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Rodgers (2010a) asserted that the practice of null hypothesis statistical testing (NHST) 
follows a mechanistic and rule-based epistemology. This concern is addressed using 
historical and modern sources as evidence for NHST as a dynamic, context-driven 
framework for empowering researchers in scientific inquiry. 
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Introduction 

Rodgers (2010a; 2010b) brought to light many important issues pertaining to what 

he called a “quiet revolution” (p. 2) concerning statistics in practice. Rodgers noted 

the practice of null hypothesis statistical testing (NHST) follows a “mechanistic” 

(p. 10) and “rule-based” (p. 1) epistemology. The intent of this article is to elaborate 

on this idea and to consider how the current NHST framework is applied in a 

somewhat rigid and prescriptive fashion. Specifically, the automatic and what 

Cohen (1994) called “ritual” (p. 997) practices of NHST is examined relative to 

what was suggested in original sources by foundational theorists (e.g., Fisher, 1926; 

1928; 1935; 1973; Neyman & Pearson, 1933a; 1933b; Yule & Kendall, 1950). In 

addition, original and contemporary sources are provided as evidence for NHST as 

a dynamic, context-driven framework for empowering researchers in scientific 

inquiry. Although ritualism may be pervasive throughout many aspects of NHST, 

the scope of this paper is limited to considering only the selection of the critical 

value and the value of the null hypothesis. 

mailto:grayson_baird@brown.edu
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The Critical Value (α) and Level of Significance 

Rodgers (2010a) described the practice of NHST as a set of procedures, applied 

mechanistically. Researchers today often collect data and test their hypotheses by 

deriving test statistics and corresponding p-values, from which statistical 

significance of results is ascribed if the derived p-value is less than a fixed threshold, 

conventionally 0.05 (for a concise history of 0.05 level of significance, see Cowles 

& Davis, 1982). This fixed threshold is used as a conventional cutoff value for 

determining if a result is statistically significant, above random variation, assuming 

the null. In practice, 0.05 (or alternatively, sometimes 0.01 and 0.001, see Skipper, 

Guenther, & Nass, 1967) is almost the universal definition of significance 

regardless of the subject area, the nature and size of the sample, the quality of the 

measurement, the quality and nature of the design, the hypothesized and actual 

effect size, or the research question itself. 

Although the practice of using 0.05 is pervasive, a great deal of criticism 

towards NHST results from the use of an arbitrary and traditional cutoff value to 

determine significance (see Mudge, Baker, Edge, & Houlahan, 2012). For instance, 

early on, Selvin (1958) noted “reciting the magic phrase ‘significant at the 0.01 

level’ is often a substitute for hard thinking about the quality of one's data” (p. 86). 

Ironically, this ritualistic practice of determining significance does not appear to be 

in accordance with testing espoused by either Neyman and Pearson or Fisher. 

Specifically, when discussing errors of the first and second kind (i.e., Type I error 

(PI), rejecting a null hypothesis that should be retained, and Type II error (PII), 

holding onto a null hypothesis that should be rejected, respectively), Neyman and 

Pearson (1933a) noted: 

 

These two sources of error can rarely be eliminated completely; in some cases 

it will be more important to avoid the first, in others the second. We are 

reminded of the old problem considered by Laplace of the number of votes in 

a court of judges that should be needed to convict a prisoner. Is it more serious 

to convict an innocent man or to acquit a guilty?... From the point of view of 

mathematical theory all that we can do is to show how the risk of the errors 

may be controlled and minimized. The use of these statistical tools in any given 

case, in determining just how the balance should be struck, must be left to the 

investigator. (p. 296) 

 

Neyman and Pearson (1933b) also noted: "we attempt to adjust the balance 

between the risks PI and PII, to meet the type of problem before us" (p. 497). Here, 
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Neyman and Pearson described a system whereby the researcher plays an active 

role in evaluating significance, in the context of minimizing and thus balancing 

errors of the first and second kind, which are inversely related to each other, relative 

to the conditions of the study at hand. Therefore, significance level is not an 

arbitrary and universal value, but rather a value that achieves a meaningful and 

appropriate balance of Type I versus Type II errors, determined by the researcher 

with the specific conditions of the study in mind. Neyman and Pearson (1933b) 

stressed the influence of context for deciding if a small or large critical value is 

warranted. 

However, some of Fisher’s writings may be viewed as promoting a fixed level 

of significance. For instance, Fisher (1928) noted: 

 

[Regarding] the value for which P = .05, or 1 in 20… it is convenient to take 

this point as a limit in judging whether a deviation is to be considered 

significant or not. Deviations exceeding twice the standard deviation are thus 

formally regarded as significant. (p. 45) 

 

In this statement, Fisher appears to have advocated a significance level of 0.05. 

However, also around this time, Fisher (1926) wrote: 

 

If one in twenty does not seem high enough odds, we may, if we prefer it, draw 

the line at one in fifty (the 2 per cent point), or one in a hundred (the 1 per cent 

point). Personally, the writer prefers to set a low standard of significance at the 

5 per cent point, and ignore entirely all results which fail to reach this level. A 

scientific fact should be regarded as experimentally established only if a 

properly designed experiment rarely fails to give this level of significance. (p. 

