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The estimation of ridge parameter is an important problem in the ridge regression method, 
which is widely used to solve multicollinearity problem. A comprehensive study on 28 
different available estimators and five proposed ridge estimators, KB1, KB2, KB3, KB4, 
and KB5, is provided. A simulation study was conducted and selected estimators were 

compared. Some of selected ridge estimators performed well compared to the ordinary 
least square (OLS) estimator and some existing popular ridge estimators. One of the 
proposed estimators, KB3, performed the best. Numerical examples were given. 
 
Keywords: Linear regression, mean square error, multicollinearity, ridge regression, 
simulation study 

 

Introduction 

Applied researchers are often concerned about models specification under 

consideration, especially with regards to problems associated with errors. Models 

specification can be due to omission of one or several relevant variables, inclusion 

of unnecessary explanatory variables, wrong functional forms, autocorrelation etc. 

However, for modeling data, there are other problems that also might influence 

results. This problem occurs in situations when explanatory variables are highly 

inter-correlated. In practice, there may be strong or near strong linear relationship 

exist among explanatory variables. Thus, independence assumption of explanatory 

variables is no longer valid, which causes problem of multicollinearity. In the 

presence of multicollinearity, the OLS estimator could become unstable due to their 

large variance, which leads to poor prediction and wrong inference about model 

parameters.  Empirically, problem of multicollinearity can be observed, for 

example, in cement production, when amount of different compounds in clinkers is 
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regressed on the heat evolved of cement (See Muniz and Kibria (2009) for details). 

Another possible example, when a researcher is interested to predict cholesterol 

level of patients based on some predictors: age, body weight, blood pressure, food 

intake and stress causes multicollinearity. In the presence of this noise of the model, 

regression coefficients may be statistically insignificant or have wrong sign or have 

large sampling variance that may result in wide confidence interval for individual 

parameters. With these errors, it is very difficult to make valid statistical inferences 

and appropriate prediction. Therefore, resolve multicollinearity problem is a 

serious issue for the linear regression practitioners.  

Problem of multicollinearity can be solved by various methods, namely to 

collect additional data, reselecting variables, principle component regression 

methods, re-parameterizing the model, ridge regression method, and others. In this 

paper, we will consider the most widely used ridge regression method. The concept 

of ridge regression was first proposed by Hoerl and Kennard (1970) to handle 

multicollinearity problem for engineering data. They found that there is a nonzero 

value of k (ridge parameter) for which mean squared error (MSE) for the ridge 

regression estimator is smaller than variance of the ordinary least squares (OLS) 

estimator. Many authors at different period of times worked in this area of research 

and developed and proposed different estimators for k. To mention a few, Hoerl 

and Kennard (1970), Hoerl, Kennard, and Baldwin (1975), McDonald and 

Galarneau (1975), Lawless and Wang (1976), Dempster, Schatzoff, and Wermuth 

(1977), Gibbons (1981), Kibria (2003), Khalaf and Shukur (2005), Alkhamisi and 

Shukur (2008), Muniz and Kibria (2009), Gruber (2010), Muniz, Kibria, Mansson, 

and Shukur (2012), Mansson, Shukur, and Kibria (2010), and very recently 

Hefnawy and Farag (2013), Aslam (2014), and Arashi and Valizadeh (2015), 

among others. Since aforementioned ridge regression estimators are considered by 

several researchers at different times and under different simulation conditions, 

they are not comparable as a whole. The objective of this article is to do a 

comprehensive study on 28 different ridge estimators those are available in 

literature and compare them based on minimum MSE criterion. Investigation has 

been carried out using a Monte Carlo simulation. A number of different models 

have been studied where variance of the random error, correlation among 

explanatory variables, sample size and unknown coefficient vector were varied. 

The organization of the paper is as follows. We first review the available methods 

for estimating k, followed by a Monte Carlo simulation study. Some applications 

have then been considered and, finally, some concluding remarks are presented. 
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Statistical Methodology 

Ridge Regression Estimators 

To describe the ridge regression, consider following multiple linear regression 

model: 

 

  y Xβ e   (1) 

 

where y is an n × 1 vector of observations, β is a p × 1 vector of unknown 

regression coefficients, X is an n × p observed matrix of the regression, and e is an 

n × 1 vector of random errors which is distributed as multivariate normal with mean 

0 and covariance matrix σ2In, In being an identity matrix of order n. The OLS 

estimator of β is obtained as 

 

  
1ˆ 

β X'X X'y   

 

and covariance matrix of β̂  is obtained as    
12ˆCov 


β X'X . It is easy to see 

that both β̂  and  ˆCov β  are heavily depend on characteristics of the matrix X'X. 

The standard regression model assumes that regressors are nearly independent. 

However, in many practical situations (e.g. engineering in particular (Hoerl & 

Kennard, 1970)), often find that regressors are nearly dependent. In that case, the 

matrix X'X becomes ill conditioned (i.e. det(X'X) ≈ 0). If X'X is ill conditioned, 

then β̂  is sensitive to a number of errors and therefore meaningful statistical 

inference becomes very difficult for practitioners. To overcome this problem, Hoerl 

and Kennard (1970) suggested a small positive number to be added to diagonal 

elements of the matrix X'X. Thus resulting estimators are obtained as 

 

 
   

1ˆ

ˆ

pk k


 



β X'X I X'y

Wβ

  (2) 

 

where W = [Ip + kC-1]-1, k ≥ 0, C = X'X, and Ip is an identity matrix of order p. 

This is known as the ridge regression estimator. Since the quantity [X'X + kIp] in 

(2) is always invertible, there always exist a unique solution for  ˆ kβ . The ridge 

regression estimator is a biased estimator and, for a positive value of k, this 
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estimator provides a smaller MSE compared to the OLS estimator. From (2), we 

observe that as k → 0,  ˆ ˆk β β , and as k → ∞,  ˆ 0k β . 

The bias, variance matrix, and MSE expression of  ˆ kβ  are respectively 

given as follows: 

 

 

    

    

      

1

2 1

2 1 2 2

ˆBias E

ˆV

ˆMSE tr

k k k

k

k k C k









 

   



 

β β C β

β WC W

β WC W' β β

  

 

where C(k) = [C + kIp]. 

The parameter k is known as the “biased” or “ridge” parameter and it must be 

estimated using real data. Most of recent efforts in the area of multicollinearity and 

ridge regression estimators have concentrated on estimating the value of k. We will 

review statistical methodology used to analyze the estimation of k in the next 

section. 

Estimation of Ridge Parameter k 

Suppose there exists an orthogonal matrix D such that D'CD = Λ, where 

Λ = diag(λ1, λ2,…, λp) contains eigenvalues of the matrix X'X. The orthogonal 

version of (1) is 

 

 
* y X α e   (3) 

 

where X* = XD and α = D'β. Then the generalized ridge regression estimator is 

given as 

 

    
1

* * *ˆ , 0k k


  α X 'X K X 'y   (4) 

 

where K = diag(k1, k2,…, kp), ki > 0 and   1 *ˆ k α Λ X 'y  is the OLS estimators of 

α. 

It follows from Hoerl and Kennard (1970) that ki minimizes   ˆMSE kα , 

which is defined as 
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2 2

2

2 2
1 1

ˆ ˆˆˆ( ( ))
ˆ ˆ( ) ( )

p p

i i i

i ii i i i

k
MSE k

k k

 
 

  

 
 

    (5) 

 

where the λi are eigenvalues of the matrix X'X, ˆ
i  is the ith element of α̂ , and 

 

 

2

2

2

2 1

ˆˆ
ˆ

ˆ
ˆ

ˆˆ '

i

i

n

ii

i i j i

k

e

n p

e y





 






 



X α

 

 

Now we will review available methods in literature to estimate the value of k. 

