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The Wilcoxon-Mann-Witney test is extended to account for a second independent factor. 
The new test statistic’s probability mass function and normal approximation are derived. 
Critical-values for balanced, unbalanced, and large sample designs are given. The 
immediate extension of this method to a wide range of non-parametric tests is explained. 
 
Keywords: Two factor nonparametric test, Wilcoxon-Mann-Witney test, nuisance 
factors, rank, order, permutation 

 

Introduction 

The Wilcoxon-Mann-Witney test (WMWt) is a widely used technique for data 

analysis in which a natural ordering is possible. For example, it may be possible to 

order or rank the subjective degree of inflammation or pain; yet objective 

measurement of the inflammation or pain may be impossible. The WMWt is simple, 

robust and powerful; it has a minimum asymptotic relative efficiency (ARE or 

Pitman efficiency) of 95% compared to Students’ t test, the most efficient test 

possible under ideal conditions (Conover, 1999). With small samples, 

heteroscedastic, and non-normal data the WMWt can have much greater power than 

Students t test (Blair, Higgins, & Smitely, 1980). The WMWt is widely taught and 

used because of these properties – it also has great intuitive appeal to experimenters’ 

common sense. 

However, it is common that experiments are run in which an extraneous factor 

(such as sex of the subject or strain of animal) is included which is not of direct 

experimental interest and may confound the result. When this occurs, it is 

unreasonable to ignore the ‘nuisance’ factor in the analysis of ranked/ordered data 
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on the effect of the treatment. For example, in assessing the effect of a treatment on 

pain or inflammation by ranking of pain or inflammation in both sexes, it would be 

unreasonable to simply ignore the sex of the subjects. This is because the sex of an 

experimental subject substantially influences both the nature and degree of an 

inflammatory response and the perception of pain in man and animals (reviewed by 

Berkley, Zalcman, & Simon, 2006), and can thus confound any result. 

A practical method of extending the WMWt is proposed so that a nuisance 

factor which divides the sample into two distinct sets for which direct comparison 

of subjects between sets is precluded (such as subject sex) can be accounted for in 

the detection of a significant effect of the explanatory variable upon the dependent 

variable. As such, this nuisance factor can be excluded from influencing the 

conclusions drawn. The proposed extension unifies an overall analysis of otherwise 

subsetted data and so offers increased statistical power and avoids conflicting 

conclusions between data subsets. It also avoids the ambiguous situation where a 

series of tests on small subsets of the data by the simple WMWt may give different 

results (e.g. the males show a significant treatment effect which is not shown by the 

females). Measuring interactions between factors (i.e. detecting if there is a 

difference in the degree of response of the males compared to the females) is not 

possible in this simple formulation given here. However, a substantially more 

complex extension of our techniques makes this possible (theoretical approach 

outlined in Holland, 2011). 

Heuristic Development of the Statistical Model 

Consider the one-tailed Mann-Witney formulation of the U statistic (Sprent & 

Smeeton, 2001). This test is used to compare two groups of subjects, made distinct 

by some factor (such as in an animal study, a treated group and a control group) for 

which the subjects in the two groups can be ordered in some feature (for example 

an experimental parameter). For the remainder of the article we refer to the two 

groups as a control group (denoted c) and a treated group (t) for convenience. The 

purpose is to deduce whether there is a statistically significant difference in this 

feature between the two groups. To obtain a U statistic from the data, one takes 

each element of control group and counts the number of samples in the treated 

group (t) that show less of the feature. The final U value is obtained by summing 

this count for each element of the control group. 

Hence least tcctc most U = 4 

   cttcc  U = 4 

while  tctcc  U = 5 
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To assess statistical significance, we wish to compare this value with that 

expected assuming the null hypothesis. Under the null hypothesis that there is no 

difference between the two groups, every ordering of samples is equally likely. 

Thus the key step in assigning significance to a particular U-value obtained from 

an experiment is to identify the probability mass function under the null hypothesis 

by quantifying the number of different permutations of the given numbers of treated 

and controls that give rise to each possible value of U. A result is significant if the 

U-value falls beyond a certain point in the extreme tail of this probability mass 

function. 