504) 

 

This statement reveals that a significance level of 0.05 is viewed by Fisher as 

a “low” standard and other levels of significance may be used. Of the two 

aforementioned statements, attention should be drawn to Fisher’s use of the words 

“convenient” and “prefers” when he described choosing a level of significance. 

Here, Cochran (1976) suggested that Fisher appeared to be promoting a 

significance level of 0.05 based on preference but not advocating 0.05 as an 

exclusive level of significance. Also apparent in Fisher’s aforementioned statement 

is that his confidence in experimental results rested with the quality of the design. 

Further evidence of Fisher’s reluctance to assign an official level of significance 
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but instead consider significance in light of the conditions of the research can be 

seen in the following statement some years later: 

 

…the attempts that have been made to explain the cogency of tests of 

significance in scientific research, by reference to supposed frequencies of 

possible statements, based on them, being right or wrong, thus seem to miss 

the essential nature of such tests. A [scientist] who 'rejects' a hypothesis 

provisionally, as a matter of habitual practice, when the significance is at the 

1% level or higher, will certainly be mistaken in not more than 1% of such 

decisions. . . . However, the calculation is absurdly academic, for in fact no 

scientific worker has a fixed level of significance at which from year to year, 

and in all circumstances, [they] reject hypotheses; [the scientist] rather gives 

[their] mind to each particular case in the light of … evidence and [one’s] ideas. 

(1973, p. 45) 

 

Fisher (1973) suggested a level of significance that may reliably indicate 

statistical significance over the long run, although he was quick to condition this 

statement by noting that a universal or fixed level of significance used in all 

situations would not make sense. He noted, “In choosing the grounds upon which 

a general hypothesis should be rejected, personal judgment may and should 

properly be exercised” (p. 50). 

This is evidence neither Neyman and Pearson nor Fisher advocated any 

universal or canonical level of significance, but rather entrusted that researchers 

would define a level of significance that was relevant to their field of research and 

appropriate for the conditions of the study. Specifically, it is possible to see that 

Neyman and Pearson advocated testing as a dynamic procedure where the 

researcher actively engages in evaluating “what is significant” by balancing the 

costs of committing Type I verses Type II errors relative to the context of the 

research. It is also possible to see that Fisher was advocating testing also as a 

dynamic procedure, where the researcher actively engages in evaluating what is 

significant by considering the conditions of the particular study and the nature of 

the research question. 

It is difficult to imagine either Neyman and Pearson or Fisher as supporters 

of mechanistic thinking in general. Pearson (1955) noted that "from the start we 

shared Professor Fisher's view that in scientific inquiry, a statistical test is ‘a means 

of learning’” (p. 206). Neyman asserted “for a satisfactory performance of a 

statistician’s duty… it is necessary that [they] fully understand the circumstances 

of experiments, whatever their nature, to which statistical methods are applied” 
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(Reid, 1982, p. 183). Fisher specifically noted that “tests of significance are used 

as an aid to judgment, and should not be confused with automatic acceptance tests” 

(Fisher, 1928). None of the aforementioned statements presented suggest that any 

of these theorists intended for or engendered a ritualistic application of statistics. 

Fisher and Neyman and Pearson advocated two separate frameworks. For 

example, Neyman-Pearson theory advocated setting the critical value (alpha) a 

priori of analysis, whereas Fisher advocated reporting significance level after 

analysis. Fisher’s framework tested the null only, whereas the Neyman-Pearson 

framework tested two or more hypotheses, thus allowing errors of the first and 

second kind to be controlled for and power to be estimated. A more in-depth review 

of these and other differences can be found in Gigerenzer (2004). Although a 

greater elaboration of these differences is beyond the scope of this review, it is 

important to establish that neither framework appears to be advocating an arbitrary 

and universal threshold of significance, such as 0.05. 

Fisher’s and Neyman and Pearson’s treatments of significance as a contextual 

judgment appears to be in agreement with other original theorists. For instance, 

Yule and Kendall (1950) noted: 

 

In the examples we have given…our judgment whether P was small enough 

to justify us in suspecting a significant difference…has been more or less 

intuitive. Most people would agree…that a probability of only 0.0001 is so 

small that the evidence is very much in favour of the supposition that the dice 

were biased…Suppose we had obtained P = 0.1…Where, if anywhere, can we 

draw the line? The odds against the observed event which influence a decision 

one way or the other depend to some extent on the caution of the investigator. 

Some people (not necessarily statisticians) would regard odds of ten to one as 

sufficient. Others would be more conservative and reserve judgment until the 

odds were much greater. It is a matter of personal taste. (p. 471) 

 

This discussion of significance by Yule and Kendall appeared to have 

advocated a way of determining significance based on a researcher’s intuition, 

caution, scientific background, and “personal taste.” It should be noted that they 

went on to mention that there are two values of P, 0.05 and 0.01, which are used 

widely to provide a “rough line of demarcation” for level of significance (p. 472). 