Hoerl and Kennard (1970) suggested k to be (denoted here by
HKk̂ ) 

 

 
2

HK 2

max

ˆˆ
ˆ

k



   (6) 

 

where max̂  is the maximum element of α̂ . Hoerl and Kennard claimed that (6) 

gives smaller MSE than the OLS method. 

Hoerl et al. (1975) proposed k to be (denoted here by HKBk̂ ) 

 

 
2

HKB

ˆˆ
ˆ ˆ

p
k



α'α

  (7) 

 

Lawless and Wang (1976) suggested k to be (denoted here by LWk̂ ) 

 

 
2

LW
ˆ

ˆ ˆ

p
k



α'X'Xα

  (8) 

 

Hocking, Speed, and Lynn (1979) suggested k to be (denoted here by HSLk̂ ) 
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 

 

2

2 1
HSL 2

2

1

ˆ
ˆ ˆ

ˆ

p

i ii

p

i ii

k














  (9) 

 

Kibria (2003) proposed the following estimators for k based on arithmetic mean 

(AM), geometric mean (GM), and median of 2 2ˆˆ
i  . These are defined as follows: 

The estimator based on AM (denoted by 
AMk̂ ) 

 

 
2

AM 2
1

ˆ1ˆ
ˆ

p

i i

k
p





    (10) 

 

The estimator based on GM (denoted by 
GMk̂ ) 

 

 

 

2

GM 1

2

1

ˆˆ

ˆ
p p

ii

k









  (11) 

 

The estimator based on median (denoted by 
MEDk̂ ) 

 

 
2

2

ˆ
, 1,2, ,

ˆ
i

Median i p




 
 

 
  (12) 

 

Based on modification of HKk̂ , Khalaf and Shukur (2005) suggested k to be 

(denoted by KSk̂ ) 

 

 
 

2

max
KS 2 2

max max

ˆˆ
ˆˆ

k
n p

 

  


 
  (13) 

 

where λmax is the maximum eigenvalue of the matrix X'X. 

Following Kibria (2003) and Khalaf and Shukur (2005), Alkhamisi, Khalaf, 

and Shukur (2006) proposed the following three estimators of k: 
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 

2
KS

arith 2 2
1

ˆ1ˆ
ˆˆ

p

i i

i i i i

k
p n p



 


 

   (14) 

 

 
 

2
KS

max 2 2

ˆˆ max
ˆˆ

i i

i i i

k
n p



 

 
     

  (15) 

 

 
 

2
KS

md 2 2

ˆˆ median
ˆˆ

i i

i i i

k
n p



 

 
     

  (16) 

 

Applying algorithm of GM and square root to Khalaf and Shukur (2005), Kibria 

(2003), and Alkhamisi et. al (2006), Muniz and Kibria (2009) proposed the 

following seven estimators of k: 

 

 
 

1

2
KS

gm 2 2
1

ˆˆ
ˆˆ

p p
i i

i i i i

k
n p



 

 
     
   (17) 

 

 
KM2

2 2

1ˆ max
ˆˆ

i

k
 

 
 
 
 

  (18) 

 

 
2

KM3 2

ˆˆ max
ˆ

i

k




 
  

 
 

  (19) 

 

 

1

KM4
2 2

1

1ˆ

ˆˆ

pp

i
i

k
 

 
 
 
 
   (20) 

 

 

1

2

KM5 2
1

ˆˆ
ˆ

p p

i i

k




 
  
 
   (21) 

 

 
KM6

2 2

1ˆ median
ˆˆ

i

k
 

 
 
 
 

  (22) 
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2

KM7 2

ˆˆ median
ˆ

i

k




 
  

 
 

  (23) 

 

Following Alkhamisi and Shukur (2008) and based square root transformations, 

Muniz et al. (2012) proposed the following five estimators of k: 

 

 KM8

1ˆ max
i

k
q

 
  

 
  (24) 

 

  KM9
ˆ max ik q   (25) 

 

 

1

KM10

1

1ˆ
p p

i i

k
q

 
  
 
   (26) 

 

 

1

KM11

1

ˆ
p p

i

i

k q


 
  
 
   (27) 

 

 KM12

1ˆ median
i

k
q

 
  

 
  (28) 

 

where 
 

2

max

2 2

max

ˆ

ˆˆ
i

i

q
n p

 

  


 
 . 

Khalaf (2012), based on modification of HKk̂ , proposed k to be (denoted by 

GKk̂ ) 

 

 
 

GK HK

max min

2ˆ ˆk k
 

 
 '

  (29) 

 

where λmax and λmin are the largest and smallest eigenvalues of the matrix X'X, 

respectively. 

Nomura (1988) suggested k to be (denoted by HMOk̂ ) 
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2

HMO 1
2 2

2

2
1

ˆˆ

ˆ
ˆ 1 1

ˆ

p

i
i i

i

p
k




 




  

          
   



  (30) 

 

Dorugade and Kashid (2010), based on (7), suggested k to be (denoted by 
Dk̂ ) 

 

 
 D HKB

max

1ˆ ˆmax 0,
VIFi

k k
n

 
  

 
 

  (31) 

where 2
1VIF
1i

iR



, i = 1, 2,…, p is variance inflation factor of the ith regressor 

and 2

iR  is the coefficient of determination for the regression of Xi on other 

covariates, X1, X2,…, Xi, Xi+1,…, Xp (a regression equation without response 

variable). 

Crouse, Jin, and Hanumara (1995), for k > 0 and using unbiased ridge 

regression (URR) estimator (k, J) = (X'X + kIp)-1(X'y + Jk), k ≥ 0, where 

J ~ 
2

,
k

 
 
 
β , proposed k to be (denoted by CJHk̂ ) 

 

 
   

     

     

2
12

OLS OLS

OLS OLS

CJH 2

12

OLS OLS

ˆ ˆ ˆ ˆif tr
ˆ ˆ

ˆ

ˆ
otherwise

ˆ ˆ ˆ tr

p

k
p













  

 
 

   


β J ' β J X'X
β J ' β J

β J ' β J X'X

  (32) 

 

Batah and Gore (2009), using modified URR (known as MUR) estimator for 

β as 

 

        
1 1

p pk k k k k
        

      Jβ I X'X I X'X I X'y J  , 

 

suggested k to be (denoted by FGk̂ ) 
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2

FG 1
4 2 2 22

2

4 2 2
1

ˆˆ

ˆ ˆ ˆ6 6
ˆ

ˆ ˆ ˆ4

p

i i i i i i
i

i

p
k



     


  


 

      
  



  (33) 

 

In the next section, we evaluated 28 different ridge estimators that are defined in 

equations (6) to (33) to know which estimators show better performances under our 

simulation study flowchart. 

