) and the 

variances of the mixed normal distributions. The degrees of freedom are given in 

Table 4. Note that, for the first two contaminated mixed-normal distributions, the 

values obtained for the degrees of freedom are less than 0. Hence only t(3) response 

variables were modelled for them. As for the remaining four, both the t(3) and the t 
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with the calculated degrees of freedom were modelled. Subsequently, all tcentral 

response variables modelled with calculated degrees of freedom will be known as 

tcentral2. 

Hence the GLIMMIX procedure was employed in the following ways in this 

study: Specifically, we adapted the GLIMMIX test under the following conditions:  

 

(1) When the data were modelled on normal responses with the ML 

method of estimation and inference (this was our baseline 

measure = the ANOVA F-test.), 

(2) Depending on the result from the A-D test for normality (with α = 0.15 

and α = 0.20), by selecting one of several response variable 

distributions modelled according to the skew of the simulated data as 

in Table 1, 

(3) By selecting one of several response variable distributions modelled 

according to the skew of the simulated data as in Table 1 and 

depending on the result of the Akaike (1974) model fit statistic, 

(4) Selecting the multinomial option when examining the Likert scale 

data conditions, 

(5) Selecting the lognormal option with the ML method of estimation and 

inference when examining data generated from skewed distributions 

including the g-and-h distributions,5 

(6) Depending on the result from the A-D test for lognormality (with 

α = 0.15 and α = 0.20), by selecting one of several response variable 

distributions modelled according to the skew of the simulated data as 

in Table 1. 

 

Thus, the tcentral2 was modelled in Procedures (2), (3), and (6). 

Results 

Results were evaluated by adopting Bradley’s (1978) criterion for effective Type I 

error control. According to this perspective, empirical rates of Type I error will be 

considered well controlled if the empirical value falls within a 0.025 to 0.075 

interval. In our tables, values that exceed the upper limit of the interval will be 

displayed in bold typeface while those values less than the lower limit of the 

interval will be underscored. 
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Symmetric Data 

Table 5 presents empirical rates of Type I error when the simulated data were 

symmetric in shape for the three sample sizes investigated (n1 = n2 = n3 = 20, 40, or 

80). Of the 72 values reported in this table, only four fell outside Bradley’s (1978) 

criterion and all are liberal (> 0.075). The liberal rates ranged in value from 0.0752 

to 0.1220. Liberal values occurred when either the A-D normality test was 

employed or when the Akaike (1974) criterion was used. It should also be noted 

that rates were well controlled for the baseline test (i.e., the ANOVA F-test) and 

when the response variable was set at lognormal. 

Table 6 presents rates when the simulated data were skewed in shape for the 

three sample size cases investigated. Interestingly, regardless of the shape of the 

data, all empirical rates were contained within Bradley’s (1978) interval. 

Table 7 presents rates of error for non-normal data where the variances and 

group sizes were unequal across groups and were positively paired with one another. 

Of the 52 values reported, when unequal variances were in a 1:1:4 ratio (and sample 

sizes were 30, 40, and 50), only 14 values were not contained in Bradley’s (1978) 

interval. This number increased to 32 when the unequal variances were in a 1:1:16 

ratio (sample sizes were 30, 40, and 50). For the same two unequal variances 

conditions the non-controlled empirical values were 11 and 31, respectively when 

sample sizes were larger (i.e., 20, 40, and 60). 

Table 8 presents rates for the ANOVA F-test and GLIMMIX assuming 

lognormal data in the link function when sample sizes (30, 40, and 50 or 20, 40, 

and 60) were paired with unequal variances in either a 1:1:4 or 1:1:16 ratio. Again, 

one can see from the table that many of the empirical values were either 

conservative (< 0.025) or liberal (> 0.075). The ANOVA F-test had 12 non-

controlled values while GLIMMIX with the lognormal link function had 11 non-

controlled rates. 

Table 9 presents rates of error for non-normal data when unequal sample sizes 

(i.e., 30, 40, and 50 or 20, 40, and 60) were paired with unequal variances (4:1:1 or 

16:1:1) in a negative fashion. For negative pairings of unequal group sizes and 

variances, the empirical rates were almost always outside Bradley’s (1978) liberal 

interval and approached values as high as 0.50. 

Finally, Table 10 presents empirical rates of Type I error for the ANOVA F-

test baseline test and the GLIMMIX test assuming a lognormal link function when 

unequal variances and group sizes were negatively paired. Of the 28 ANOVA F-

test empirical vales, only two were contained in Bradley’s (1978) interval with 

liberal values ranging from 0.1046 to 0.9152. Of the 20 GLIMMIX values, all but 
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one exceeded the upper bound of Bradley’s interval with liberal values ranging 

from 0.1154 to 0.5870. 