Yule and Kendall do not appear to have promoted a strict level of significance; 

rather, they appear to have advocated a significance level based on contextual 

considerations and later mentioning 0.05 and 0.01 as rough thresholds commonly 
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used. Thus, significance level based on contextual considerations appears to be an 

established tradition early on in the field of statistics. 

The convention of statistical significance being achieved if and only if p is 

less than an arbitrary and recognized cutoff is perhaps the most illustrative instance 

of rather rote thinking in the current practice of applied statistics in psychology. 

The current NHST framework, in practice, allows arbitrary, traditional, and 

preordained cut off values to determine the significance of the results rather than 

allowing the significance of the results to be determined by researchers with the 

conditions of the study and the research question in mind. Thus, pervasively 

defining significance at 0.05 has led the process of inference away from a scientific 

basis, as noted by Morrison and Henkel (1969): 

 

If, indeed, .05 (or any other level) is ‘sacred’…then what do we do in sociology 

surely is much more akin to religion than science and we might as well forget 

empirical work and get on with the development of more rituals. (p. 137) 

 

Fortunately, there is support for NHST, as a framework, which empowers 

researchers to evaluate the significance of their results relative to the context of 

their research. Aguinis et al. (2010) asserted that conventional cutoffs ignore the 

relative seriousness of committing a Type I versus II error for a given study. For 

instance, researchers studying the possible effects of a new drug could be 

committing a Type I error if the drug was found to appear effective although it was 

later found to have very serious side effects that reduced the benefit of the treatment 

and potentially endangered the patients. Alternatively, researchers may commit a 

Type II error when testing a drug with little or no side effects if the power in their 

study is small (due, for example, to a small sample size and/or a small effect), which 

could have serious consequences by potentially removing a viable treatment from 

consideration by patients needing new options. Thus, in some research contexts, 

failing to reject the null when the null is false may be more serious than rejecting 

the null when the null is true (or vice versa). As a consequence, the widely used 

convention of maintaining arbitrary cutoffs disallows the researcher to appreciate 

and control for the relative seriousness of committing either Type I or II errors in a 

given research situation. 

Aguinis et al. (2010) therefore proposed a “customer-centric” (p. 517) 

approach to science, where the customer (i.e., the researcher) controls the 

probability of committing a Type I and Type II error based on the relative 

seriousness of committing these errors and given the nature of the research and 

research question. Thus alpha is chosen by the researcher based on the context of 
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the research and predicated on the researcher’s preference and rationale behind the 

relative seriousness of committing a Type I versus II error. 

A similar proposal by Baker and Mudge (2012; also see Mudge et al., 2012) 

called for researchers to explicitly consider the relative costs of Type I and II errors 

when determining a value of alpha. Baker and Mudge pointed out that when sample 

variability is high and/or the sample size is low, the habitual use of designating 

alpha at 0.05 leads researchers to unrealistically test for real effects and, as a 

consequence, increase the rate of Type II errors (false negatives). They advocated 

using an optimal alpha value that takes into account the relative costs of committing 

Type I and II errors using power analysis (e.g., Cohen, 1988); however, instead of 

determining a needed value for power, effect size, or sample size, alpha is being 

determined. Thus, researchers can calculate an optimal alpha value by specifying a 

meaningful (a priori) critical effect size, sample size, and different values of power. 

In practice, once the observed sample size and a meaningful effect size have been 

specified, if a Type II error is more serious than a Type I, then simply increase the 

value of power which will decrease the probability of a Type II error, thereby 

increasing the probability of a Type I error. Conversely, if a Type I error is more 

serious than a Type II, then simply decrease the value of power which will in turn 

decrease the probability of a Type I error but will increase the probability of a Type 

II error. 

However, Baker and Mudge (2012) held that, for most studies, alpha should 

be a value that minimizes the overall probability or cost of making a mistake; thus 

the selected alpha value should minimize the combined probabilities of a Type I 

and II error. Specifically, they noted that “If we consider minimising the chances 

of errors to be the goal for good decision-making, we can choose an optimal 

decision-making threshold (optimal α level) that minimises the average of α and β 

(Type I and Type II errors) at the smallest potentially meaningful effect size” (p. 

30). They also asserted that researchers should report the sample size, observed 

variability of the data, exact p-values, specified power value and effect size used in 

determining each optimal alpha value so that other researchers can re-evaluate 

results using different optimal alpha values based on their own notions of relative 

cost of Type I and II error and critical effect sizes. Thus, instead of convention, the 

context of the study (e.g., relative seriousness of Type I and II error, or the goal of 

reducing both errors optimally, the variability of the data, the observed sample size, 

the a priori desired or hypothesized effect size, and power) must be considered 

when setting an alpha value. 