The Monte Carlo Simulation 

The aim of this study is to compare the performance of different ridge estimators 

and find some good estimators for practitioners. Because a theoretical comparison 

is not possible, a simulation study has been conducted using MATLAB 8.0. The 

design of this simulation study depends on what factors are expected to affect 

properties of estimators under investigation and what criteria are being used to 

judge results. Because the degree of collinearity among explanatory variables (Xs) 

is of central importance, we followed Kibria (2003) in generating Xs using the 

following equation: 

 

  
1

2 21 , 1,2, , , 1,2, ,ij i j ipX z z i n j p        (34) 

 

where zij are independent standard normal pseudo-random numbers and γ represents 

correlation between any two Xs. These variables are standardized so that X'X and 

X'y are in correlation forms. The n observations for y are determined by the 

following equation: 

 

 0 1 1 2 2 , i 1,2, ,ni i i p ip iy X X X e            (35) 

 

where the ei are i.i.d. N(0, σ2) and, without loss of any generality, we will assume 

zero intercept for (35). 

Correlation Coefficient, Sample Size, and Replications 

A number of factors such as γ, n, σ, and number of replications can affect properties 

of the estimators. Since our objective is to compare performance of estimators 

according to the strength of multicollinearity, we used different degrees of 
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correlation between variables and let γ=0.70, 0.80, and 0.90. Eigenvalues and 

eigenvectors of the correlation matrix indicate the degree of multicollinearity. One 

of the possible widely used estimators to measure the strength of multicollinearity 

called condition number (Vinod & Uallh, 1981) is defined as follows 

 

 max

min





=   (36) 

 

where λmax and λmin are the largest and the smallest eigenvalues of the matrix X'X, 

respectively. If λmin = 0, then κ is infinite, which means perfect multicollinearity 

among Xs. If λmax = λmin, then κ = 1 and the Xs are said to be orthogonal. Large 

values of κ indicate serious multicollinearity. Usually, a κ between 30 and 100 

indicates a moderate to strong correlation, and a κ greater than 100 suggests severe 

multicollinearity. An eigenvalue that approaches 0 indicates a very strong linear 

dependency between Xs. 

Because a purpose of the study is to see the effect of n on the performance of 

the estimators, n = 20 and n = 50 were considered. The number of Xs is also of great 

importance since the bad impact of the collinearity on MSE might be stronger when 

there are more Xs in the model. Also, p = 5 is used in our study. To see whether the 

magnitude of σ has a significant effect on the performance of the proposed 

estimators, we used σ = 0.01, 0.5, 1.0, and 5.0. For each set of Xs, we selected 

coefficients β1, β2,…, βp as normalized eigenvectors corresponding to the largest 

eigenvalue of the matrix X'X subject to constraint β'β = 1. Thus, for n, p, β, λ, γ, 

and σ, sets of Xs are generated. Then the experiment was repeated 5000 times by 

generating new error terms. Values of k of different selected estimators and average 

MSEs are estimated and presented them in Tables 5 to 10. In these tables, average 

k was calculated for ridge estimators and the proportion of replications for which 

OLS estimators produce a smaller MSE than selected ridge regression estimators 

and are presented in parenthesis. 

Results 

Performance as a Function of σ 

In Tables 5 to 10, the MSEs of selected estimators are provided as a function of σ. 

To understand very clearly for γ = 0.70 and n = 20, performance of estimators as a 

function of σ is provided in Figure 1. From results, we observed as σ increases, 
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MSEs also increases. Also for smaller σ (e.g. σ = 0.1), performances of selected 

estimators do not differ greatly. It is noticeable that all ridge estimators have smaller 

MSE than the OLS estimator except σ = 0.1. The performance of the GM, KM2, 

KM3, KM4, KM5, KM6, KM7, KM8, KM9, KM10, KM11, HMO, and FG 

estimators are better compared to the rest of estimators. 
 
 

 
 
Figure 1. Performance of estimators as a function of σ 

 

 

However, when σ is large (e.g. σ = 5.0), the GM, MED, KM3, HMO, CJH, 

and FG estimators outperform all other estimators in the sense of smaller MSE (see 

Figure 1). A significant increase in MSEs were observed when a shifting from 

σ = 1.0 to σ = 5.0. 

Performance as a Function of γ 

MSEs of selected estimators were also analyzed as a function of γ for selected 

values of n, p, and σ. These results are available on request from the authors. For a 

clear understanding, for (σ = 1, n = 20) and (σ = 5, n = 50), performances of 

estimators are provided in Figure 2 and Figure 3, respectively. It is clear that, as γ 

increases, the MSEs also increase (see Figures 2 and 3). When γ increases (see 

Figure 3), higher correlation between Xs resulted in an increase of MSEs of ridge 

estimators. In general, HSL, GM, MED, KS_Max, KM2, KM3, KM5, KM8, KM9, 

HMO, and FG performed better than other estimators. 
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Performance as a Function of n 

MSEs of selected estimators were evaluated as a function of n, for which tabulated 

results are available from the authors on request. For given γ = 0.8, p = 5, 

performances of estimators as a function of n for σ = 1 and σ = 5 are provided in 

Figure 4 and Figure 5, respectively. We observed that, as n increases, MSEs 

decrease and the performance of estimators do not vary significantly. An important 

change has been observed in MSEs when σ shifts from 1 to 5. We observed that, in 

general, when n increases, MSEs decrease, which is true for large values of γ and 

σ. Performance of estimators does not vary greatly for small values of σ and γ. 
 
 

 
 
Figure 2. Performance of estimators as a function of γ for σ = 1 and n = 20 
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Figure 3. Performance of estimators as a function of γ for σ = 5 and n = 50 

 

 
 
 

 
 
Figure 4. Performance of estimators as a function of n for γ = 0.8 and σ = 1.0 
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Figure 5. Performance of estimators as a function of n for γ = 0.8 and σ = 5.0 

 

 

Some Proposed Ridge Estimators 

Based on the above, the following five new estimators of k are proposed: 

 

1. KB1 = Arithmetic mean of (GM, MED, KM3, HMO, CJH, FG) 

2. KB2 = Median(GM, MED, KM3, HMO, CJH, FG) 

3. KB3 = Max(GM, MED, KM3, HMO, CJH, FG) 

4. KB4 = Geometric mean of (GM, MED, KM3, HMO, CJH, FG) 

5. KB5 = Harmonic mean of (GM, MED, KM3, HMO, CJH, FG) 

 

MSEs values for n = 10, 20, and 30, γ = 0.9, and p = 5 are reported for σ = 3 and 

σ = 10 in Table A7 and Table A8, respectively, for 28 selected existing estimators 

and our proposed 5 ridge estimators. For better understanding, MSEs are plotted in 

Figures 6 and 7. It appears from these results that all proposed estimators are 

performing well under some conditions. However, proposed KB3 performed the 

best followed by KB1 (See Figures 6 and 7). 
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Figure 6. Performance of estimators as a function of n for γ = 0.9 and σ = 3.0 

 

 
 
 

 
 
Figure 7. Performance of estimators as a function of n for γ = 0.9 and σ = 10.0 
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Application 

Example 1 

Consider an example which has been taken from Pasha and Shah (2004) to compare 

the performances of the selected estimators. The following regression model is 

considered: 

 

 0 1 1 2 2 3 3 4 4 5 5 , 1,2,i i i i i i iy X X X X X e i n               (37) 

 

where yi = number of persons employed (million), Xi1 = land cultivated (million 

hectares), Xi2 = inflation rate (%), Xi3 = number of establishments, Xi4 = population 

(million), Xi5 = literacy rate (%), and n=28. For details about the data set, see Pasha 

and Shah (2004). 
 
