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Invited Article 
Comparisons of Two Quantile Regression 
Smoothers 

Rand R. Wilcox 
University of Southern California 

Los Angeles, CA 

 

 
The small-sample properties of two non-parametric quantile regression estimators are 
compared. The first is based on constrained B-spline smoothing (COBS) and the other is 
based on a variation and slight extension of a running interval smoother. R functions for 

applying the methods were used in conjunction with default settings for the various 
optional arguments. Results indicate that the modified running interval smoother has 
practical value. Manipulation of the optional arguments might impact the relative merits of 
the two methods, but the extent to which this is the case remains unknown. 
 
Keywords: Running interval smoother, COBS, Harrell-Davis estimator, LOWESS, 
Well Elderly 2 study, depressive symptoms, perceived control 

 

Introduction 

Consider the problem of estimating and plotting a regression line when the goal is 

to determine the conditional quantile of some random variable Y given X. Quantile 

regression methods have been studied extensively and plots of the regression line 

can provide a useful perspective regarding the association between two variables. 

One approach is to assume that the conditional qth quantile of Y, given X, is given 

by 

 

 0 1qY X    , (1) 

 

where β0 and β1 are unknown parameters. For the special case where the goal is to 

estimate the median of Y, given X, least absolute regression can be used, which 

predates least squares regression by about a half century. A generalization, aimed 
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at dealing with any quantile, was derived by Koenker and Bassett (1978). While 

the assumption of a straight regression line appears to provide a good 

approximation of the true regression line in various situations, this is not always the 

case. One strategy for dealing with any possible curvature is to use some obvious 

parametric model. For example, add a quadratic term. But generally this can be 

unsatisfactory, which has led to the development of nonparametric regression lines, 

often called smoothers (e.g., Härdle, 1990; Efromovich, 1999; Eubank, 1999; 

Györfi, Kohler, Krzyzk, & Walk, 2002). For the particular case where the goal is 

to model the conditional quantile of Y, given X, one way of dealing with curvature 

in a reasonably flexible manner is to use constrained B-spline smoothing (COBS). 

The many computational details are summarized in Koenker and Ng (2005); see in 

particular section 4 of their paper. The Koenker–Ng method improves on a 

computational method studied by He and Ng (1999), and builds upon results in 

Koenker, Ng, and Portnoy (1994). Briefly, let ρq(u) = u(q − I(u < 0)), where the 

indicator function I(u < 0) = 1 if u < 0;otherwise I(u < 0) = 0. The goal is to 

estimate the qth quantile of Y given X by finding a function ω(X) that minimizes 

 

   q i i

i

Y X    (2) 

 

based on the random sample (X1, Y1),…, (Xn, Yn). The estimate is based on quadratic 

B-splines with the number of knots chosen via a Schwartz-type information 

criterion. Here, COBS is applied via the R package cobs. 

The motivation for this study stems from the use of COBS when analyzing 

data from the Well Elderly 2 study (Jackson et al., 2009; Clark et al., 2012). A 

general goal was to assess the efficacy of an intervention strategy aimed at 

improving the physical and emotional health of older adults. A portion of the study 

dealt with understanding the association between cortisol and various measures of 

stress and wellbeing. Before and six months following the intervention, participants 

were asked to provide, within 1 week, four saliva samples over the course of a 

single day, to be obtained on rising, 30 min after rising but before taking anything 

by mouth, before lunch, and before dinner. Extant studies (e.g., Clow et al., 2004; 

Chida & Steptoe, 2009) indicated measures of stress are associated with the cortisol 

awakening response, which is defined as the change in cortisol concentration that 

occurs during the first hour after waking from sleep. CAR is taken to be the cortisol 

level upon awakening minus the level of cortisol after the participants were awake 

for about an hour. 
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After intervention (with a sample size of 328), COBS indicated some 

seemingly unusually shaped regression lines. One of these had to do with the 

association between CAR and a measure of depressive symptoms using the Center 

for Epidemiologic Studies Depressive Scale (CESD). The CESD (Radloff, 1977) 

is sensitive to change in depressive status over time and has been successfully used 

to assess ethnically diverse older people (Lewinsohn, Hoberman, & Rosenbaum, 

1988; Foley, Reed, Mutran, & DeVellis, 2002). Higher scores indicate a higher 

level of depressive symptoms. Figure 1 shows the estimated regression line for 

males when q = 0.5. (There were 157 males.) The estimated regression line for 

q = 0.75 had a shape very similar to the one shown in Figure 1. 