Cascio and Zedeck (1983) proposed directly assessing the “apparent relative 

seriousness” (ARS) of Type I and II errors with the following equation:  
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where P(H1) is the probability that the null is false, 1 – P(H1) is the probability that 
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is 0.44, 1, 2.7, 4, or 9.3 times more serious than β. The ARS equation allows 

researchers to directly assess relative seriousness of error with aspects of context 

within their study. 

Using this framework, Murphy and Myors (2004) proposed operationalizing 

an appropriate alpha value based on the same aspects of research context. Therefore, 

instead of assessing ARS based on an arbitrary alpha value, they proposed 

determining a specific alpha value using a researcher’s desired relative seriousness 

(DRS) value of committing a Type I versus Type II error (desired ARS value), 

given: 
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Alpha is based on the context of the research, where the balance of Type I over 

Type II error is specified by the researcher. Moreover, the researcher’s confidence 

in the alternative being true along with the researcher’s notion that a rejection may 

be false is realized mathematically. Confidence in the alternative being true and the 

probability of Type II error may be due to the quality of the sample, the quality and 

control of the design, researcher’s experience, previous research, etc. The benefit 

here is this approach produces an alpha level that fits the needs of the researcher 

relative to the conditions of the study (to the degree the conditions of the study can 

be translated into those parameters) and can be justified a priori. 

Both the historical and contemporary authors mentioned revealed a need for 

determining an alpha value appropriate for the context of the research instead of 

using conventional and universal cutoff values. However, alpha (or level of 

significance) is not the only value thoughtlessly selected in the application of NHST. 
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The Value of Null 

Another common criticism of NHST is that the hypothesis being tested is often 

limited to the hypothesis of no effect, often called the nil hypothesis (see Cohen, 

1994). There are several research situations where testing the nil is appropriate 

given the research question. Specifically, if one is interested in examining any 

effect or difference above zero only, then the nil is a logical hypothesis of 

comparison (e.g., effect of experimental manipulation between two randomly 

assigned groups). Although this type of research question may be seen as overly 

simplistic to many researchers, testing the nil can nevertheless legitimately address 

the question of interest. While testing the nil hypothesis may be statistically sound, 

however, the habitual practice of testing only the nil in all research contexts, as a 

default value rather than a null value of interest, is another illustration of ritualistic 

practice in the application of NHST. 

The Null as a Value 

Although nil hypothesis testing is often used, it is not the only hypothesis available 

to researchers within the NHST framework. Originally, Fisher proposed the null 

hypothesis as the hypothesis of interest in which we were trying to disprove; it is 

the hypothesis we are trying to nullify (see Bakan, 1966; Cohen, 1994; Gigerenzer, 

2004). Thus, the hypothesis to be nullified can refer to any null value, including but 

not limited to the nil. Specifically, Fisher (1935) asserted “we may, however, 

choose any null hypothesis we please, provided it is exact” (p. 20). This is perhaps 

best illustrated in his infamous Lady tasting tea problem: the Lady asserted that she 

could discriminate between cups of tea where the milk was infused either before or 

after the tea was poured. Her claim is tested with 8 cups of tea, 4 containing tea 

with milk infused prior to pouring and 4 after. The Lady is presented with the cups 

in random order and is blinded to their preparation. Fisher noted that the null could 

be either that the Lady has no sensory discrimination in detecting how tea was 

prepared regarding milk or that she has perfect sensory discrimination (Fisher, 1935, 

p. 13). Thus, the null could be 0.5 or 1.0, revealing that the null need not be the nil 

(i.e., 0.5). 

The Neyman-Pearson (see Neyman, 1950; 1957) hypothesis testing 

framework specifically required researchers to designate the values of the null and 

an alternative (H1 and H2), where the null is preferably called the “hypothesis tested” 

and “it is immaterial which of the two alternatives H1 and H2 is labeled the 

hypothesis tested”  (Neyman, 1950, p. 259). To illustrate this point, Neyman 

considered two hypotheses in regards to Fisher’s Lady tasting tea problem. He 
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noted of (a) p ≠ 1/2 and (b) p = 1/2 that one of these hypotheses will be “the 

hypothesis tested” and the other “the alternative hypothesis” (Neyman, 1950, p. 

273). Neyman went on to say that which claim will be regarded as the hypothesis 

tested and which the alternative depends on the situation and the balance of errors 

of the first and second kind: if we were the Lady, we would want the hypothesis 

tested to be (a), as the more important error to avoid is having her claim refused 

(avoid rejecting (a) if (a) were true); if we were the jury, we would want (b), given 

that the more important error to avoid is the granting of an unjustified claim (avoid 

rejecting (b) if (b) were true). Here, context plays into which hypothesis is the “null” 

in concert with balancing errors of the first and second kind. In another example, 

Neyman (1942) provided general guidance for selecting the hypothesis to be tested; 

he noted that the null hypothesis should be the hypothesis whereby the errors of the 

first kind are of greater importance relative to errors of the second kind. In this 

example, he specifically chose a non-nil hypothesis (i.e., “the actual toxicity of the 

drug does exceed the prescribed safety limit”) given the relative importance of a 

Type I error (p. 304). 