The usual assumption underpinning the WMWt applies to this work, namely: 

the samples are independent of each other. So this is a test simply for a difference 

in location or, equivalently, a difference in the mean (if it exists) and median 

between the two groups. 

The proposed test procedure accounts for the scenario in which the subjects 

in the sample are additionally divided by a second factor into two sets (e.g. male 

and female) where comparison of individuals between these two sets is precluded, 

effectively making it impossible to calculate the U-statistic of the whole sample. 

Here, the first two U statistics are calculated by first considering the two sets 

separately and calculating the U statistic of each with respect to the feature of 

interest (labeled U1 and U2). For example, if sex is this second factor, a U1 statistic 

for the males is produced and a U2 statistic for the females is produced in the usual 

way, considering the two sets as completely separate; as such, no comparison of 

males to females or females to males is made. 

However, if the analysis ends here, then two different statistics are produced 

despite both being the result of an identical experimental design, and the data has 

effectively been subsetted. This causes a number of difficulties. For instance, due 

to the reduction in the group sizes from the original, each would have reduced 

statistical power for a given overall sample size. There is also the potential for the 

two results to have similar but conflicting implications (for example just managing 

to achieve significance in one set, while just failing to achieve significance in the 

other), making it unclear as to the overall conclusion. 

To avoid such problems, it is proposed that instead of ending the analysis 

there, the two separately obtained U-values (U1 and U2) are added together to form 

a combined U-value UC. This approach has the very appealing property that each 

comparison of any individual pair contributes exactly the same amount of 

information to the overall test statistic as any other comparison, and so any 

difference of sample size requires no correction or weighting of the contributing U1 

or U2 values to UC. 
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To analyze this result further, the UC is then compared to the distribution of 

UC statistics expected under the null hypothesis to infer the statistical significance 

of any overall difference between the two groups, similarly to the one-factor case. 

Establishing the number of distinct permutations giving rise to each possible 

UC value, and thus establishing the probability mass function of the UC statistic 

under the null hypothesis, is the real substance of this article. We then use this to 

tabulate critical values for all balanced two-factor study designs up to a group size 

of 10 for one- and two-tailed designs. For unbalanced and larger group sizes we 

give a computer algorithm that gives an exact probability mass function and a 

simple normal approximation method. 

Methodology 

Revisiting the Analysis for a Single Factor U Statistic 

First, to aid in understanding the two set case, we reexamine the well-established 

case of a single set of directly comparable subjects divided into two groups: a 

treated group with m subjects and a control group with n subjects. Consider the 

scenario in which, for an appropriate feature, the ordering of the members of the 

two groups is found and the U-value is calculated. The aim is to establish whether 

this U-value represents a statistically significant difference between the two groups 

by comparing it to what is expected under the null hypothesis: that there is no 

overall difference in the feature between the two groups. 

Under the null hypothesis, this definition implies that, for any given subject, 

its position in the ordering is not influenced at all by which group it is from. Hence, 

if the null hypothesis is true, each of the orderings of the subjects is equally likely. 

Furthermore, we may ignore the internal orderings of both the treated and control 

groups and so just consider the distinct permutations of m indistinguishable t's and 

n indistinguishable c's as each such permutation is equally likely. For example, in 

case m = 2, n = 3, there would be an equal probability of an experiment giving rise 

to the ordering ‘tctcc’ as ‘ctctc’ (or any other distinct permutation of two t's and 

three c's, for that matter). This is because such a permutation represents m!n! 

different subject orderings. As this number is constant for all permutations and each 

ordering is equally likely, each of the permutations is each equally likely under the 

null hypothesis. 

Each of these distinct permutations has an associated U-value. The next step 

is therefore to establish the number of distinct permutations that give rise to each 

U-value. The function f1(m, n | r) is introduced for this purpose. This represents, for 
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treated and control groups of size m and n respectively, the number of permutations 

that give a U-value of r. For example, in an experiment involving 2 treated and 3 

controls, 

 

  1f 2,3 | 1,1,2,2,2,1,1r    

 

for r = 0, 1, 2, 3, 4, 5, 6, respectively. So, for instance, by looking at the 5th element 

in the sequence, we can deduce that there are two permutations giving rise to a U-

value of 4. These are tcctc and cttcc. 