Conclusion 

Generalized linear model analyses (e.g., SASs GLIMMIX procedure) can be used 

to compare treatment effects across groups when data in the populations are normal 

or not normal. Having such estimation and testing procedures available to applied 

researchers should be most beneficial since in applied settings data are not likely to 

have been drawn from normal populations. Thus, researchers can use generalized 

linear model analyses to compare treatment effects across groups when data are not 

normally distributed in the parent populations. This is in contrast to traditional 

procedures such as the analysis of variance F-test which compares treatment effects 

across groups but presumes that data are normally distributed in the parent 

populations. It is well known that the probability of committing a Type I error 

(falsely rejecting the null hypothesis of treatment group equality) and the 

probability to detect treatment effects when they are present (the power of the test) 

are dramatically affected when the normality assumption does not hold. As 

indicated in the introduction, it is also well known that nonparametric tests are also 

negatively affected when data are non-normal and variances are unequal (see e.g., 

Zimmerman, 2010). Thus, none of these procedures should be adopted to test for 

equality of central tendency across treatment groups and the availability of 

alternative generalized analyses is considered an important addition to the 

researchers arsenal of data analytic techniques. 

However, researchers typically do not know how the data in the population 

distributions are distributed and, accordingly, must rely on informal (e.g., graphs 

such as normal probability plots) or formal (e.g., tests for normality) methods to 

determine whether they can adopt the traditional method (i.e., the ANOVA F-test) 

of investigating for treatment effects across groups, or adopt more modern methods 

such as a generalized linear model to make such an assessment (i.e., SASs 

GLIMMIX procedure). Since informal methods are open to subjectivity of the 

analyzer, formal methods to analyze whether data are normal or not are 

recommended (e.g., see SAS Institute, Inc., 2010b; Schoder et al., 2006). 

Unfortunately, very little is known about the efficacy of adopting formal tests of 

normality or model fit prior to selecting a method for comparing treatment effects 

across groups. Prior research regarding the utility of tests for normality are mixed 

(e.g., see Dufour et al., 2010; Kowalchuk, et al., 2006; Keselman et al., 2013; 2014; 

Rochon & Kieser, 2011; Schoder et al., 2006) and the evidence regarding the 
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efficacy of tests for fit (e.g., Akaike, 1974) are not good (e.g., see Dufour et al., 

2010; Keselman, Algina, et al., 2006; Keselman et al., 2013; 2014; Rochon & 

Kieser, 2011; Schoder et al., 2006). Thus, at this time, we do not know whether 

adopting this two stage strategy will be effective in testing for treatment group 

equality. 

Accordingly, this problem was investigated by sampling data from various 

non-normal distributions (skewed distributions having different degrees of 

skewness and kurtosis, multinomial Likert type distributions, and mixed-normal 

distributions), either having equal variances or having unequal variances and 

unequal group sizes that were either positively or negatively paired with one 

another. The ANOVA F-test was then compared with GLIMMIX results when the 

GLIMMIX test was adopted following a significant test for non-normalitity with 

the Anderson-Darling test statistic or based on the results from applying the Akaike 

(1974) goodness of fit statistic. A GLIMMIX solution was also adopted in which 

we always assumed (through the link function) that the data were lognormal in 

shape. 

It is apparent from the empirical findings that adopting a general linear model 

approach (e.g., GLIMMIX) procedure to assess treatment group equality across 

groups does not work when the link function of the data is based on the Anderson-

Darling test for distribution shape, the smallest Akiake fit-statistic value, or always 

assuming a log-normal distribution. It is disappointing to report the generalized 

linear model solutions were not better at controlling the number of Type I errors as 

compared to the traditional ANOVA F-test. Indeed, for the cases investigated, the 

ANOVA F-test resulted in an inflated (liberal) or deflated (conservative) rate of 

Type I error 62 percent of the time while the rate for the GLIMMIX solutions varied 

from 56 to 61 percent. The lowest percentage of Type I errors for the GLIMMIX 

solution occurred when we presumed in the analysis that the data were lognormal 

in the population. 

Therefore, researchers should adopt a generalized linear model analysis with 

caution as it will not necessarily provide better Type I error control when data are 

non-normal. As was indicated by Cerrito (2005), GLIMMIX is a difficult procedure 

to adopt, and much thought should be given to choosing this method of analysis. 