The two examples above concerning the Lady tasting tea experiment reveal 

that although Fisher and Neyman and Pearson explicitly promoted two different 

frameworks, neither advocated that the null always be defined as the nil. Indeed, as 

illustrated by both Fisher and Neyman, in theory and application, the null can be 

defined as any value; instead of the nil, or a value of zero, being the standard, it is 

just one possible hypothesis to test within the greater NHST framework (see 

Murphy & Myors, 1999). 

Apart from reducing the involvement of researchers in the decision process, 

the default use of the nil as the null hypothesis can also limit application and theory. 

For instance, Serlin (1987) asserted that use of the nil hypothesis provides weak 

evidence for many theories given that it is often believed a priori that populations 

do in fact differ at least somewhat. In application, always testing the nil can be 

problematic because, most often, samples differ from each other to some degree, 

regardless if they come from the same population or different populations, due to 

sampling error alone. Meehl (1990) went so far as to call the use of nil hypothesis 

testing a “weak use” (p. 116) of a significance test, because the nil is (literally) 

always false. In addition, nil hypothesis testing is limited in detecting only if a 

difference or relationship exists, above zero, without regard to magnitude (Murphy 

& Myors, 2004). Finally, by only testing a single null value, statistical significance 

can be achieved by simply increasing the sample to a sufficient size (Serlin & 

Lapsley, 1985). 
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Fortunately, these issues associated with exclusively defining the null as the 

nil are largely unnecessary. As mentioned, nil hypothesis testing can provide weak 

evidence for theories in which differences between populations or relationships 

between variables are anticipated or known to exist. Hodges and Lehmann (1954) 

noted that “when we formulate the hypothesis that the sex ratio is the same in two 

populations, we do not really believe that it could be exactly the same, and would 

only wish to reject equality if they are sufficiently different” (p. 261). One way to 

test for these “sufficient differences” lies in testing some value for the null other 

than zero. Murphy and Myors (1999) advocated an alternative to nil hypothesis 

testing which they termed “minimum-effect” testing. This framework is predicated 

on testing against a “negligibly small or trivial” effect, rather than testing for zero. 

Thus, depending on the context of the study, minimum effects testing can test more 

realistic hypotheses, rather than the “straw man” nil (Serlin & Lapsley, 1985, p. 74), 

which may be untenable in many research situations. 

Another benefit of minimum effects testing is that it allows researchers to test 

both the presence of an effect and the magnitude of said effect by creating an upper 

and lower bound; thus, a range of null values can be tested instead of a specific 

value only. A minimum effect null is no longer a point hypothesis but rather a range 

between the minimum effect specified and the nil. Thus, if we set a null to 3% of 

variance accounted for and we reject this null, then we are more confident that a 

real effect exists because we are no longer testing a null of 0% variance accounted 

for. Moreover, by testing a non-nil null, when we do reject the null, we now have 

some information about the magnitude of said effect (e.g., the effect is above 3% 

variance accounted for). The benefits of using a minimum effect are apparent; 

however, the drawback of using a minimum effect is it increases the risk of 

committing a Type II error. 

Although Murphy and Myors (1999) admitted that establishing a suitable 

minimum-effect value may be difficult initially, the benefits of such testing could 

greatly increase the meaningfulness of results. Thus they advocated a system 

whereby the hypothesis being tested is not determined for the researcher by 

convention, but rather the researcher determines a hypothesis relevant for the given 

research question and relative to the conditions of the study (e.g., a priori desired 

or hypothesized effect size, confirmation vs. exploratory study, theory concerning 

the population(s) being tested, etc.). 

Use of the non-nil null also should not be applied in a rote manner. As Knapp 

and Sawilowsky (2001) warned, some effects are inherently small; thus, by using 

an arbitrary non-nil null, the chances of these (albeit) small effects being missed 

are increased, if not certain, depending on the non-nil value. Therefore, the value 
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of any null, nil or not, must be guided by context. As a consequence, this framework 

empowers researchers to operationalize their research questions by evaluating and 

designating a value of sufficient difference or relationship (minimum effect) 

germane to and appropriate for the area of focus. 

The Null as an Interval 

Originally, Hodges and Lehmann (1954) proposed testing “sufficient differences or 

relationships” by using a range of possible values for the null hypothesis rather than 

testing a single null value. Later, Meehl (1990) proposed what he called a “strong 

use of hypothesis test” whereby the null is a specific value a researcher asserts as 

their theory, and therefore as the null they are testing against their assertion (p. 79). 

Serlin and Lapsley’s (1985) framework advocated testing one’s own theory as the 

null, along with using what they call a “good-enough belt” around a “complex null 

hypothesis” (p. 79). Instead of testing a nil hypothesis exclusively, they 

recommended testing a null value that represents one’s theory (which could include 

the nil) and has a beltor width (denoted as Δ) around the value of the chosen null 

value. For example, instead of testing a null value against one’s hypothesized value, 

researchers instead designated their hypothesized values as the null, and use good-

enough belts to test a range of possible null values (e.g., 2.5 ± 0.5); thus one can 

think of good-enough belts as a type of confidence interval for the null value (see 

Serlin, 1987). Serlin and Lapsley (1985) noted that, by using good-enough belts, 

the imprecision of estimating the population is reduced because a range is being 

tested instead of a single all-or-nothing value. Moreover, they noted that instead of 

simply testing a direction, researchers are testing the magnitude of the change in 

direction. 