As previously established under the null hypothesis, the distinct permutations 

are each equally likely; this shows that, in such conditions, it would be twice as 

likely to obtain a U-value of 3 as a U-value of 1 (for example). As such, for fixed 

m and n, the value of f1(m, n | r) represents the relative probability of achieving the 

different values of U (represented by r) under the null hypothesis. Therefore, if this 

function is normalized for fixed m and n, we obtain the probability mass function 

for U under the null hypothesis: 

 

  
 1

1: ,

f , |
p m n m n

m

m n r
r

C
  . (1) 

 

This uses the property 

 

  1

1

f , |
mn

m n

m

i

m n i C



  . (2) 

 

Hence as it effectively yields the distribution of U-values expected under the 

null hypothesis, f1(m, n | r) is the key function in establishing whether an 

experimentally obtained U-value represents a statistically significant difference 

between the two groups or not. No closed form of f1(m, n | r) exists, but it satisfies 

recursion relations which allow its calculation using a computer (some such 

recursive properties are reviewed in Di Bucchianico (1999)). 

Due to the importance of f1(m, n | r), we discuss some of its properties. First, 

we note that there are no permutations yielding a U-value which is negative or in 

excess of mn. As such, f1(m, n | r) = 0 unless 0≤ r ≤ mn. Secondly, the sum over all 

possible values of f1(m, n | r) is given by (2). 

Finally, for fixed m, n, f1(m, n | r) is symmetric in r about the central value, 

mn/2, so that 
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    1 1f , | f , |m n r m n mn r   . (3) 

 

This also means that both the mean and median value of U under the null hypothesis 

are mn/2. 

In order to find f1(m, n | r) for given m, n, use the method suggested by 

Theorem 2.6 in Di Bucchianico (1999), which we derived without the use of the 

correspondence with the restricted partition function. This utilizes the relations 

 

 

 
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1

1

1 1 1

f , | 0 for 0, , 0, 0

f , | 0 1 for 0, 0
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m n m n
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    

  

        

  

 

Using these formulae, it is possible to specify f1(m, n | r) for any finite values 

of m, n, or r. The Matlab 7.8.0 program which we used to find f1(m, n | r) for given 

m and n and for the possible values of r is given in Appendix 1. This was able to 

calculate f1(20, 20 | r) for all possible r practically instantaneously, and 

f1(100, 100 | r) within 100 seconds using a home laptop computer. 

Having obtained the probability mass function under the null hypothesis, it is 

a simple matter to analyze the statistical significance of a given result. For example, 

it can be used to calculate the P-value once an experimental U-value is obtained or 

a specified confidence interval for the null value. 

However, as the values of m and n become very large, it becomes unfeasibly 

onerous even for a computer to calculate f1(m, n | r) exactly. In that case, 

approximations may be of greater practical use. For sets where each group size 

exceeds 20, the normal approximation is deemed sufficiently accurate for most 

usual cases. This involves approximating the probability mass function p1;m,n(r) by 

a normal distribution, with mean mn/2 and standard deviation 

 

 
 1

12
U

mn m n


 
  . (4) 

Defining the Frequency Distribution of the UC Statistic 

As outlined above, the aim is to extend the analysis to the case where there are two 

sets which differ in some factor other than the experimental parameter, such that an 

element of one set cannot be reasonably compared to an element of the other set. A 

combined U-value UC is formed by finding a U-statistic for each set separately and 
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then adding the two values. As in the single set case, the goal is to determine the 

statistical significance of an experimentally-obtained UC-value. 

By identical reasoning as in the single set case, if the null hypothesis holds, then 

each combination of distinct permutations of the treated and control subjects in each 

set is equally likely. As before, this observation leads to the construction of a 

function that enumerates the number of permutation combinations that give rise to 

a given UC-value for specified group sizes. 