As they stated, “While it is possible to use PROC GLIMMIX as the most complex 

of the models, it is not advisable. Even so, choices as to random versus fixed effects, 

link function, and covariance matrix still have to be made. Therefore, the 

investigator should use the simplest procedure that will accommodate the variable 

choices.” (p. 7) (see also Stroup, 2013, Chapter 3). 
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All, however, is not lost. As indicated in the introduction, one can successfully 

test for equality of central tendency across groups when data are non-normal and 

variances are heterogeneous by adopting the non-pooled Welch-James statistic 

(WJt) with robust estimators of central tendency and variability. This is a finding 

that has been established in many research investigations (e.g., see Keselman et al., 

2008a; 2008b; Keselman, Wilcox, & Lix, 2003; Keselman, Wilcox, Lix, Algina, & 

Fradette, 2007; Keselman, Wilcox, Othman, & Fradette, 2002). As well, the WJt 

statistic can be applied with bootstrapping methodology (see Erceg-Hurn et al., 

2013; Keselman et al., 2002) resulting in very good Type I error control. 
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Footnotes 

1. It was suggested by a reviewer of an earlier version of this paper that 

researchers need not concern themselves about normality/non-

normality since the Gauss-Markov theorem guarantees that group 

means are asymptotically normal under much weaker conditions than 

assuming Gaussian errors. Such a statement surprised us considerably 

since it is well known that this is not true. Thus, we strenuously maintain 

that researchers must attend to whether their data are normal or not. 

2. It has been suggested by a reviewer of an earlier version of this paper 

that researchers would know the appropriate link function for their data 

and would not need to employ tests of fit, etc. to determine the link 

function in order to get a correct solution. The first and third authors of 

this paper each have over forty years of experience teaching in 

departments of psychology and consulting with applied researchers and 

it is not our experience that researchers would know a priori the correct 

link function in order to use a generalized linear model analysis 

correctly. 

3. SASs GLIMMIX procedure uses link functions to let the software 

know what distribution should be fitted to the data. In other words the 

GLIMMIX procedure assumes that    1E | g X Z  Y γ , where 

 g   is a differentiable monotonic link function, Y represents the 

(n × 1) vector of observed data, and γ is an (r × 1) vector of random 

effects (see SAS Institute, Inc., 2010b, p. 2637). For example, if one 

were to use the SAS syntax DIST=LOGNORMAL, the GLIMMIX 

procedure would model the logarithm of the response variable as a 

normal random variable. Thus, the mean and variance are estimated on 

the logarithmic scale, assuming a normal distribution, that is, 

log{Y} : N(µ, σ2) (SAS Institute, Inc., 2010b, p. 2725). 

4. As we indicated in the introduction the link function in GLIMMIX for 

some types of non-normal data is known. As an example for Likert data 

the appropriate link function would be the multinomial distribution. For 

lognormal data the link function would be the identity function. Thus, 

in many instances applied researchers would know the correct link 

function (see SAS Institute, Inc., 2010b). 

5. In many psychological investigations reaction time data is collected. 

Such data is notoriously known to contain large outlying values (i.e., 

very lengthy delays in reaction times) (see Tukey, 1960). Accordingly, 
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for such data it would be reasonable to assume that the underlying 

distribution is lognormal and accordingly we want to investigate the 

outcome of always assuming that the underlying distribution is of this 

form when adopting GLIMMIX. 
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Appendix: Tables 

Table 1. Distributions used in this study with their corresponding measures of skewness 

and kurtosis values 
 

Distribution Skewness Kurtosis 

N(0, 1) 0.00  0.00  

g = 0, h = 0.225 0.00  154.84  

g = 0.5, h = 0 (lognormal) 1.75  8.90  

g = 1, h = 0 (lognormal) 6.19  110.94  

g = 0.5, h = 0.5 120.10 a 18393.60 a 

 

Note: aUndefined skewness and kurtosis calculated from 100,000 simulated values 

 
 
Table 2. Contaminated mixed-normal distributions 

 
   Outliers 

(n1, n2, n3) Group Variances Distribution D # 

(40, 40, 40) (1, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 1) 

(40, 40, 40) (1, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (2, 2, 2) 

(40, 40, 40) (1, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (4, 4, 4) 

(40, 40, 40) (1, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 1) 

(40, 40, 40) (1, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (2, 2, 2) 

(40, 40, 40) (1, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (4, 4, 4) 

(30, 40, 50) (1, 1, 4) (0.975)N(0, 1) + (0.025)N(0,25) 5 (1, 1, 1) 

(30, 40, 50) (1, 1, 4) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (2, 2, 3) 