A major criticism of the NHST is that the null can almost always be rejected 

when the sample size is sufficiently large. This problem, sometimes referred to as 

“infinite precision” (Serlin & Lapsley, 1985, p. 74), is a function of infinite (or very 

large) sample size whereby natural differences between populations can be detected 

even if they are not meaningful (Serlin & Lapsley, 1985). Conversely, by testing a 

range of possible null values, the almost inevitable rejection of the null due to 

increasing sample size is reduced. Serlin and Lapsley (1985) noted that the value 

of Δ must be chosen by the researcher a priori and “reflects the state of the art or 

the error in the best ‘known experimental technique’ in the field” (p. 79). The 

framework proposed by Serlin and Lapsley empowers researchers to determine a 

range of meaningful null values instead of mechanistically testing a single all-or-

nothing value that is more easily rejected with a large enough sample. Thus they 
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advocated a framework where the researcher, not ritual, decides the hypotheses of 

interest and where large samples do not automatically guarantee significance. 

In summary, the inherent limitations associated with testing the nil hypothesis 

without ample consideration of a desired effect are largely unnecessary given the 

context-based alterative frameworks mentioned (although some may consider these 

to be alternatives to NHST itself; see Denis, 2003). Specifically, Murphy and Myors 

(1999) advocated a framework that empowers the researcher to evaluate the 

significance of hypotheses by determining a (minimum effect) null value that is 

meaningful to the researcher and appropriate for the context of the research. What 

is more, Serlin and Lapsley (1985) advocated a framework that empowers 

researchers to both specify a hypothesis of interest (including but not limited to the 

nil) while also determining a range or interval of possible values (a good-enough 

belt) where the null may still hold. Neither framework allows the researcher to 

blindly test a nil hypothesis by default (the dangers of which are clearly illustrated 

by Sawilowsky, 2003). These frameworks therefore empower researchers to 

specify their hypotheses in concert with the context of their research areas and 

questions. 

Discussion 

Many have observed that the current application of NHST is ritualistic (see Cohen, 

1994) and mechanistic (Rodgers, 2010a; 2010b). Gigerenzer (2004) even labeled 

this phenomenon as “the null ritual” (p. 33). Indeed, a ritualistic approach to NHST, 

where the null hypothesis value and critical value are predetermined by convention, 

may actually impede researchers from testing the hypotheses appropriate for their 

particular research questions. In addition, rote selection of the nil and critical values 

may induce researchers to inadvertently ignore many important conditions of their 

study, such as the hypothesized effect size and the relative seriousness of Type I 

versus Type II error. As a consequence, the null ritual, not the researcher, ends up 

determining the significance of hypotheses and even the hypotheses themselves 

without regard to the context of the research. If used in this fashion, the application 

of NHST is indeed in danger of becoming a rite or ceremonial practice, much akin 

to those of the cargo cults where the deliverance of a p-value smaller than 0.05 is 

tantamount to a cargo box (see Feynman, 1985). 

Although NHST may often be applied in practice without regard to context, 

there is little evidence that hypothesis testing was ever intended to be used in this 

fashion by original theorists. Neyman and Pearson, Fisher, Yates, and Kendall all 

wrote about determining significance relative to the judgment of the researcher in 
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concert with the context of the research itself; none appear to have advocated for 

the definition of the null as the nil hypothesis exclusively. In addition, 

contemporary authors reviewed here offer innovative ways of conceptualizing the 

application of NHST to better suit the context of research while breaking away from 

habitually testing the point nil hypothesis. By implementing the concepts from 

these sources, both traditional and contemporary, researchers are engaged in what 

could be described as “context-driven NHST” or CD-NHST. Instead of being 

driven by convention, which may or may not have much relevance, CD-NHST 

places the researcher in the driver’s seat of inference. In so doing, CD-NHST is in 

part responding to the changes in quantitative thinking and training called for by 

Rodgers (2010a; 2010b) and others (e.g., Cumming, 2012; Harlow, Mulaik & 

Steiger, 1997; Kline, 2011). Rodgers (2010a) noted: 

 

The treatment of the null and alternative hypotheses, of Type I and Type II 

errors, and of power needs to change to accommodate the focus on the 

researcher’s model, rather than the null (nil) hypothesis. (p. 10) 

 

CD-NHST not only addresses the issues brought up by Rodgers (2010a), but 

a happy by-product of CD-NHST is that, as a general framework, it inherently 

promotes replication and meta-analysis. Because CD-NHST requires more thought 

and detail, studies using CD-NHST could therefore yield an abundance of data for 

replication and meta-analytic studies. Specifically, with thoughtful and specific 

critical values, null values, and null ranges based on justified contextual reasons 

and all being reported, researchers can have access to a wealth of data to perform 

well-informed replications and meta-analyses. More importantly, CD-NHST as a 

framework relies on designating values from previous studies, thereby relying, to 

some degree, on replication itself. 