Start by establishing a function: F2(m, n; p, q | r; s). This function gives the 

number of permutation combinations which simultaneously achieve: a U1-value of 

r in set one (with treated group size m and control group size n) and a U2-value of 

s in set two (with treated group size p and control group size q). Due to the 

independence of the two sets, this is the product of the number of permutations in 

set 1 giving a U-value of r and the number of permutations in set 2 giving a U-value 

of s. Alternatively, using the notation of the previous section: 

 

      2 1 1F , ; , | , f , | *f , |m n p q r s m n r p q s  . (5) 

 

This can be represented, for given m, n, p, and q, as a matrix with the row denoted 

by r and the column by s. An example of this is given in Table 1, where it is detailed 

for F2(2, 2; 2, 3 | r; s). 

From F2(m, n; p, q | r; s), the function can be created giving the number of 

permutation combinations giving rise to a UC-value of k: f2(m, n; p, q | k). This is 

the equivalent of f1(m, n | r) for the two set case. It is constructed by adding together 

all elements of F2(m, n; p, q | r; s) with the specified values of m, n, p, q where the 

sum of r and s is equal to k, as can be seen in (6) below: 
 
 
Table 1. The two-dimensional U frequency array for an F2(2, 2; 2, 3 | r; s) study design, 

illustrating how the sum of each trailing diagonal gives the total number of ways of 
achieving each value of UC (UC = 3 cells are identified explicitly) 
 

 U2 value (s) 0  1  2  3  4 5 6 

U1 value (r) 
Individual 
frequency 

1  1  2  2  2 1 1 

0 1 1  1  2  2 * 2 1 1 

1 1 1  1  2 * 2  2 1 1 

2 2 2  2 * 4  4  4 2 2 

3 1 1 * 1  2  2  2 1 1 

4 1 1  1  2  2  2 1 1 

 

Note: *UC = 3 
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    2 2f , ; , | F , ; , | ;
i j k

m n p q k m n p q i j
 

   . (6) 

 

In the matrix representation, this is simply adding the entries along the appropriate 

trailing diagonal, which is shown in Table 1 for F2(2, 2; 2, 3 | r; s) for the UC value 

of k = 3. By summing the indicated numbers, we find that f2(2, 2; 2, 3 | 3) = 7. To 

illustrate the point, these seven permutation combinations for males and females 

respectively may be identified as: 
 

tctc and ccctt (U-values 3 & 0 respectively); tcct and cctct (2 & 1); cttc and cctct (2 

&1); ctct and ccttc (1 & 2); ctct and ctcct (1 & 2); cctt and ctctc (0 & 3); cctt and 

tccct (0&3) 

 

By carrying out similar sums along the other trailing diagonals, 

 

  2f 2,2;2,3 | 1,2,5,7,10,10,10,7,5,2,1k    

 

for k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively. 

Several properties of f2(m, n; p, q | k) follow directly from the properties of 

f1(m, n | r). For instance, the function is non-zero only for 0 ≤ k ≤ (mn + pq), and 

the overall number of permutations regardless of UC-value (i.e. the sum of 

f2(m, n; p, q | k) over all k for given group sizes) is 

 

  2

0

f , ; , | *
mn pq

m n p q

m p

i

m n p q i C C


 



  . (7) 

 

Somewhat less trivially, f2(m, n; p, q | k) is also symmetric in k around the central 

value (mn + pq)/2. This is seen as follows: 
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On line 3, dummy variables i and j were replaced by dummy variables i' = pq – i 

and j' = pq – j, respectively. The mean and median of f2(m, n; p, q | k) are therefore 

both (mn + pq)/2. Finally, as for f1(m, n | r), we can use f2(m, n; p, q | k) to construct 

the probability mass function for UC: 

 

  
 2

2; , ; ,

f , ; , |
p m n p q m n p q

m p

m n p q k
k

C C 
  . (8) 

 

These properties allow a UC-value to be analyzed using the same approach as 

the U-value in the single set case, just using f2(m, n; p, q | k) instead of f1(m, n | r) 

to, for example, calculate the P-value of a given UC or a confidence interval under 

the null hypothesis. This is discussed further in the section below. The recursive 

Matlab program we used to find f2(m, n; p, q | k) for given m, n, p, and q, and for 

the possible values of k is given in Appendix 2. 