Another portion of the study dealt with the association between CAR and a 

measure of perceived control. Perceived control was measured with the instrument 

in Eizenman, Nesselroade, Featherman, and Rowe (1997). The scores ranged 

between 16 and 32 and consisted of a sum of Likert scales. Now the 0.75 quantile 

regression line appears as shown in Figure 2. Again, there was concern about the 

shape of the regression line. 

 
 
Figure 1. COBS regression line for predicting the 0.5 quantile of CESD, for males, based 

on the cortisol awakening response after intervention 
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Figure 2. COBS regression line for predicting the 0.75 quantile of perceived control 

based on the cortisol awakening response 

 

 

One possibility is that the regression lines in Figures 1 and 2 are a reasonable 

approximation of the true regression. But another possibility is that they reflect a 

type of curvature that poorly approximates the true regression line. Suppose that 

 

  0 1Y X X      , (3) 

 

where λ(X) is some function used to model heteroscedasticity and ε is a random 

variable having mean zero and variance σ2. Some preliminary simulation results 

suggested that if β0 = 0, β1 = 1, and both X and ε have standard normal distributions, 

reasonably straight regression lines are obtained using COBS. However, if ε has a 

skewed light-tailed distribution (a g-and-h distribution, details of which are 

described in a later section) and if, for example, λ(X) = |X| + 1, instances are 

encountered where a relatively high degree of curvature is encountered. An 

example is given in Figure 3 with n = 100. 
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These results motivated consideration of an alternative quantile regression 

estimator. A few checks suggested that the problems just illustrated are reduced 

considerably, but there are no systematic simulation results providing some sense 

of how this alternative estimator compares to COBS. Consequently, the goal in this 

paper is to compare these estimators in terms of bias and mean squared error. Two 

additional criteria are used. The first is the maximum absolute error between the 

predicted and actual quantile being estimated. The other is aimed at characterizing 

how the estimators compare in terms of indicating a monotonic association when 

in fact one exists. This is done via Kendall’s tau between the predicted and true 

quantiles. 

 
 
Figure 3. COBS regression line for predicting the 0.5 quantile using generated data, 

n = 100 

 

 
 

It is noted that COBS is being applied using the R package cobs in conjunction 

with default settings for the various arguments. The argument lambda alters how 

the regression line is estimated and might possibly improve the fit to data via visual 

inspection. But obviously this strategy is difficult to study via simulations. The 
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alternative estimator used here is applied with an R function (qhdsm), again using 

default settings for all of the arguments. The performance of the method is impacted 

by the choice for the span (the constant f in later sections). The simulations reported 

here provide information about the relative merits of the two estimators with the 

understanding that perhaps their relative merits might be altered based on a 

judgmental process that goes beyond the scope of this paper. 

The following section provides the details of the alternative estimator. Later 

sections report simulation results comparing COBS to the alternative estimator and 

illustrate the difference between the two estimators for the data used in Figures 1-

3. 

Alternative Estimator 

The alternative estimator consists of a blend of two smoothers: the running interval 

smoother (e.g., Wilcox, 2012) and the smoother derived by Cleveland (1979), 

typically known as LOWESS. The running interval has appeal because it is readily 

adapted to any robust estimator. In particular, it is easily applied when the goal is 

to estimate the conditional quantile of Y given X. However, often this smoother 

gives a somewhat jagged looking plot of the regression line. Primarily for aesthetic 

reasons, this issue is addressed by further smoothing the regression line via 

LOWESS. 

The version of the running interval smoother used here is based in part on the 

quantile estimator derived by Harrell and Davis (1982). The Harrell–Davis estimate 

of the qth quantile uses a weighted average of all the order statistics. Let Z1,…, Zn 

be a random sample, let U be a random variable having a beta distribution with 

parameters a = (n + 1)q and b = (n + 1)(1 − q), and let 

 

 
1

Pi

i i
w U

n n

 
  

 
 . 