Although the bulk of this discussion emphasizes empowering researchers by 

placing the selection of critical values and null hypothesis value(s) into the hands 

of researchers rather than being determined by common practice, this viewpoint is 

not without controversy. As noted by Cortina and Landis (2010), by having alpha 

set by externally determined criteria, corroboration between the hypothesis and data 

is compelling because the evidence is determined independently of the researcher; 

one may assume this thinking also extends to the selection of the null hypothesis 

value(s) as well. Conversely, Hubbard and Ryan (2000) asserted that conventional 

cutoffs only provide an illusion of objectivity that “makes life tidier” rather than 

requiring researcher’s to use subjective judgment. Indeed, although setting alpha to 

a default value may be objective, one should always remember inference remains 
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subject to the conditions of the study. Both points presented by Cortina and Landis 

(2010) and Hubbard and Ryan (2000) are important; thus a delicate balance must 

be struck between researchers evaluating their hypothesis and remaining objective 

in their evaluation. By empowering researchers to make context-driven decisions 

regarding the application of NHST, we at the same time risk inviting a certain level 

of subjectivity into the analysis. 

One possible solution in balancing active evaluation and biased subjectivity 

would be to encourage researchers to establish critical values, null values, and null 

ranges a priori of data analysis or even data collection. This would allow 

researchers to participate in determining their hypotheses and the significance of 

said hypotheses, without the data and results influencing these decisions. A second 

way to encourage researchers to engage in context-driven NHST without biasing 

their results could be achieved by having researchers justify specifically why they 

are using a particular critical value or null hypothesis value (based on previous 

research, theory, etc.). 

A third step would be to encourage researchers to report as much detail as 

possible in their articles. Specifically, by researchers reporting specific p-values 

(McGrath, 2011), confidence intervals (Cumming, 2012), effect sizes (Grissom & 

Kim, 2012), and power analyses (e.g., Cohen, 1988; and see Denis, 2003), readers 

can form their own conclusions from a given study. Beale (1972) asserted that “The 

p level is for the reader's use, and [the reader] alone should be the one who decides 

whether the p level reported is significant” (p. 1080). Reporting specific p-values 

has also been proposed by contemporary authors (see Aguinis et al. 2010; Baker & 

Mudge, 2012). Careful consideration must be used here in distinguishing the utility 

of alpha and p-values for CD-NHST. It is essential that authors establish an 

appropriate (and hopefully context-driven) alpha value which allows the authors to 

evaluate and conclude if a given result occurs above random variation, assuming 

the null; reporting p-values allows readers to evaluate the results for themselves, 

though this practice does not remove the real need for authors to establish a 

justifiable alpha value (Knapp & Sawilowsky, 2001). In addition, confidence 

intervals can play a special role in reporting as they contain information concerning 

estimation with inference, which exceeds the utility of a p-value alone. In summary, 

these three suggestions can help to promote researchers in engaging in context-

driven NHST while also attempting to minimize the bias inherent in researchers’ 

decisions. 

Given the aforementioned arguments, it is not difficult to at least question the 

wisdom of a “one-size-fits-all” approach when using NHST. However, what 

exactly is CD-NHST in application? Current researchers and statisticians (e.g., 
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Aguinis et al, 2010; Cohen, 1994; Cumming, 2012; Mudge et al., 2012; Murphy & 

Myors, 2004) have aptly decried the perpetuation of the exclusive and, admittedly, 

somewhat mindless use of the 0.05 critical or a nil difference of zero when making 

statistical inferences and original theorists (e.g., Fisher, 1926; 1935; 1973; Neyman 

& Pearson, 1933a; 1933b; Neyman, 1950; Yule & Kendall, 1950) never seemed to 

have promoted it in the first place. In contrast, context-driven NHST requires 

researchers to specify the values they use within the NHST framework and to be 

able to justify these values based on the context of their research. Within CD-NHST 

applications, it is important to clarify what context means in specific and various 

research settings. Context can include (but is certainly not limited to) the nature of 

the research area (both major field and subfields), the research question, the 

sampling methodology, the study design, the sample size, the measurement of the 

data, the ethical implications regarding the research and sample, and the quality of 

the data, along with researcher judgment and experience. 

The hypothesized effect size, due to theory or past research, is also 

fundamental in driving CD-NHST, as it can influence what alpha value is selected, 

the sample size needed, and the value of the null. Likewise, the desired level of 

power for a study is essential in both contributing context and requiring context. 