Again, it is possible to use a normal approximation to p2;m,n;p,q(k) for large 

group sizes, ideally all groups in excess of 10. This is accomplished simply by the 

distribution resulting from the addition of normally distributed random variables of 

the two separate normal approximations of the two sets. This results in a normal 

distribution with mean (mn + pq)/2 and standard deviation 

 

 
   1 1

12CU

mn m n pq p q


    
  . (9) 

 
 
Table 2. The values that UC must Equal or Exceed to achieve significance at the given 

confidence level for one-tailed and two-tailed tests 
 

 One-Tailed  Two-Tailed 

Group Size 95% 99%  95% 99% 

1 - -  - - 

2 8 -  - - 

3 15 17  2, 16 0, 18 

4 25 28  5, 27 3, 29 

5 37 41  11, 39 7, 43 

6 52 57  18, 54 13, 59 

7 68 75  26, 72 20, 78 

8 87 96  37, 91 29, 99 

9 108 119  49, 113 39, 123 

10 132 144   62, 138 52, 148 
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Results 

Using the Exact Distribution of UC 

As discussed above, obtaining the probability mass function under the null 

hypothesis allows us to establish confidence intervals for the null hypothesis. This 

gives us a range of UC-values for which the null hypothesis can be rejected for a 

specified statistical significance (α). This gives us critical values of UC, which are 

the highest (or lowest) value of UC such that the null hypothesis cannot be rejected. 

The most commonly used values of α are 0.05 and 0.01, which give a 95% and 99% 

confidence interval, respectively, for either one- or two-tailed tests. As such, the 

critical values of UC for all experiments with uniform group sizes (i.e. 

m = n = p = q) up to 10 are given in Table 2 for these confidence intervals. A dash 

is used for circumstances in which the test can never yield a statistically significant 

result. 

To calculate the critical values for other cases, such as unbalanced designs or 

for data in which group sizes are larger than 10, a program such as that in Appendix 

2 can be used to find the f2(m, n; p, q | k) function from which the probability mass 

function can be obtained. Any confidence interval under the null hypothesis can 

then be constructed and, similarly, an exact P-value can be calculated. 

Using the Asymptotic Distribution of UC 

Where m, n, p, and q are greater than 10, the normal approximation can be used 

(derived from Campbell (1974), including continuity correction). The distribution 

of z follows the Normal distribution and the one- and two-tailed critical values can 

be taken directly from standard tables: 

 

 

 

     

1

2 2

1
1 1

12

C

mn pq
U

z

mn m n pq p q

 
  

 

    

  (10) 

The values of m, n, p, and q at which this approximation becomes workably 

accurate for the 95% confidence level, both one- and two-tailed, are investigated 

using tables that give 3 significant figures for z. The exact p value is computed for 

all combinations of group sizes up to 10 (i.e. 4 groups each of 10 or less samples) 

for all UC values possible, and the UC value which just exceeds the 95% confidence 

limit is found. Hence the next UC value is obtained closer to the mean than this, the 



HOLLAND & HOLLAND 

133 

highest non-significant UC value. Then, compare this lowest significant UC highest 

non-significant UC pair to the value given by the normal approximation form of the 

test. The normal approximation test is very close to the exact value unless one or 

more groups have a group size of one. Except for this extreme condition, the one-

tailed test normal approximation never gives a significant result as non-significant. 

However, in 31 of 1035 one-tailed cases, the normal approximation gives as 

significant a UC that the exact test gives as just non-significant. The group sizes that 

give a false positive are given in Table 3; all are the result of rounding errors, and 

the normal approximation gives complete concordance with the exact test working 

to 7 figure accuracy. In the two-tailed test, none of the highest non-significant UC 

values give a significant finding, but the approximate methods fails to detect 

significance in 91 of 1035 two-tailed test. The group sizes that give a false negative 

are given in Table 4. 