(30, 40, 50) (1, 1, 4) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (3, 4, 5) 

(30, 40, 50) (1, 1, 4) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 1) 

(30, 40, 50) (1, 1, 4) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (2, 2, 3) 

(30, 40, 50) (1, 1, 4) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (3, 4, 5) 

(30, 40, 50) (1, 1, 16) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 2) 

(30, 40, 50) (1, 1, 16) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (1, 2, 3) 

(30, 40, 50) (1, 1, 16) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (2, 4, 6) 

(30, 40, 50) (1, 1, 16) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 2) 

(30, 40, 50) (1, 1, 16) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (1, 2, 3) 

(30, 40, 50) (1, 1, 16) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (2, 4, 6) 

(20, 40, 60) (1, 1, 4) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 1) 

(20, 40, 60) (1, 1, 4) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (2, 2, 3) 

(20, 40, 60) (1, 1, 4) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (3, 4, 5) 

(20, 40, 60) (1, 1, 4) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 1) 

(20, 40, 60) (1, 1, 4) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (2, 2, 3) 

(20, 40, 60) (1, 1, 4) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (3, 4, 5) 

(20, 40, 60) (1, 1, 16) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 2) 

(20, 40, 60) (1, 1, 16) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (1, 2, 3) 

(20, 40, 60) (1, 1, 16) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (2, 4, 6) 

(20, 40, 60) (1, 1, 16) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 2) 

(20, 40, 60) (1, 1, 16) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (1, 2, 3) 
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Table 2, continued. 

 
   Outliers 

(n1, n2, n3) Group Variances Distribution D # 

(20, 40, 60) (1, 1, 16) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (2, 4, 6) 

(30, 40, 50) (4, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 1) 

(30, 40, 50) (4, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (2, 2, 3) 

(30, 40, 50) (4, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (3, 4, 5) 

(30, 40, 50) (4, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 1) 

(30, 40, 50) (4, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (2, 2, 3) 

(30, 40, 50) (4, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (3, 4, 5) 

(30, 40, 50) (16, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 2) 

(30, 40, 50) (16, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (1, 2, 3) 

(30, 40, 50) (16, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (2, 4, 6) 

(30, 40, 50) (16, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 2) 

(30, 40, 50) (16, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (1, 2, 3) 

(30, 40, 50) (16, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (2, 4, 6) 

(20, 40, 60) (4, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 1) 

(20, 40, 60) (4, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (2, 2, 3) 

(20, 40, 60) (4, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (3, 4, 5) 

(20, 40, 60) (4, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 1) 

(20, 40, 60) (4, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (2, 2, 3) 

(20, 40, 60) (4, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (3, 4, 5) 

(20, 40, 60) (16, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 25) 5 (1, 1, 2) 

(20, 40, 60) (16, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 25) 5 (1, 2, 3) 

(20, 40, 60) (16, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 25) 5 (2, 4, 6) 

(20, 40, 60) (16, 1, 1) (0.975)N(0, 1) + (0.025)N(0, 100) 10 (1, 1, 2) 

(20, 40, 60) (16, 1, 1) (0.950)N(0, 1) + (0.050)N(0, 100) 10 (1, 2, 3) 

(20, 40, 60) (16, 1, 1) (0.900)N(0, 1) + (0.100)N(0, 100) 10 (2, 4, 6) 
 

Note: ni stands for the number of observations in group i; D stands for distance in standard deviation units; # 

stands for the number of outliers in the respective groups 

 
 
Table 3. Multinomial distributions based upon Schoder et al.’s (2006) probabilities 

simulated as Likert scales 
 

(n1, n2, n3) Group Variances Description (p1, p2, p3, p4, p5) 

(40, 40, 40) (1, 1, 1) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(40, 40, 40) (1, 1, 1) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(40, 40, 40) (1, 1, 1) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(40, 40, 40) (1, 1, 1) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(30, 40, 50) (1, 1, 4) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(30, 40, 50) (1, 1, 4) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(30, 40, 50) (1, 1, 4) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(30, 40, 50) (1, 1, 4) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(30, 40, 50) (1, 1, 16) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(30, 40, 50) (1, 1, 16) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 
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Table 3, continued. 