 
Table 1. Correclations among exclamatory variables 

 

  Xi1 Xi2 Xi3 Xi4 Xi5 yi 

Xi1 1.0000 0.6573 0.9427 0.9761 0.9564 0.9731 

Xi2 0.6573 1.0000 0.6232 0.7062 0.6905 0.6926 

Xi3 0.9427 0.6232 1.0000 0.9633 0.8672 0.9437 

Xi4 0.9761 0.7062 0.9633 1.0000 0.9506 0.9930 

Xi5 0.9564 0.6905 0.8672 0.9506 1.0000 0.9572 

yi 0.9731 0.6926 0.9437 0.9930 0.9572 1.0000 
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Figure 8. MSE of selected ridge estimators 

 

 

The correlation matrix of Xs in (37) is presented in Table 1. It is observed that 

the Xs are highly correlated. Moreover, κ = 38115.32, which implies the existence 

of multicollinearity in the data set. So it is adequate to compare proposed ridge 

estimators with the real data set. Estimated MSEs along with ridge regression 

coefficients are presented in Table 2 and, for a better presentation, MSEs are plotted 

in Figure 8. 

The MSE of estimators is estimated by 
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where k̂  is one of HK HKB KB5
ˆ ˆ ˆ, , ,k k k , and other terms are explained in (5). It is 

evident from Table 2 and Figure 8 that all ridge estimators perform better than the 

OLS estimator. However, HKB, AM, KM4, KM6, KM10, KM12, KD, and our five 

proposed estimators are performing better as compared to other ridge estimators. 
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Table 2. MSE and estimated ridge regression coefficients of the estimators 

 

Estimators MSE ˆ
1
β  ˆ

2
β  ˆ

3
β  ˆ

4
β  ˆ

5
β  

OLS 1.6578 -1.2600 0.3123 -0.0623 -0.2276 0.0068 

HK 1.3726 -0.0969 0.2812 -0.0604 -0.2272 0.0069 

HKB 1.0182 -0.2889 0.3029 -0.0618 -0.2275 0.0069 

LW 1.1841 -1.2598 0.3123 -0.0623 -0.2276 0.0069 

HSL 1.3180 -0.0001 0.0013 -0.0009 -0.0547 0.0068 

AM 1.0182 -0.2889 0.3029 -0.0618 -0.2275 0.0068 

GM 1.5638 -0.0181 0.1913 -0.0526 -0.2256 0.0067 

MED 1.4714 -0.0534 0.2584 -0.0588 -0.2269 0.0066 

KS 1.3726 -0.0969 0.2812 -0.0604 -0.2272 0.0063 

KS_AM 1.5918 -0.0003 0.0066 -0.0043 -0.1394 0.0064 

KS_MAX 1.4179 -0.0001 0.0010 -0.0009 -0.0547 0.0068 

KS_MED 1.4164 -0.0772 0.2737 -0.0599 -0.2271 0.0066 

KS_GM 1.4258 -0.0730 0.2716 -0.0597 -0.2271 0.0068 

KM2 1.1505 -0.2088 0.2984 -0.0615 -0.2274 0.0060 

KM3 1.6268 -0.0049 0.0924 -0.0368 -0.2204 0.0068 

KM4 0.7061 -0.8279 0.3108 -0.0622 -0.2275 0.0059 

KM5 1.3945 -0.0870 0.2777 -0.0602 -0.2272 0.0068 

KM6 0.6951 -0.6600 0.3097 -0.0622 -0.2275 0.0066 

KM7 1.2737 -0.1441 0.2915 -0.0611 -0.2273 0.0063 

KM8 1.3244 -0.1194 0.2870 -0.0608 -0.2273 0.0068 

KM9 1.4179 -0.0001 0.0013 -0.0009 -0.0547 0.0067 

KM10 0.9905 -1.1420 0.3120 -0.0623 -0.2275 0.0066 

KM11 1.5638 -0.0181 0.1913 -0.0526 -0.2256 0.0069 

KM12 0.7842 -0.9608 0.3114 -0.0623 -0.2275 0.0068 

GK 1.3726 -0.0969 0.2812 -0.0604 -0.2272 0.0068 

HMO 1.2170 -0.1729 0.2952 -0.0613 -0.2274 0.0070 

KD 1.0182 -0.2889 0.3029 -0.0618 -0.2275 0.0062 

CJH 1.4740 -0.0523 0.2574 -0.0587 -0.2269 0.0064 

FG 1.2795 -0.1412 0.2910 -0.0610 -0.2273 0.0069 

KB1 0.9902 -0.0193 0.1959 -0.0531 -0.2257 0.0065 

KB2 0.8727 -0.0528 0.2579 -0.0587 -0.2269 0.0068 

KB3 0.9296 -0.0049 0.0926 -0.0368 -0.2204 0.0066 

KB4 0.9045 -0.0438 0.2486 -0.0580 -0.2268 0.0062 

KB5 0.9165 -0.0771 0.2736 -0.0599 -0.2271 0.0068 
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Example 2 

Consider the data set on total national research and development expenditures as a 

percent of gross national product originally due to Gruber (1998) and later by 

Akdeniz and Erol (2003), among others. The regression model is defined as 

 

 0 1 1 2 2 3 3 4 4 , 1,2,i i i i i iy X X X X e i n             (39) 

 

where y = percent spent by United States, X1 = percent spent by France, X2 = percent 

spent by West Germany, X3 = percent spent by Japan, and X4 = percent spent by the 

Soviet Union. The correlation matrix of Xs in (39) is tabulated in Table 3. We found 

that the Xs are highly correlated. Moreover, κ = 93.6823 implies the existence of 

multicollinearity in the data set so it is reasonable to evaluate proposed ridge 

estimators with the real data set. Estimated MSEs along with regression coefficients 

are tabulated in Table 4 and, for a better presentation, MSEs are presented in Figure 

9. It is evident from Table 4 and Figure 9 that all ridge estimators outperformed the 

OLS estimator. However, all ridge estimators except KM2, KM3, KM4, KM5, 

KM6, KM7, KM8, KM10, and KM12 have smaller MSE than the OLS estimator. 
 
 
Table 3. Correlations among the variables. 

 

 Xi1 Xi2 Xi3 Xi4 yi 

Xi1 1.0000 0.8877 0.9248 0.3090 0.9776 

Xi2 0.8877 1.0000 0.9621 0.1573 0.9080 

Xi3 0.9248 0.9621 1.0000 0.3276 0.9565 

Xi4 0.3090 0.1573 0.3276 1.0000 0.3482 

yi 0.9776 0.9080 0.9565 0.3482 1.0000 
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Table 4. MSEs and the estimated ridge regression coefficients of the estimators 

 