 

The estimate of the qth quantile is 

 

  
ˆ
q i i

w Z   , 

 

where Z(1) ≤…≤ Z(n) are the Z1,…, Zn written in ascending order. Here the focus is 

on estimating the median and the 0.75 quantile. That is, q = 0.5 and 0.75 are used. 
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In terms of its standard error, Sfakianakis and Verginis (2006) show that the 

Harrell–Davis estimator competes well with alternative estimators that again use a 

weighted average of all the order statistics, but there are exceptions. Sfakianakis 

and Verginis derived alternative estimators that have advantages over the Harrell–

Davis in some situations, but when sampling from heavy-tailed distributions, the 

standard error of their estimators can be substantially larger than the standard error 

of ˆ
q . Comparisons with other quantile estimators are reported by Parrish (1990), 

Sheather and Marron (1990), as well as Dielman, Lowry, and Pfaffenberger (1994). 

The only certainty is that no single estimator dominates in terms of efficiency. For 

example, the Harrell–Davis estimator has a smaller standard error than the usual 

sample median when sampling from a normal distribution or a distribution that has 

relatively light tails, but for sufficiently heavy-tailed distributions, the reverse is 

true (Wilcox, 2012, p. 87). 

The running interval smoother is applied as follows: Let (X1, Y1),…, (Xn, Yn) 

be a random sample from some unknown bivariate distribution, and let f be some 

constant to be determined. Then the point x is said to be close to Xi if 

 

 MADNiX x f    , 

 

where MADN is MAD/0.6745, MAD is the median of |X1 − M|,…, |Xn − M|, and M 

is the usual sample median based on X1,…, Xn. For normal distributions, MADN 

estimates the standard deviation, in which case x is close to Xi if x is within f 

standard deviations of Xi. Let 

 

    N : MADNi j iX j X X f     . 

 

That is, N(X) indexes the set of all Xj values that are close to Xi. Let ˆ
i  be the 

Harrell–Davis estimate based on the Yj values such that j ∈ N(Xi). To get a graphical 

representation of the regression line, compute ˆ
i , the estimated value of Y given 

that X = Xi, i = 1,..., n, and then plot the points    1
ˆ ˆ, , , ,i nX X  . Typically 

f = 0.8 or 1 gives good results, but of course exceptions are encountered. Here, 

f = 0.8 is assumed unless stated otherwise. 

As previously indicated, the plot produced by the running interval smoother 

can be a bit ragged. Consequently, the initial smooth was smoothed again by 

proceeding as follows: Given Xj, let δi = |Xi − Xj|, i = 1,…, n. 
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Sort the δi values and retain the ξn pairs of points that have the smallest δi 

values, where ξ is a number between 0 and 1 and plays the role of a span. Here, 

ξ = 0.75 is used. Let δm be the largest δi value among the retained points. Let 

 

 
j i

i

m

X X
Q




   

 

and, if 0 ≤ Qi < 1, set 

 

  
3

31i iw Q   . 

 

Otherwise, set wi = 0. Next, use weighted least squares to predict ˆ
j  corresponding 

to X using the wi values as weights. That is, determine the values b1 and b0 that 

minimize 

 

  
2

0
ˆ

i i i iw b b X     

 

and estimate ˆ
j  with 0 1j jb b X   . The final plot of the quantile regression is 

taken to be the line connecting the points  
2

,j jX   (j = 1,…, n). This will be called 

method R henceforth. 

Simulation 

Simulations were used to compare the small-sample properties of COBS and the 

modified running interval smoother based on K = 4000 replications and sample size 

n = 50. The data were generated according to the model 

 

  Y X X    , (4) 

 

where X is taken to have a standard normal distribution and ε has one of four 

distributions: normal, symmetric and heavy-tailed, asymmetric and light-tailed, and 

asymmetric and heavy-tailed. More precisely, the distribution for the error term was 

taken to be one of four g-and-h distributions (Hoaglin, 1985) that contain the 
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standard normal distribution as a special case. Let Z be a random variable that has 

a standard normal distribution, and let 

 

 
   2exp 1

exp
2

gZ hZW
g


   

 

unless g = 0, in which case 

 

 
2

exp
2

Z
W Z h

 
  

 
 . 