 

(n1, n2, n3) Group Variances Description (p1, p2, p3, p4, p5) 

(30, 40, 50) (1, 1, 16) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(30, 40, 50) (1, 1, 16) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(20, 40, 60) (1, 1, 4) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(20, 40, 60) (1, 1, 4) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(20, 40, 60) (1, 1, 4) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(20, 40, 60) (1, 1, 4) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(20, 40, 60) (1, 1, 16) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(20, 40, 60) (1, 1, 16) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(20, 40, 60) (1, 1, 16) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(20, 40, 60) (1, 1, 16) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(30, 40, 50) (4, 1, 1) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(30, 40, 50) (4, 1, 1) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(30, 40, 50) (4, 1, 1) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(30, 40, 50) (4, 1, 1) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(30, 40, 50) (16, 1, 1) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(30, 40, 50) (16, 1, 1) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(30, 40, 50) (16, 1, 1) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(30, 40, 50) (16, 1, 1) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(20, 40, 60) (4, 1, 1) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(20, 40, 60) (4, 1, 1) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(20, 40, 60) (4, 1, 1) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(20, 40, 60) (4, 1, 1) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 

(20, 40, 60) (16, 1, 1) Even (0.20, 0.20, 0.20, 0.20, 0.20) 

(20, 40, 60) (16, 1, 1) Symmetric (0.10, 0.20, 0.40, 0.20, 0.10) 

(20, 40, 60) (16, 1, 1) Moderate skew (0.50, 0.30, 0.15, 0.04, 0.01) 

(20, 40, 60) (16, 1, 1) Heavy skew (0.70, 0.20, 0.06, 0.03, 0.01) 
 

Note: See the note from Table 2 

 
 
Table 4. Calculated degrees of freedom for the tcentral response variables from the 

variances of the simulated contaminated mixed normal distributions 
 

Distribution Variance Calculated dfa 

(0.975)N(0, 1) + (0.025)N(0, 25) 0.9663 -b 

(0.950)N(0, 1) + (0.050)N(0, 25) 0.9650 -b 

(0.900)N(0, 1) + (0.100)N(0, 25) 1.0600 35.333 

(0.975)N(0, 1) + (0.025)N(0, 100) 1.0131 154.323 

(0.950)N(0, 1) + (0.050)N(0, 100) 1.1525 15.115 

(0.900)N(0, 1) + (0.100)N(0, 100) 1.8100 4.469 
 

Note: adf = degree of freedom; bNegative values, only the default was used 
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Table 5. Type I error rates for treatment group differences using the baseline test 

(GLIMMIX dist = normal method=ML) and various versions of GLIMMIX on symmetric 
data 
 

  GLIMMIX 

   A-D Normal Test   

Sample Size Distribution Baseline α = 0.15 α = 0.20 Akaike Lognormal 

20 g = 0.000, h = 0.000 0.0598  0.0714 0.0726 0.0682 0.0590 

 g = 0.000, h = 0.225 0.0544  0.0582 0.0574 0.0616 0.0540 
        

40 g = 0.000, h = 0.000 0.0532  0.0636 0.0670 0.0572 0.0530 

 g = 0.000, h = 0.225 0.0488  0.0554 0.0550 0.0558 0.0500 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.0470  0.0744 0.0752 0.0742 0.0466 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.0472  0.0698 0.0696 0.0692 0.0460 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.0484  0.0600 0.0604 0.0604 0.0484 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.0276  0.0736 0.0736 0.0756 0.0266 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.0274  0.0622 0.0622 0.0622 0.0270 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.0416  0.0442 0.0442 0.0442 0.0370 

 Likert-Even 0.0520  0.1220 0.1220 0.0520 0.0514 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.0460 a     

 Likert-Symmetric 0.0518  0.0550 0.0550 0.0522 0.0532 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.0448 a     
        

80 g = 0.000, h = 0.000 0.0572  0.0676 0.0694 0.0574 0.0560 

 g = 0.000, h = 0.225 0.0520  0.0530 0.0532 0.0532 0.0522 

 

Note: aGLIMMIX modelled by multinomial response variable 

 
 
Table 6. Type I error rates for treatment group differences using the baseline test 

(GLIMMIX dist = normal method = ML) and GLIMMIX with lognormal response on 
skewed data 
 

  GLIMMIX 

Sample Size Distribution Baseline Lognormal 

20 g = 0.5, h = 0.0 0.0528  0.0540 

 g = 1.0, h = 0.0 0.0430  0.0434 

 g = 0.5, h = 0.5 0.0364  0.0370 
     

40 g = 0.5, h = 0.0 0.0544  0.0552 

 g = 1.0, h = 0.0 0.0442  0.0462 

 g = 0.5, h = 0.5 0.0330  0.0340 

 Likert-Moderate Skew 0.0482  0.0520 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.0442 a  

 Likert-Heavy Skew 0.0502  0.0518 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.0392 a  
     