Estimators MSE ˆ
1
β  ˆ

2
β  ˆ

3
β  ˆ

4
β  

OLS 1.2595 -0.1623 0.4616 0.1733 0.4462 

HK 0.0628 -0.1343 0.3975 0.1716 0.4462 

HKB 0.0588 -0.1177 0.3569 0.1702 0.4462 

LW 0.0804 -0.1618 0.4605 0.1733 0.4462 

HSL 0.0622 -0.1327 0.3937 0.1715 0.4462 

AM 0.0588 -0.1177 0.3569 0.1702 0.4462 

GM 0.0602 -0.1026 0.3181 0.1686 0.4462 

MED 0.0588 -0.1170 0.3534 0.1702 0.4462 

KS 0.0628 -0.1344 0.3975 0.1716 0.4462 

KS_AM 0.0588 -0.1176 0.3566 0.1702 0.4462 

KS_MAX 0.0724 -0.0798 0.2557 0.1652 0.4462 

KS_MED 0.0638 -0.1367 0.4031 0.1718 0.4462 

KS_GM 0.0613 -0.1302 0.3875 0.1713 0.4462 

KM2 0.2646 -0.0005 0.0017 0.0101 0.4295 

KM3 0.1765 -0.0203 0.0720 0.1302 0.4459 

KM4 0.2613 -0.0008 0.0029 0.0162 0.4361 

KM5 0.1463 -0.0315 0.1104 0.1451 0.4460 

KM6 0.2621 -0.0007 0.0026 0.0146 0.4349 

KM7 0.1523 -0.0293 0.1022 0.1426 0.4460 

KM8 0.2887 -0.0006 0.0001 0.0009 0.3057 

KM9 0.0931 -0.0605 0.2005 0.1605 0.4462 

KM10 0.2721 -0.0001 0.0004 0.0025 0.3833 

KM11 0.0602 -0.1026 0.3181 0.1686 0.4462 

KM12 0.2764 -0.0001 0.0003 0.0017 0.3578 

GK 0.0588 -0.1160 0.3525 0.1701 0.4462 

HMO 0.0726 -0.0794 0.2552 0.1651 0.4462 

KD 0.0643 -0.1377 0.4056 0.1718 0.4462 

CJH 0.0713 -0.0810 0.2597 0.1654 0.4462 

FG 0.0896 -0.0632 0.2084 0.1613 0.4462 

KB1 0.0705 -0.0554 0.1851 0.1588 0.4461 

KB2 0.0819 -0.0802 0.2574 0.1653 0.4462 

KB3 0.0765 -0.0203 0.0720 0.1302 0.4459 

KB4 0.0843 -0.0747 0.2420 0.1642 0.4460 

KB5 0.0867 -0.0876 0.2780 0.1666 0.4462 
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Figure 9. MSE of selected ridge estimators. 

 

Conclusions 

Based on our simulation results, the following conclusions can be drawn: As σ 

increases, MSE have a negative effect, meaning that MSE increases. As γ increases, 

MSE also increases. When n increases, MSE decreases even when γ and σ are large. 

In all situations, all ridge estimators have smaller MSE than the OLS estimator. 

When σ = 5.0, GM, KM3, MED, KMO, CJH, and FG outperformed all other 

estimators in the sense of producing smaller MSE. Two real life examples have 

been studied. Based on the results of simulations and numerical examples, 

estimators HSL, AM, GM, MED, KS_MAX, KM2, KM3, KM5, KM8, KM9, 

KMO, CJH, FG, and proposed KB1, KB2, KB3, KB4, and KB5 performed better 

than the rest in the sense of small MSE and may be recommended to practitioners. 
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Appendix 

 
Table A1. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than ridge estimators for n = 20, p = 5, and γ = 0.7. Condition number κ = 26.53 
 

Estimator σ = 0.1 σ = 0.5 σ = 1.0 σ = 5.0 

OLS 0.8001 1.0294 1.8532 27.9287 

HK 0.8017 (0.0275, 96.3) 0.9957 (0.5307, 37.6) 1.4446 (1.5525, 18.80) 11.3570 (82.1698, 0.08) 

HKB 0.8031 (0.0504, 96.3) 0.9720 (1.1334, 39.6) 1.2765 (3.4790, 20.60) 8.7257 (9.7970, 0.08) 

LW 0.8023 (0.0025, 96.3) 1.0218 (0.0620, 35.3) 1.7174 (0.2358, 16.60) 17.8015 (1.4258, 0.16) 

HSL 0.8018 (0.0282, 96.3) 0.9759 (0.7261, 39.5) 1.2452 (2.9035, 21.60) 7.7684 (12.0529, 0.08) 

AM 0.8031 (0.0504, 96.3) 0.9720 (1.1334, 39.6) 1.2765 (3.4790, 20.60) 8.7257 (9.7970, 0.08) 

GM 0.8036 (0.0605, 96.3) 0.9488 (2.3970, 41.4) 1.1223 (12.4590, 20.60) 3.2072 (46.3951, 0.08) 

MED 0.8034 (0.0582, 96.3) 0.9600 (1.7633, 40.5) 1.1681 (10.4330, 22.30) 3.8485 (43.8037, 0.08) 

KS 0.8017 (0.0272, 96.3) 0.9985 (0.4358, 37.3) 1.5160 (0.9018, 21.80) 15.1509 (1.5806, 0.20) 

KS_AM 0.8035 (0.0588, 96.3) 0.9904 (0.4064, 37.8) 1.5265 (0.6275, 18.40) 16.2535 (0.9005, 0.20) 

KS_MAX 0.8076 (0.1326, 96.3) 0.9708 (0.7990, 39.8) 1.3412 (1.4414, 17.70) 8.9894 (2.6993, 0.20) 

KS_MED 0.8026 (0.0435, 96.3) 0.9922 (0.3735, 37.6) 1.5860 (0.4658, 19.80) 19.9875 (0.4988, 0.16) 

KS_GM 0.8030 (0.0490, 96.3) 0.9975 (0.3156, 37.4) 1.6066  (0.4259, 17.40) 20.005 (0.5052, 0.16) 

KM2 0.9044 (6.3585, 96.3) 0.9481 (1.5384, 43.7) 1.3699 (1.0418, 17.20) 14.8189 (0.8429, 0.12) 

KM3 0.8200 (0.3931, 92.6) 0.9308 (9.4316, 45.0) 1.0795 (217.0360, 18.50) 3.0143 (76.7550, 0.08) 

KM4 0.8922 (4.3038, 95.9) 0.9680 (0.7983, 40.6) 1.5727 (0.4285, 22.40) 22.8690 (0.2390, 0.12) 

KM5 0.8131 (0.2414, 92.9) 0.9550 (1.4246, 41.2) 1.2430 (2.9300, 17.60) 7.2046 (5.5596, 0.16) 

KM6 0.8934 (4.4212, 96.1) 0.9629 (0.9310, 41.3) 1.5454 (0.5069, 20.70) 22.5850 (0.2727, 0.12) 

KM7 0.8128 (0.2366, 92.8) 0.9608 (0.2220, 40.8) 1.2757 (2.4513, 17.48) 7.6965 (5.0834, 0.16) 

KM8 0.9338 (42.3390, 96.1) 0.9416 (12.9320, 46.8) 1.2885 (1.6238, 20.60) 12.5045 (1.2550, 0.12) 

KM9 0.8083 (0.1521, 92.2) 0.9422 (2.1465, 43.6) 1.2042 (2.6788, 18.90) 8.5190 (2.9051, 0.20) 

KM10 0.9277 (19.6900, 96.3) 0.9556 (1.2124, 42.5) 1.4762 (0.6735, 21.00) 19.0340 (0.5044, 0.12) 

KM11 0.8035 (0.0587, 92.5) 0.9704 (0.9319, 39.5) 1.3472 (1.6037, 17.78) 11.6359 (2.0797, 0.20) 

KM12 0.9287 (20.7930, 96.3) 0.9554 (1.3005, 42.5) 1.5019 (0.6313, 19.60) 20.5370 (0.4299, 0.16) 

GK 0.8042 (0.0705, 96.3) 0.9923 (0.5737, 37.7) 1.4313 (1.5955, 17.60) 11.1205 (82.2120, 0.08) 

HMO 0.8456 (1.2774, 95.2) 0.9255 (8.9203, 43.7) 0.9871 (18.1095, 22.80) 2.7934 (28.6862, 0.20) 