We think this remarkable accuracy of the normal approximation is the result 

of the action of the Central Limit Theorem when combining two mass functions 

that are themselves fairly close to normal. Practically, it means that so long as 
m + nCm * p + qCp > 20 (one-tailed) and 41 (two-tailed), then (given that the 95% 

confidence limit is an arbitrary cut-off point) the normal approximation is a 

practical method for all study designs that do not use group sizes of 1. 
 
 
Table 3. One-tailed 95% confidence limit; these are the groups sizes that are just not 
significant at the exact 95% confidence limit, but in the normal approximations are just 
significant (z = ±1.65 to 3 significant figures for all them) 
 

2, 4: 8, 9  3, 4: 7, 10 

2, 5: 4, 9  3, 5: 7, 9 

2, 4: 9, 10  4, 10: 7, 10 

2, 4: 9, 9  4, 7: 6, 10 

2, 5: 5, 7  4, 5: 6, 9 

2, 10: 5, 5  4, 6: 5, 10 

2, 10: 7, 7  4, 9: 5, 8 

2, 7: 10, 10  4, 5: 4, 5 

2, 2: 6, 6  4, 4: 10, 10 

2, 4: 4, 6  4, 8: 9, 9 

2, 7: 3, 6  5, 5: 6, 8 

2, 8: 4, 4  5, 8: 10, 10 

2, 7: 2, 10  6, 8: 8, 10 

2, 3: 7, 8  6, 9: 7, 7 

3, 9: 5, 7  9, 10: 9, 10 

3, 8: 4, 5  - - - - 
 

Note: The order in each pair is immaterial, and the order of the pairs themselves is also immaterial (so 9,8:2,4; 
8,9:2,4; 9,8:4,2; 8,9:4,2; 4,2:8,9; 4,2:9,8, and 2,4:9,8 are all equivalent to the first entry in the table, 2,4:8,9) 
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Table 4. Two-tailed 95% confidence limit; these are the group sizes that are just 

significant at the exact 95% confidence limit, but in the normal approximations are just 
not significant (z < ±1.65 to 3 sf., but for all z > ±1.520) 
 