80 g = 0.5, h = 0.0 0.0540  0.0534 

 g = 1.0, h = 0.0 0.0466  0.0498 

  g = 0.5, h = 0.5 0.0320  0.0336 
 

Note: aGLIMMIX modelled by multinomial response variable 
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Table 7. Type I error rates for treatment group differences using the baseline test 

(GLIMMIX dist = normal method = ML) and various versions of GLIMMIX on symmetric 
data when group sample sizes are positively paired with group variances 
 

  GLIMMIX 

   A-D Normal Test   

Sample Size/Variance Distribution Baseline α=0.15 α=0.20 Akaike Lognormal 

(30, 40, 50) / (1, 1, 4) g = 0.000, h = 0.000 0.0408  0.0568 0.0582 0.0762 0.0442 

 g = 0.000, h = 0.225 0.0368  0.0536 0.0540 0.0554 0.0384 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.0336  0.0742 0.0748 0.0792 0.0330 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.0316  0.0712 0.0716 0.0736 0.0298 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.0304  0.0570 0.0570 0.0572 0.0286 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.0232  0.0772 0.0772 0.0782 0.0236 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.0198  0.0622 0.0622 0.0622 0.0196 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.0270  0.0420 0.0420 0.0420 0.0226 

 Likert-Even 0.0382  0.1444 0.1444 0.0382 0.1358 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.0548 a     

 Likert-Symmetric 0.0406  0.0552 0.0552 0.0550 0.1380 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.0498 a     

        

(30, 40, 50) / (1, 1, 16) g = 0.000, h = 0.000 0.0424  0.0722 0.0774 0.1462 0.0720 

 g = 0.000, h = 0.225 0.0396  0.0910 0.0912 0.0938 0.0490 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.0346  0.1176 0.1184 0.1346 0.0392 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.0290  0.1166 0.1168 0.1198 0.0318 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.0316  0.1004 0.1004 0.1008 0.0290 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.0246  0.1276 0.1276 0.1302 0.0308 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.0182  0.1044 0.1044 0.1048 0.0218 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.0236  0.0798 0.0798 0.0796 0.0304 

 Likert-Even 0.0424  0.2188 0.2188 0.2186 0.2402 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.0814 a     

 Likert-Symmetric 0.0440  0.0292 0.0292 0.0292 0.0628 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.0576 a     

        

(20, 40, 60) / (1, 1, 4) g = 0.000, h = 0.000 0.0258  0.0364 0.0378 0.0564 0.0278 

 g = 0.000, h = 0.225 0.0252  0.0400 0.0400 0.0402 0.0254 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.0218  0.0544 0.0550 0.0578 0.0216 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.0158  0.0514 0.0512 0.0520 0.0162 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.0186  0.0390 0.0394 0.0396 0.0180 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.0170  0.0532 0.0532 0.0536 0.0180 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.0102  0.0486 0.0486 0.0486 0.0108 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.0148  0.0290 0.0290 0.0290 0.0154 

 Likert-Even 0.0216  0.1084 0.1084 0.0216 0.1046 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.0322 a     

 Likert-Symmetric 0.0228  0.0418 0.0418 0.0338 0.0960 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.0328 a     
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Table 7, continued. 

 

  GLIMMIX 

   A-D Normal Test   

Sample Size/Variance Distribution Baseline α=0.15 α=0.20 Akaike Lognormal 

(20, 40, 60) / (1, 1, 16) g = 0.000, h = 0.000 0.0202  0.0384 0.0418 0.0954 0.0390 

 g = 0.000, h = 0.225 0.0158  0.0428 0.0432 0.0440 0.0186 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.0138  0.0762 0.0774 0.0864 0.0166 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.0122  0.0774 0.0780 0.0804 0.0138 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.0136  0.0614 0.0618 0.0620 0.0112 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.0096  0.0788 0.0792 0.0802 0.0104 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.0052  0.0688 0.0688 0.0688 0.0088 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.0068  0.0444 0.0444 0.0438 0.0118 

 Likert-Even 0.0164  0.1614 0.1614 0.1358 0.1900 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.0466 a     

 Likert-Symmetric 0.0198  0.0272 0.0272 0.0272 0.0342 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.0314 a     

 

Note: aGLIMMIX modelled by multinomial response variable 

 
 
Table 8. Type I error rates for treatment group differences using the baseline test 

(GLIMMIX dist = normal method=ML) and GLIMMIX with lognormal response on skewed 
data when group sample sizes are positively paired with group variances 
 