KD 0.7967 (0.0077, 45.2) 1.0030 (1.0936, 38.8) 1.2757  (3.4679, 20.72) 8.0586 (9.8342, 0.16) 

CJH 0.8338 (0.7991, 96.4) 0.9738 (24.1710, 45.8) 1.0909 (23.3341, 23.80) 4.7328 (28.8315, 0.20) 

FG 0.8116 (0.2832, 96.5) 0.9483 (4.2218, 42.5) 1.0504 ( 9.0792, 22.64) 3.7383 (15.1262, 0.16) 
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Table A2. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than ridge estimators for n = 20, p = 5, and γ = 0.8. Condition number κ = 44.43 
 

Estimator σ = 0.1 σ = 0.5 σ = 1.0 σ = 5.0 

OLS 0.8456 1.2497 2.3874 39.8284 

HK 0.8489 (0.0293, 97.8) 1.1623 (0.5070, 34.4) 1.6979 (1.4373, 14.6) 15.8668 (539.9400, 0.08) 

HKB 0.8513 (0.0500, 97.8) 1.1153 (1.0862, 36.6) 1.4686 (3.0389, 15.9) 11.6959 (7.2387, 0.12) 

LW 0.8459 (0.0026, 97.8 ) 1.2279 (0.0647, 32.2) 2.0825 (0.2464, 13.2) 21.2712 (1.4494, 0.08) 

HSL 0.8490 (0.0299, 97.7) 1.1160 (0.7767, 37.0) 1.3292 (3.1169, 17.0) 9.1223 (11.3958, 0.16) 

AM 0.8513 (0.0500, 97.8) 1.1153 (1.0862, 36.6) 1.4686 (3.0389, 15.9) 11.6959 (7.2387, 0.12) 

GM 0.8520 (0.0571, 97.7) 1.0750 (2.5046, 38.2) 1.2290 (9.8068, 17.0) 3.7616 (36.1258, 0.16) 

MED 0.8518 (0.0547, 97.8) 1.0927 (1.8202, 37.2) 1.2786 (7.0498, 16.6) 5.0127 (33.3226, 0.16) 

KS 0.8489 (0.0290, 97.8) 1.1694 (0.4212, 34.2) 1.7861 (0.8497, 14.4) 19.5872 (1.5105, 0.08) 

KS_AM 0.8512 (0.0494, 97.8) 1.1639 (0.3346, 34.6) 1.7905 (0.5518, 13.8) 19.4642 (0.8356, 0.08) 

KS_MAX 0.8565 (0.0987, 97.6) 1.1211 (0.6671, 36.9) 1.4515 (1.5492, 15.9) 8.7602 (2.9129, 0.08) 

KS_MED 0.8500 (0.0380, 97.8) 1.1720 (0.2890, 34.1) 1.9516 (0.3353, 13.6) 27.6417 (0.3535, 0.04) 

KS_GM 0.8506 (0.0437, 97.8) 1.1816 (0.2461, 33.9) 1.9671 (0.3243, 13.5) 27.1016 (0.3818, 0.04) 

KM2 0.9848 (6.1657, 93.6) 1.0671 (1.6257, 40.6) 1.4754 (1.1924, 15.0) 15.5751 (0.9925, 0.04) 

KM3 0.8786 (0.3496, 96.9) 1.0371 (10.4610, 40.2) 1.1570 (29.6414, 17.7) 3.0807 (114.9800, 0.12) 

KM4 0.9756 (4.4381, 93.8) 1.1038 (0.8180, 37.4) 1.8091 (0.4621, 13.8) 28.7349 (0.2695, 0.04) 

KM5 0.8697 (0.2345, 97.2) 1.0834 (1.4215, 38.2) 1.3671 (2.6928, 16.6) 8.0125 (4.9376, 0.08) 

KM6 0.9766 (4.5711, 93.7) 1.0946 (0.9472, 38.2) 1.7758 (0.5336, 14.2) 27.9144 (0.3165, 0.04) 

KM7 0.8693 (0.2289, 97.2) 1.0927 (1.2106, 37.6) 1.3998 (2.2861, 16.1) 8.9963 (4.4526, 0.08) 

KM8 0.9855 (39.8268, 89.9) 1.0499 (3.2641, 43.2) 1.3653 (2.0516, 15.7) 12.5204 (1.6050, 0.04) 

KM9 0.8582 (0.1235, 97.2) 1.0554 (2.2557, 39.6) 1.2844 (2.8385, 16.6) 8.3068 (3.1120, 0.08) 

KM10 0.9948 (20.8949, 92.1) 1.0804 (1.2369, 39.4) 1.6549 (0.6999, 14.3) 22.3960 (0.5245, 0.04) 

KM11 0.8519 (0.0558, 97.7) 1.1111 (0.9332, 36.9) 1.4979 (1.5784, 15.6) 13.0713 (2.0425, 0.08) 

KM12 0.9946 (22.2324, 92.0) 1.0793 (1.3071, 39.7) 1.7157 (0.6401, 14.3) 25.1129 (0.4413, 0.04) 

GK 0.8534 (0.0697, 97.6) 1.1548 (0.5474, 34.8) 1.6721 (1.4778, 14.6) 15.3714 (539.9800, 0.08) 

HMO 0.9096 (0.8998, 95.6) 1.0082 (6.6626, 39.4) 1.1057 (12.5907, 17.1) 4.4618 (18.1221, 0.16) 

KD 0.8465 (0.0077, 45.3) 1.1209 (1.0368, 36.6) 1.4844 (2.9895, 15.9) 12.0123 (7.1893, 0.12) 

CJH 0.9308 (2.3565, 96.6) 1.0571 (17.7803, 41.5) 1.2212 (15.4247, 17.4) 6.8747 (19.0881, 0.16) 

FG 0.8732 (0.2763, 97.2) 1.0367 (3.6773, 39.4) 1.1695 (7.1088, 17.1) 5.3217 (10.4628, 0.12) 
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Table A3. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than ridge estimators for n = 20, p = 5, and γ = 0.9. Condition number κ = 99.57 
 

Estimator σ = 0.1 σ = 0.5 σ = 1.0 σ = 5.0 

OLS 0.9252 1.7372 4.072 78.5675 

HK 0.9337 (0.0312, 93.84) 1.4437 (0.4401, 25.60) 2.3761 (0.4630, 8.16) 29.8253 (1.0378, 0.08) 

HKB 0.9383 (0.0498, 93.76) 1.3376 (0.9440, 27.76) 1.9708 (1.6720, 8.96) 20.9941 (0.0039, 0.04) 

LW 0.9260 (0.0030, 93.64) 1.6249 (0.0734, 23.40) 2.9017 (0.1812, 8.08) 26.8522 (0.0015, 0.08) 

HSL 0.9339 (0.0332, 93.84) 1.2837 (0.8665, 29.40) 1.4359 (0.1949, 9.84) 12.2574 (0.0102, 0.04) 

AM 0.9383 (0.0498, 93.76) 1.3376 (0.9440, 27.76) 1.9708 (1.5685, 8.96) 20.9941 (0.0039, 0.04) 

GM 0.9392 (0.0565, 93.40) 1.2386 (2.7928, 30.20) 1.4474 (31.5700, 9.32) 05.0707 (0.0212, 0.04) 

MED 0.9392 (0.0532, 93.60) 1.2723 (1.8752, 29.76) 1.4933 (31.5700, 9.52) 07.0164 (0.0203, 0.04) 