2, 2: 2, 5  2, 6: 3, 6  3, 3: 6, 6  4, 6: 4, 10 

2, 2: 2, 9  2, 6: 3, 9  3, 3: 9, 9  4, 7: 6, 9 

2, 2: 3, 3  2, 6: 5, 5  3, 4: 9, 10  4, 7: 7, 10 

2, 2: 3, 5  2, 6: 5, 8  3, 5: 3, 6  4, 8: 9, 10 

2, 2: 4, 6  2, 6: 6, 6  3, 5: 7, 10  4, 9: 8, 8 

2, 2: 5, 8  2, 6: 6, 9  3, 6: 3, 9  4, 10: 4, 10 

2, 3: 2, 10  2, 6: 8, 8  3, 6: 5, 5  4, 10: 6, 8 

2, 3: 3, 9  2, 6: 10, 10  3, 6: 6, 10  5, 5: 6, 9 

2, 3: 4, 4  2, 7: 3, 3  3, 6: 7, 7  5, 6: 6, 8 

2, 3: 5, 9  2, 7: 4, 4  3, 6: 7, 8  5, 8: 7, 8 

2, 3: 6, 8  2, 7: 6, 8  3, 7: 7, 7  5, 9: 6, 7 

2, 3: 8, 9  2, 8: 2, 8  3, 7: 8, 9  5, 9: 8, 9 

2, 4: 2, 8  2, 8: 6, 10  3, 8: 3, 8  5, 9: 9, 9 

2, 4: 5, 6  2, 8: 7, 7  3, 8: 6, 6  5, 10: 8, 8 

2, 4: 5, 10  2, 9: 4, 5  3, 8: 7, 7  6, 7: 6, 9 

2, 4: 6, 10  2, 9: 5, 6  3, 8: 10, 10  6, 7: 9, 9 

2, 5: 3, 10  2, 9: 6, 9  3, 9: 5, 6  6, 8: 6, 10 

2, 5: 4, 7  2, 9: 8, 10  3, 9: 5, 8  6, 10: 10, 10 

2, 5: 4, 8  2, 10: 3, 3  3, 9: 9, 9  7, 7: 10, 10 

2, 5: 5, 7  2, 10: 3, 4  3, 10: 4, 7  7, 8: 7, 9 

2, 5: 6, 7  2, 10: 4, 10  4, 4: 6, 8  7, 10: 8, 9 

2, 5: 8, 10  2, 10: 5, 5  4, 5: 5, 8  8, 10: 9, 10 

2, 5: 2, 8  3, 3: 5, 8  4, 5: 7, 10  - - - - 
 

Note: As described in Table 3, the order in each pair is immaterial, as is the order of the pairs themselves 

Conclusion 

The explanatory factorial approach taken here can be directly extended to any of 

the large family of tests in which the full extent of all possible test statistics is 

created and the most extreme tail of that distribution defined as the critical region. 

This includes all the WMWt family of tests (e.g. Jonckheere-Terpstra Test, 

Kruskal-Wallis Test), Kolmogorov-Smirnov-type tests (e.g. Conover test, 

Birnbaum-Hall Test), and Pitman permutation tests (Conover, 1999). The generic 

approach is: 

 

1. Separate the experimental subjects across all factors and establish the 

test statistic for the two factors of experimental interest 

2. Sum the test statistics across all the nuisance factors to get a combined 

test statistic 
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3. Derive the probability mass function for the combined statistic under 

the null hypothesis 

4. Establish if the combined test statistic from step 2 is in the extreme 

tail of the distribution derived in step 3 

 

This method also has direct extension to factors that hold 3 or more states – if, for 

example, one ran an experiment with three or more different strains of animal, in 

several age groups of clinical patients, or with clinical results from three or more 

different hospitals, it would then be possible to form a combined U-value by 

summing the three separate results. This could be compared with a similarly-

derived probability mass function for this value under the null hypothesis. 

There are weaknesses in the method. If one sex responds in a quantitatively 

different manner to the other (interaction of treatment with another factor), this is 

not measured. Subsetting the data on the nuisance factor and doing separate 

analyses on U1 and U2 might make one suspect interaction. Ties are not obviously 

incorporated in this simple formulation, although the method for correcting for ties 

in the derivation of U1 and U2 should be applicable to give a UC that is unaffected 

by ties in U1 and U2. We are currently developing this approach to ordinal 

contingency table data, in which very extensive ties are usual. 

There are other approaches that might be adopted to achieve the same ends. 

Substituting normal scores for the ranks and then using a procedure such as 

ANOVA would be one. A Shirley test approach (Williams, 1986) of using the ranks 

themselves as though they were interval data and using a parametric procedure 

might be possible. When the test statistic for each subset of the data approximates 

to an established distribution (at it does in the Kruskal-Wallis test with the Χ2 

distribution), then combining those individual statistics may be possible for a test 

of the complete data set. Fisher's combined probability test and Weighted Z 

methods are inappropriate as they assume the probability for each table is uniformly 

distributed on the interval [0, 1], but their p values can only hold discrete values. 

However, the approach we advocate has these advantages: 

 

1. It is valid for very small groups; with 2 sexes, a 2 factor study with 

just two subjects for each sex and treatment can give significant results 

2. It is robust with any distribution in the data; the groups do not even 

have to be drawn from the same distribution family, simply 

independently of each other  
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3. Experimenters can clearly comprehend the rationale behind the test 

4. The meaning of the result is clear 

5. It is computationally simple 

 

There are numerous practical situations in which experimenters may want to 

use a non-parametric test such as the WMWt, but there exists in their study design 

an unavoidable ‘nuisance factor’ which precludes the simple application of the test. 