 

Then W has a g-and-h distribution, where g and h are parameters that determine the 

first four moments. The four distributions used here were the standard normal 

(g = h = 0.0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an 

asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and an 

asymmetric distribution with heavy tails (g = h = 0.2). Table 1 shows the skewness 

(κ1) and kurtosis (κ2) for each distribution. Hoaglin (1985) summarizes additional 

properties of the g-and-h distributions. 
 
 
Table 1. Some properties of the g-and-h distribution 

 

g h k1 k2 

0.00 0.00 0.00 3.00 

0.00 0.20 0.00 21.46 

0.20 0.00 0.61 3.68 

0.20 0.20 2.81 155.98 

 
 

Three choices for λ were considered: λ ≡ 1, λ = |X| + 1, and λ = 1/(|X| + 1). 

These three choices are henceforth called VP 1, 2, and 3, respectively. 

Note that based on how the data are generated, as indicated by (5), ideally a 

smoother should indicate a monotonic increasing association between X1,…, Xn and 

1, , n  , where 
i  is the estimate of the qth quantile of Y, given that X = Xi, based 

on either COBS or method R. The degree to which this goal was accomplished was 

measured with Kendall’s tau. 

Details about the four criteria used to compare COBS and method R are as 

follows: The first criterion was mean squared error, which was estimated with 
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  
2

1 1

1 K n

ik ik

k inK
 

 

  , (5) 

 

where now, for the kth replication, θik is the true conditional qth quantile of Y given 

X = Xi. Bias was estimated with 

 

 
1 1

1 K n

ik ik

k inK
 

 

  . (6) 

 

The third criterion was the mean maximum absolute error: 

 

  1 1

1

1
max , ,

K

k k nk nk

kK
   



   . (7) 

 

The fourth criterion was 

 

 
1

k
K

  , (8) 

 

where, for the kth replication, τk is Kendall’s tau between X1,…, Xn and 
1, , n  . 

It is noted that the θik values are readily determined because the 

transformation used to generate observations from a g-and-h distribution is 

monotonic and quantiles are location and scale equivariant. 

Simulation results are reported in Tables 2 and 3, where RMSE is the mean 

squared error of COBS divided by the mean squared error of method R, and RMAX 

is the maximum absolute value of COBS divided by the maximum absolute value 

of the error based on method R. As can be seen, generally method R competes well 

with COBS in terms of RMSE and RMAX, but neither method dominates. For 

q = 0.5, R is uniformly better in terms of RMSE, but for q = 0.75 and VP 3, COBS 

performs better than R. As for RMAX, R performs best for VP 1 and 2, while for 

VP 3 the reverse is true. Bias for both methods is typically low, with COBS seeming 

to have an advantage over method R. The main result is that in terms of τ, method 

R dominates. That is, the simulations indicate that method R is better at avoiding 

an indication of curvature that does not reflect the true regression line, as was the 

case in Figure 3. 
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Table 2. Simulation results for q = 0.5 

 
     BIAS  τ 

g h VP RMSE RMAX COBS R  COBS R 

0.0 0.0 1 1.284 1.293 0.002 0.002  0.957 0.997 

0.0 0.0 2 1.405 2.050 -0.002 -0.002  0.773 0.927 

0.0 0.0 3 1.281 0.726 -0.001 -0.001  0.989 1.000 

          

0.0 0.2 1 1.160 1.333 -0.002 -0.002  0.955 0.994 

0.0 0.2 2 1.395 2.076 0.005 0.009  0.794 0.917 

0.0 0.2 3 1.104 0.753 -0.003 -0.002  0.991 1.000 

          

0.2 0.0 1 1.247 1.292 0.015 0.031  0.954 0.996 

0.2 0.0 2 1.400 2.048 0.023 0.035  0.786 0.930 

0.2 0.0 3 1.220 0.732 0.004 0.022  0.989 1.000 

          