KS 0.9336 (0.0309, 93.84) 1.4599 (0.3692, 25.68) 2.4969 (0.5450, 8.20) 33.5740 (0.0012, 0.08) 

KS_AM 0.9358 (0.0309, 93.84) 1.4577 (0.2530, 26.08) 2.3629 (2.3302, 8.24) 25.4480 (0.7430, 0.04) 

KS_MAX 0.9435 (0.0398, 93.92) 1.3101 (0.6745, 28.72) 1.6055 (0.6007, 9.16) 8.1732 (3.0535, 0.08) 

KS_MED 0.9345 (0.0715, 93.84) 1.5204 (0.1668, 24.80) 3.0406 (2.0300, 7.84) 51.505 (0.1871, 0.04) 

KS_GM 0.9348 (0.0345, 93.84) 1.5345 (0.1538, 24.72) 3.0023 (3.4393, 8.00) 48.3841 (0.0002, 0.04) 

KM2 1.0903 (0.0359, 88.28) 1.1898 (1.9181, 32.64) 1.5825 (2.8401, 9.20) 14.5482 (0.0014, 0.04) 

KM3 0.9840 (6.0050, 92.96) 1.1547 (58.5970, 32.12) 1.2792 (0.8296, 9.56) 3.0370 (0.0543, 0.04) 

KM4 1.0865 (0.3674, 88.56) 1.2609 (0.8602, 29.72) 2.1760 (1.3919, 8.28) 38.6266 (0.0003, 0.04) 

KM5 0.9740 (4.5079, 93.80) 1.2399 (1.4093, 30.68) 1.5905 (0.7200, 9.16) 09.6299 (0.0038, 0.08) 

KM6 1.0868 (0.2322, 88.52) 1.2409 (1.0000, 30.24) 2.1364 (1.2528, 8.52) 37.4332 (0.0004, 0.04) 

KM7 0.9737 (4.6621, 93.92) 1.2581 (1.1738, 30.36) 1.6190 (6.2880, 9.24) 10.9557 (0.0036, 0.08) 

KM8 1.0492 (0.2254, 80.16) 1.1564 (4.6383, 34.44) 1.4168 (2.1108, 9.88) 10.2354 (0.0030, 0.04) 

KM9 0.9473 (37.9604, 93.40) 1.1851 (2.3532, 32.00) 1.4116 (13.8060, 9.44) 7.7777 (0.0032, 0.08) 

KM10 1.0730 (0.1355, 84.16) 1.2115 (2.3532, 31.20) 1.8736 (4.2749, 8.56) 25.5669 (0.0006, 0.04) 

KM11 0.9391 (0.0549, 93.44) 1.3040 (1.3710, 28.84) 1.8124 (3.4567, 9.20) 16.4846 (0.0018, 0.08) 

KM12 1.0709 (23.184, 83.84) 1.2097 (0.8781, 30.80) 2.0275 (1.2345, 8.48) 32.1960 (0.0005, 0.04) 

GK 0.9433 (0.0705, 93.92) 1.4161 (1.4160, 25.72) 2.2847 (2.4356, 8.20) 27.8409 (1.0378, 0.08) 

HMO 1.0005 (0.5086, 92.45) 1.1512 (0.4794, 26.54) 1.3997 (0.5679, 8.76) 9.2514 (8.0253, 0.04) 

KD 0.9275 (0.0079, 91.98) 1.3581 (0.8946, 25.78) 2.0319 (0.9879, 8.92) 22.2854 (3.8341, 0.04) 

CJH 1.0653 (11.7230, 92.34) 1.2061 (12.8190, 27.89) 1.5307 (13.5460, 8.76) 12.0446 (30.1750, 0.04) 

FG 0.9777 (0.2594, 91.23) 1.1753 (2.6850, 27.92) 1.4181 (2.8790, 9.12) 8.9451 (5.4004, 0.08) 
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Table A4. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than ridge estimators for n = 50, p = 5, and γ = 0.7. Condition number κ = 28.37 
 

Estimator σ = 0.1 σ = 0.5 σ = 1.0 σ = 5.0 

OLS 0.7067 0.7181 0.9257 7.9302 

HK 0.7069 (0.0240, 91.44) 0.7022 (0.5570, 8.12) 0.8447 (2.1865, 1.60) 4.1563 (44.5510, 1.24) 

HKB 0.7071 (0.0501, 91.80) 0.6898 (1.2241, 9.64) 0.7865 (4.6033, 2.36) 3.0189 (28.4550, 1.32) 

LW 0.7067 (0.0005, 90.80) 0.7178 (0.0108, 7.04) 0.9235 (0.0472, 1.48) 7.2028 (0.9094, 0.48) 

HSL 0.7069 (0.0242, 91.44) 0.7016 (0.5657, 8.12) 0.8247 (2.5638, 1.48) 2.4236 (39.4080, 1.60) 

AM 0.7071 (0.0501, 91.80) 0.6898 (1.2241, 9.64) 0.7865 (2.5638, 1.64) 3.0189 (28.4550, 1.32) 

GM 0.7071 (0.0571, 91.88) 0.6806 (2.0736, 11.84) 0.7195 (4.6033, 2.36) 1.7582 (118.3500, 1.52) 

MED 0.7072 (0.0641, 92.04) 0.6868 (1.6400, 10.96) 0.7675 (10.2230, 3.28) 1.9448 (106.1700, 1.64) 

KS 0.7069 (0.0238, 91.44) 0.7036 (0.5006, 8.08) 0.8660 (7.0966, 3.08) 5.7339 (2.9518, 0.56) 

KS_AM 0.7071 (0.0530, 91.88) 0.7066 (0.3863, 7.84) 0.8934 (1.4835, 1.56) 6.6141 (1.1676, 0.40) 

KS_MAX 0.7073 (0.0796, 92.56) 0.7024 (0.5342, 8.08) 0.8549 (0.7058, 1.52) 4.6770 (4.1927, 0.56) 

KS_MED 0.7071 (0.0492, 91.76) 0.7056 (0.4169, 7.84) 0.9030 (1.6563, 1.56) 7.2753 (0.5269, 0.36) 

KS_GM 0.7071 (0.0487, 91.76) 0.7073 (0.3631, 7.80) 0.8991 (0.4985, 1.48) 7.2165 (0.5824, 0.36) 

KM2 0.7959 (6.5729, 100.00) 0.6831 (1.3668, 9.56) 0.8911 (0.7070, 1.52) 7.1954 (0.4214, 0.36) 

KM3 0.7091 (0.3012, 94.68) 0.6676 (7.2693, 15.12) 0.7073 (23.8640, 1.48) 2.2938 (137.6900, 1.40) 

KM4 0.7636 (4.2624, 100.00) 0.6952 (0.7612, 8.16) 0.9061 (0.3795, 3.48) 7.7002 (0.1448, 0.36) 

KM5 0.7086 (0.2375, 94.12) 0.6858 (0.3872, 9.76) 0.8209 (2.9563, 1.48) 3.9628 (8.9179, 0.92) 

KM6 0.7603 (4.0412, 100.00) 0.6927 (0.8443, 8.28) 0.9021 (0.4517, 2.00) 7.6841 (0.1637, 0.36) 

KM7 0.7087 (0.2513, 94.24) 0.6889 (1.2445, 9.76) 0.8376 (2.4653, 1.48) 4.0883 (8.0111, 0.92) 

KM8 0.9818 (43.9325, 100.00) 0.6709 (2.0870, 11.20) 0.8897 (0.7168, 1.96) 7.1626 (0.4352, 0.36) 