Specifically, desired or hypothesized effect size and desired level of power are 

fundamental in determining an appropriate alpha value (balance of errors) and null 

value. In general, effect sizes (e.g., to determine magnitude of effects) and power 

considerations (e.g., study design of detecting real effects) along with confidence 

intervals (e.g., to illustrate uncertainty around estimates) have long been 

championed as essential components and/or supplements to NHST (e.g., Denis, 

2003; Harlow, 2010; Robinson & Levin, 2010). These and other broad contextual 

considerations are suggested in a matrix in Table 1. This matrix is presented only 

to stimulate additional and deeper research context considerations and how they 

relate to the alpha value, null value and range, and should not be viewed as an 

exhaustive list, or even worse as a replacement ritual. 

In general, contextual aspects of research help guide researchers in deciding 

which statistical tools to use (e.g., CD-NHST, modeling, Bayesian, etc.) and how 

to implement these tools to evaluate research questions (see Gigerenzer, 2004). 

Indeed, as Abelson (1997) asserted: 
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Table 1. Research context matrix 

 

Example Considerations 
Critical 

Value 
Value 

of Null 
Range 
of Null 

  α H0 Δ+/- 

Research Question i. Specific Hypothesis    

 ii. No Hypothesis    

     

Study Type i. Pilot    

 ii. Exploratory    

 iii. Confirmatory    

     

Measurement i. Precise data (small variability/Reliable)    

 ii. Noisy data (Large variability/ less reliable)    

     

Field of Research i. Biological Psychology (e.g., precise biomarkers)    

 ii. Clinical Psychology (e.g., self-report)    

     

Design i. Experimental    

 ii. Observational    

 iii. Correlational    

     

Sampling i. Probability-sampling    

 ii. Non-probability sampling    

 iii. Clinical sample    

     

Sample Size i. Small sample (related: underpowered)    

& Power ii. Large sample (related: overpowered)    

 iii. Level of power desired    

     

Cost i. Type I error more costly relative to Type II error    

 ii. Type II error more costly relative to Type I error    

 iii. Cost of sample    

     

Seriousness i. Type I error more serious relative to Type II error    

 ii. Type II error more serious relative to Type I error    

     

Replication i. Study is a replication of another study    

 ii. Study is first of its kind    

 iii. Study will probably not be replicated    

     

Previous i. Previous results indicate for this study…     

Data ii. No previous results for this study…    

     

Effect size  i. Hypothesized magnitude of the effect, based on theory or 
past research. 

   

 

Note that each category is not mutually exclusive. For example, measurement variability is often closely related 
to field of research 
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Good methodologists should be open to the possibility that a method does not 

apply in a particular case, or that more information is required. Statistical 

methods are better conceived as options than as commandments. Each method 

has areas of application in which it is typically useful, and areas in which it is 

weak or open to criticism. (p. 14) 

 

Earlier, Neyman remarked: 

 

It may be useful to point out that although we are frequently witnessing 

controversies in which authors try to defend one or another system of the 

theory of probability as the only legitimate [one], I am of the opinion that 

several such theories may be and actually are legitimate, in spite of their 

occasionally contradicting one another. Each of these theories is based on 

some system of postulates, and so line as the postulates forming one particular 

system do not contradict each other and are sufficient to construct a theory, 

this is as legitimate as any other (Reid, 1982, p. 136). 

 

Once the appropriate type of analysis is selected, researchers can use the 

context of the research to then guide and inform which values to use in the selected 

analysis. Although this holds for modeling and especially Bayesian analysis, which 

takes into account prior information, only the conventional NHST situation has 

been considered for the purposes of this paper. However, the field would benefit 

greatly from future work examining the issues regarding research context and other 

quantitative approaches such as statistical modeling (e.g., Harlow, 2010; McGrath, 

2011; Rodgers, 2010a; 2010b). 

Some may hold that NHST should be abandoned as an evaluative framework 

in science because it is often employed in a formulaic way. However, the argument 

presented here reveals that, regardless of how NHST may be commonly applied, it 

need not be used in a mechanistic way. Indeed, judging from original sources, it is 

questionable if null hypothesis testing or significance testing were ever designed to 

be used in the way they are applied today. Given the ability to designate alpha 

values and null values with context in mind, it is difficult to see why NHST is 

credited with being a mechanistic epistemological framework in the first place (see 

Rodgers, 2010a). 

In closing, there are a number of errors that researchers must keep in mind 

when engaged in research. For instance, errors of the first kind are achieved when 

we incorrectly reject the null hypothesis whereas errors of the second kind are 
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achieved when we incorrectly accept the null hypothesis (Neyman & Pearson, 

1933b). These are the familiar errors that must be considered when selecting alpha. 

Mosteller (1948, p. 61) proposed an error of a third kind, whereby we correctly 

reject the null, but for the wrong reason. Later Marascuilo and Levin (1970, p. 398) 

proposed that errors of the fourth kind are achieved when we correctly reject the 

null hypothesis but give the wrong interpretation. It is proposed here that errors of 

the infinite kind are achieved when we correctly or incorrectly reject or accept the 

null hypothesis, but do so without context. That is, a limitless supply of error is 

available when we conclude without context. 
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