0.2 0.2 1 1.178 1.384 0.014 0.027  0.956 0.993 

0.2 0.2 2 1.455 2.155 0.034 0.042  0.794 0.914 

0.2 0.2 3 1.040 0.765 0.005 0.023  0.990 1.000 

 
 
Table 3. Simulation results for q = 0.75 

 
     BIAS  τ 

g h VP RMSE RMAX COBS R  COBS R 

0.0 0.0 1 1.046 1.375 -0.017 0.077  0.938 0.994 

0.0 0.0 2 1.328 2.020 -0.052 0.027  0.709 0.862  

0.0 0.0 3 0.644 0.807 -0.014 0.105  0.973 0.998 

          

0.0 0.2 1 0.847 1.459 0.010 0.137  0.911 0.978 

0.0 0.2 2 1.124 2.140 0.022 0.136  0.666 0.794  

0.0 0.2 3 0.544 0.858 0.001 0.145  0.969 0.995 

          

0.2 0.0 1 0.964 1.423 0.000 0.110  0.907 0.985 

0.2 0.0 2 1.284 2.057 -0.026 0.074  0.655 0.803 

0.2 0.0 3 0.642 0.860 -0.006 0.126  0.962 0.997 

          

0.2 0.2 1 0.849 1.505 0.042 0.181  0.880 0.953 

0.2 0.2 2 1.195 2.214 0.084 0.202  0.614 0.740 

0.2 0.2 3 0.552 0.945 0.013 0.167  0.955 0.993 
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Illustrations 

The data in Figures 1-3 are used to illustrate method R. The left panel of Figure 4 

shows the 0.5 quantile regression line for CAR and CESD. Notice that, for CAR 

positive (cortisol decreases after awakening), the plot suggests a positive 

association with depressive symptoms, which is consistent with Figure 1. But, for 

CAR negative, method R suggests that there is little or no association with CESD 

and clearly provides a different sense regarding the nature of the association. A 

criticism might be that, if method R were to use a smaller choice for the span, 

perhaps an association similar to Figure 1 would be revealed. But even with a span 

of f = 0.5, the plot of the regression line is very similar to the one shown in Figure 

4. 

The right panel of Figure 4 shows the 0.75 quantile regression line for 

predicting perceived control based on CAR, which differs in an obvious way from 

the regression line based on COBS shown in Figure 2. Figure 4 indicates that there 

is little or no indication of an association with CAR when CAR is negative, but for 

CAR positive, a negative association is indicated. The only point is that the choice 

between COBS and method R can make a substantial difference. 

Figure 5 shows the 0.5 quantile regression line based on the data used in 

Figure 3. In contrast to COBS, method R provides a very good approximation of 

the true regression line. Again, this only illustrates the extent to which the two 

methods can give strikingly different results. As is evident, in this particularly case, 

method R provides a much more accurate indication of the true regression line. 
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Figure 4. The quantile regression lines using method R and 

the data in Figures 1 and 2 

 

 
 

 
 
Figure 5. The quantile regression line using method R and 

the data in Figure 3 
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Conclusion 

For the situations considered in the simulations, method R does not dominate COBS 

based on the four criteria used here. COBS seems to have an advantage in terms of 

minimizing bias. But otherwise, method R competes well with COBS, particularly 

in terms of Kendall’s tau, which suggests that typically method R is better able to 

avoid an indication of spurious curvature. Moreover, the illustrations demonstrate 

that the choice between the two methods can make a substantial difference even 

with a sample size of n = 328. So in summary, method R would seem to deserve 

serious consideration. 

Another possible appeal of method R is that it is readily extended to the 

situation where there is more than one independent variable. That is, a 

generalization of the running interval smooth already exists (e.g., Wilcox, 2012). 

Moreover, additional smoothing can be accomplished, if desired, using the 

smoother derived by Cleveland and Devlin (1988), which generalizes the technique 

derived by Cleveland (1979). Evidently, a generalization of COBS to more than 

one independent variable has not been derived. 

Finally, an R function for applying method R, called ghdsm, is available in 

the R package WRS, a version of which is provided as a supplemental item to this 

article. Updated versions may be found at dornsife.usc.edu/cf/labs/wilcox/wilcox-

faculty-display.cfm under the “Software” tab. 
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