  GLIMMIX 

Sample Sizes/Variances Distribution Baseline Lognormal 

(30, 40, 50) / (1, 1, 4) g = 0.5, h = 0.0 0.0416  0.0484 

 g = 1.0, h = 0.0 0.0552  0.0642 

 g = 0.5, h = 0.5 0.0254  0.0258 

 Likert-Moderate Skew 0.0400  0.0836 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.2230 a  

 Likert-Heavy Skew 0.0456  0.1344 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.9570 a  

     

(30, 40, 50) / (1, 1, 16) g = 0.5, h = 0.0 0.0460  0.0798 

 g = 1.0, h = 0.0 0.0790  0.1212 

 g = 0.5, h = 0.5 0.0240  0.0262 

 Likert-Moderate Skew 0.0436  0.4360 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.2176 a  

 Likert-Heavy Skew 0.0558  0.5648 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.9398 a  

     

(20, 40, 60) / (1, 1, 4) g = 0.5, h = 0.0 0.0274  0.0334 

 g = 1.0, h = 0.0 0.0442  0.0538 

 g = 0.5, h = 0.5 0.0208  0.0216 

 Likert-Moderate Skew 0.0206  0.0642 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.1818 a  

 Likert-Heavy Skew 0.0288  0.1124 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.9658 a  
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Table 8, continued. 

 
  GLIMMIX 

Sample Sizes/Variances Distribution Baseline Lognormal 

(20, 40, 60) / (1, 1, 16) g = 0.5, h = 0.0 0.0252  0.0478 

 g = 1.0, h = 0.0 0.0542  0.0892 

 g = 0.5, h = 0.5 0.0124  0.0130 

 Likert-Moderate Skew 0.0170  0.3738 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.1762 a  

 Likert-Heavy Skew 0.0322  0.5150 

   (0.70, 0.20, 0.06, 0.03, 0.01) 0.9410 a  
 

Note: aGLIMMIX modelled by multinomial response variable 

 
 
Table 9. Type I error rates for treatment group differences using the baseline test 

(GLIMMIX dist = normal method = ML) and various versions of GLIMMIX on symmetric 
data when group sample sizes are negatively paired with group variances 
 

  GLIMMIX 

   A-D Normal Test   

Sample Size/Variance Distribution Baseline α=0.15 α=0.20 Akaike Lognormal 

(30, 40, 50) / (1, 1, 4) g = 0.000, h = 0.000 0.1024  0.1194 0.1230 0.1454 0.1044 

 g = 0.000, h = 0.225 0.0922  0.0944 0.0950 0.0928 0.0964 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.0992  0.1268 0.1280 0.1296 0.0976 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.0946  0.1140 0.1138 0.1148 0.0952 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.0908  0.0968 0.0968 0.0964 0.0894 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.0714  0.1238 0.1242 0.1248 0.0650 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.0736  0.1036 0.1038 0.1040 0.0668 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.0834  0.0804 0.0804 0.0804 0.0714 

 Likert-Even 0.0970  0.2336 0.2336 0.0984 0.2028 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.1244 a     

 Likert-Symmetric 0.0984  0.0788 0.0788 0.0968 0.2070 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.0866 a     

        

(30, 40, 50) / (1, 1, 16) g = 0.000, h = 0.000 0.1450  0.1804 0.1866 0.2698 0.1852 

 g = 0.000, h = 0.225 0.1402  0.1854 0.1856 0.1866 0.1480 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.1430  0.2384 0.2404 0.2538 0.1420 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.1420  0.2300 0.2302 0.2348 0.1432 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.1398  0.2102 0.2102 0.2110 0.1402 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.1172  0.2398 0.2410 0.2426 0.1160 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.1252  0.2178 0.2180 0.2180 0.1100 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.1378  0.1798 0.1798 0.1796 0.1086 

 Likert-Even 0.1430  0.3624 0.3624 0.3624 0.3280 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.1866 a     

 Likert-Symmetric 0.1490  0.0462 0.0462 0.0462 0.1636 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.1140 a     
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Table 9, continued. 