Animal experiments, human clinical trials data, and psychological tests that include 

data from both sexes or can be age-stratified are all examples of large classes of 

such experiments. It is very rare that one can unequivocally exclude sex or age as 

a possible latent factor in such experiments, so it would be prudent to adopt as 

routine such methods as these. In the field in which one of us works – toxicology – 

it is common for experiments to be conducted with small groups sizes (n = 3 or 4) 

for studies involving primates or dogs (there are ethical objections to primate 

experiments with large group sizes). Doing the analyses on the sexes separately 

markedly limits the power of such experiments. However, doing tests including sex 

as a factor in the analysis of the complete data sets has a substantial beneficial effect 

on the power of such experiments. Simulation shows that with group sizes of 3 and 

using data from both sexes and all dose groups the power then approaches that of 

larger studies with group sizes of 10 in which the data for the sexes is not combined 

(Holland, 2011). 
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Appendix 1 

Matlab Program Calculating f1(m, n, r) for specified m, n 

f1(m, n | r) is specified for given inputs m, n by fvector[i] = f1(m, n | i – 1). 

 
function [ fvector ] = U1( ntreat, ncntrl ) 
 
m=ntreat; 
n=ncntrl; 
 
farray=zeros(m+1,n+1,m*n+1); 
 
farray(1,1,1)=1; 
 
fvector=farray(1,1,1); 
 
for j=2:(m+1) 
 farray(j,1,1)=1; 
end; 
  
for k=2:(n+1) 
 farray(1,k,1)=1; 
end; 
 
for k=2:(n+1) 
 for j=2:(m+1) 
  for l=(1:(k-1)*(j-1)+1) 
   sum=0; 
   for h=1:min(l,k) 
    sum=sum+farray(j-1,h,l-h+1); 
   end; 
   farray(j,k,l)=sum; 
  end; 
 end; 
end; 
 
fvector=zeros(m*n+1,1); 
  
for l=1:(m*n)+1 
 fvector(l,1)=farray(m+1,n+1,l);     
end; 
 

end 
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Appendix 2 

Matlab Program Calculating f2(m, n; p, q | k) 

f2(m, n; p, q | r) is specified for given inputs m, n, p, q by fvector[i] = 

f2(m, n; p, q | i – 1). 

 
function [ fvector ] = U2( ntreat1, ncntrl1, ntreat2, ncntrl2 ) 
 
m1=ntreat1; 
n1=ncntrl1; 
m2=ntreat2; 
n2=ncntrl2; 
 
m=max(m1,m2); 
n=max(n1,n2); 
 
farray=zeros(m+1,n+1,m*n+1); 
 
farray(1,1,1)=1; 
 
fvector=farray(1,1,1); 
 
for j=2:(m+1) 
farray(j,1,1)=1; 
end; 
 
for k=2:(n+1) 
 farray(1,k,1)=1; 
end; 
 
for k=2:(n+1) 
 for j=2:(m+1) 
  for l=(1:(k-1)*(j-1)+1) 
   sum=0; 
   for h=1:min(l,k) 
    sum=sum+farray(j-1,h,l-h+1); 
   end; 
   farray(j,k,l)=sum; 
  end; 
 end; 
end; 
 
fvector1=zeros(m1*n1+1,1); 
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for l=1:(m1*n1)+1 
 fvector1(l,1)=farray(m1+1,n1+1,l);     
end; 
 
fvector2=zeros(m2*n2+1,1); 
 
for l=1:(m2*n2)+1 
 fvector2(l,1)=farray(m2+1,n2+1,l);     
end; 
 
fmatrix=zeros(m1*n1+1,m2*n2+1); 
 
for j=1:m1*n1+1 
 for k=1:m2*n2+1 
  fmatrix(j,k)=fvector1(j,1)*fvector2(k,1); 
 end; 
end; 
 
fvector=zeros(m1*n1+m2*n2+1,1); 
 
for j=1:m1*n1+m2*n2+1 
 sum=0; 
 for k=max(1,j-m1*n1):m2*n2+1 
  if k-j>0 
   break; 
  end; 
  sum=sum+fmatrix(j-k+1,k);      
 end; 
 fvector(j,1)=sum; 
end; 
 

end 
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