 

  GLIMMIX 

   A-D Normal Test   

Sample Size/Variance Distribution Baseline α=0.15 α=0.20 Akaike Lognormal 

(20, 40, 60) / (1, 1, 4) g = 0.000, h = 0.000 0.1110  0.1346 0.1372 0.1110 0.1158 

 g = 0.000, h = 0.225 0.1060  0.0950 0.0948 0.0976 0.1082 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.1620  0.1744 0.1738 0.1714 0.1578 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.1364  0.1616 0.1620 0.1626 0.1342 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.1386  0.1360 0.1362 0.1362 0.1426 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.1376  0.1656 0.1656 0.1658 0.1276 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.0992  0.1506 0.1506 0.1508 0.0860 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.1266  0.1140 0.1140 0.1140 0.1102 

 Likert-Even 0.1450  0.2836 0.2836 0.1462 0.2380 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.1664 a     

 Likert-Symmetric 0.1472  0.0952 0.0952 0.1422 0.2546 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.1146 a     

        

(20, 40, 60) / (1, 1, 4) g = 0.000, h = 0.000 0.1720  0.2186 0.2258 0.1830 0.1996 

 g = 0.000, h = 0.225 0.1686  0.1910 0.1910 0.1940 0.1650 

 (0.975)N(0, 1) + (0.025)N(0, 25) 0.2578  0.3156 0.3160 0.3276 0.2570 

 (0.950)N(0, 1) + (0.050)N(0, 25) 0.2440  0.3128 0.3132 0.3174 0.2456 

 (0.900)N(0, 1) + (0.100)N(0, 25) 0.2542  0.2852 0.2858 0.2856 0.2544 

 (0.975)N(0, 1) + (0.025)N(0, 100) 0.2448  0.3198 0.3202 0.3206 0.2092 

 (0.950)N(0, 1) + (0.050)N(0, 100) 0.2146  0.3014 0.3018 0.3020 0.1752 

 (0.900)N(0, 1) + (0.100)N(0, 100) 0.2582  0.2550 0.2550 0.2552 0.1860 

 Likert-Even 0.2328  0.4850 0.4850 0.4850 0.3728 

 (0.2, 0.2, 0.2, 0.2, 0.2) 0.2532 a     

 Likert-Symmetric 0.2406  0.1056 0.1056 0.1062 0.2426 

  (0.1, 0.2, 0.4, 0.2, 0.1) 0.1506 a     

 

Note: aGLIMMIX modelled by multinomial response variable 

 
 
Table 10. Type I error rates for treatment group differences using the baseline test 

(GLIMMIX dist = normal method = ML) and GLIMMIX with lognormal response on 
skewed data when group sample sizes are negatively paired with group variances 
 

  GLIMMIX 

Sample Sizes/Variances Distribution Baseline Lognormal 

(30, 40, 50) / (4, 1, 1) g = 0.5, h = 0.0 0.1046  0.1132 

 g = 1.0, h = 0.0 0.1102  0.1190 

 g = 0.5, h = 0.5 0.0676  0.0692 

 Likert-Moderate Skew 0.1030  0.1378 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.2962 a  

 Likert-Heavy Skew 0.1054  0.1822 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.9240 a  
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Table 10, continued. 

 
  GLIMMIX 

Sample Sizes/Variances Distribution Baseline Lognormal 

(30, 40, 50) / (16, 1, 1) g = 0.5, h = 0.0 0.1518  0.1894 

 g = 1.0, h = 0.0 0.1906  0.2402 

 g = 0.5, h = 0.5 0.1162  0.1154 

 Likert-Moderate Skew 0.1456   

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.2944 a 0.5002 

 Likert-Heavy Skew 0.1618   

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.9152 a 0.5980 

     

(30, 40, 50) / (16, 1, 1) g = 0.5, h = 0.0 0.0460  0.0798 

 g = 1.0, h = 0.0 0.0790  0.1212 

 g = 0.5, h = 0.5 0.0240  0.0262 

 Likert-Moderate Skew 0.0436  0.4360 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.2176 a  

 Likert-Heavy Skew 0.0558  0.5648 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.9398 a  

     

(20, 40, 60) / (4, 1, 1) g = 0.5, h = 0.0 0.1126  0.1194 

 g = 1.0, h = 0.0 0.1130  0.1218 

 g = 0.5, h = 0.5 0.0714  0.0720 

 Likert-Moderate Skew 0.1442  0.1722 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.3230 a  

 Likert-Heavy Skew 0.1512  0.2132 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.8850 a  

     

(20, 40, 60) / (16, 1, 1) g = 0.5, h = 0.0 0.1796  0.2084 

 g = 1.0, h = 0.0 0.2164  0.2510 

 g = 0.5, h = 0.5 0.1286  0.1274 

 Likert-Moderate Skew 0.2366  0.5066 

 (0.50, 0.30, 0.15, 0.04, 0.01) 0.3242 a  

 Likert-Heavy Skew 0.2536  0.5870 

  (0.70, 0.20, 0.06, 0.03, 0.01) 0.8844 a  

 

Note: aGLIMMIX modelled by multinomial response variable 
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