KM9 0.7074 (0.0901, 92.76) 0.6632 (3.1074, 13.52) 0.7776 (4.2204, 1.48) 4.5522 (4.4955, 0.56) 

KM10 0.9030 (18.6343, 100.00) 0.6913 (0.8901, 8.24) 0.9045 (0.4149, 2.12) 7.5370 (0.2732, 0.36) 

KM11 0.7071 (0.0563, 91.88) 0.6901 (1.1899, 9.56) 0.8317 (2.4992, 1.48) 5.0763 (3.7189, 0.56) 

KM12 0.8911 (16.8071, 100.00) 0.6894 (0.9386, 8.28) 0.9036 (0.4220, 1.88) 7.5913 (0.2505, 0.36) 

GK 0.7069 (0.0333, 91.60) 0.7020 (0.5652, 8.12) 0.8444 (2.1949, 1.48) 4.1521 (44.5610, 1.24) 

HMO 0.7656 (4.3850,100.00) 0.7364 (32.7499, 58.40) 0.5435 (81.3278, 1.60) 1.2348 (138.5700, 1.60) 

KD 0.7069 (0.0301, 91.48) 0.6903 (1.2042, 9.64) 0.7870 (4.5830, 11.16) 3.0229 (28.4350, 1.32) 

CJH 0.7144 (0.8160, 97.96) 0.6944 (70.5420, 45.00) 0.5912 (147.4000, 10.28) 1.9891 (114.2100, 1.48) 

FG 0.7091 (0.2956, 94.60) 0.6517 (05.9959, 20.80) 0.6153 (18.3570, 4.60) 1.7616 (49.5940, 1.48) 
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Table A5. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than ridge estimators for n = 50, p = 5, and γ = 0.8. Condition number κ = 50.12 
 

Estimator σ = 0.1 σ = 0.5 σ = 1.0 σ = 5.0 

OLS 0.7754 0.8161 1.0648 9.4533 

HK 0.7754 (0.0266, 60.32) 0.8087 (0.6000, 38.56) 1.01750 (2.1083, 23.56) 4.77240 (352.2000, 0.36) 

HKB 0.7755 (0.0501, 61.40) 0.8076 (1.2116, 42.52)  0.98930 (4.4460, 26.12) 3.31000 (22.5420, 0.56) 

LW 0.7754 (0.0005, 59.48) 0.8159 (0.0111, 34.12) 1.06300 (0.0484, 19.44) 8.50309 (0.9530, 0.20) 

HSL 0.7754 (0.0267, 60.32) 0.8070 (0.6291, 38.68) 0.99420 (2.7644, 24.20) 2.49500 (32.8540, 0.48) 

AM 0.7755 (0.0501, 61.40) 0.8076 (1.2116, 42.52) 0.98930 (4.4467, 26.12) 3.31000 (22.5490, 0.56) 

GM 0.7755 (0.0548, 61.56) 0.8120 (1.9840, 46.04) 0.96060 (10.7210, 29.36) 1.66830 (91.4920, 0.76) 

MED 0.7756 (0.0614, 61.72) 0.8095 (1.5500, 44.16) 0.97850 (7.0245, 27.20) 2.01050 (72.2960, 0.68) 

KS 0.7754 (0.0265, 60.32) 0.8091 (0.5407, 38.2) 1.02619 (1.4740, 22.08) 6.83390 (2.5615, 0.20) 

KS_AM 0.7755 (0.0470, 61.28) 0.8108 (0.3207, 36.40) 1.04240 (0.6254, 20.60) 8.05320 (0.9630, 0.16) 

KS_MAX 0.7755 (0.0683, 62.12) 0.8077 (0.5641, 38.30) 1.01080 (1.8020, 22.48) 5.56520 (3.6691, 0.20) 

KS_MED 0.7755 (0.0445, 61.12) 0.8110 (0.3127, 36.30) 1.05170 (0.3672, 19.96) 9.01690 (0.2741, 0.16) 

KS_GM 0.7755 (0.0443, 61.16) 0.8114 (0.2841, 36.00) 1.04860 (0.4421, 20.16) 8.75150 (0.4528, 0.16) 

KM2 0.8822 (6.2317, 100.00) 0.8017 (1.3228, 43.20) 1.03520 (0.7341, 20.56) 8.55220 (0.4577, 0.16) 

KM3 0.7767 (0.2857, 70.48) 0.8252 (10.1870, 50.80) 0.95400 (46.5690, 29.72) 2.20640 (328.1800, 0.48) 

KM4 0.8494 (4.3497,100.00) 0.8033 (0.7904, 40.24) 1.04830 (0.3872, 20.00) 9.13830 (0.1613, 0.16) 

KM5 0.7764 (0.2328, 68.64) 0.8064 (1.3477, 43.28) 0.99660 (2.9730, 23.92) 4.51400 (7.9870, 0.28) 

KM6 0.8452 (4.1265, 100.00) 0.8029 (0.8755, 40.80) 1.04510 (0.4659, 20.24) 9.09630 (0.1874, 0.16) 

KM7 0.7765 (0.2460, 69.08) 0.8061 (1.2070, 42.36) 1.00630 (2.4243, 23.36) 4.80110 (6.9678, 0.28) 

KM8 1.0671 (39.4900, 100.00) 0.8008 (1.9541, 45.84) 1.03280 (0.7473, 20.56) 8.48080 (0.4980, 0.16) 

KM9 0.7756 (0.0814, 62.88) 0.8153 ( 3.0747, 51.40) 0.97120 (4.5613, 26.60) 5.42800 (3.8988, 0.20) 

KM10 1.0068 (19.378, 100.00) 0.8016 (0.9057, 40.96) 1.04730 (0.4091, 19.96) 8.89900 (0.3189, 0.16) 

KM11 0.7755 (0.0542, 61.52) 0.8074 (1.1896, 42.04) 1.00220 (2.5720, 23.88) 6.11030 (3.1890, 0.20) 

KM12 0.9953 (17.4860, 100.00) 0.8012 (0.9787, 41.20) 1.04680 (0.4198, 20.00) 8.95850 (0.2940, 0.16) 

GK 0.7754 (0.0352, 60.68) 0.8086 (0.6075, 38.60) 1.01740 (2.1162, 23.56) 4.76620 (352.2900, 0.36) 

HMO 0.8216 (2.9092, 99.20) 0.9433 (22.3590, 83.60) 0.96280 (56.9328, 45.6) 0.96700 (103.5200, 0.88) 

KD 0.7755 (0.0301, 60.48) 0.8077 (1.1917, 42.42) 0.98960 (4.4268, 26.08) 3.31580 (22.5230, 0.56) 

CJH 0.7894 (1.2570, 92.56) 0.9368 (59.4930, 84.31) 0.98740 (82.1500, 45.16) 1.86680 (762.3000, 0.68) 

FG 0.7769 (0.2931, 70.40) 0.8302 (5.5836, 61.35) 0.94740 (16.3068, 36.6) 1.61010 (40.0510, 0.56) 
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Table A6. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than ridge estimators for n = 50, p = 5, and γ = 0.9. Condition number κ = 119.60 
 

Estimator σ = 0.1 σ = 0.5 σ = 1.0 σ = 5.0 

OLS 0.8678 1.0066 1.4255 18.4356 

HK 0.8670 (0.0309, 27.44) 0.9735 (0.6019, 25.16) 1.2806 (1.8241, 15.44) 8.5312 (55.9952, 0.24) 

HKB 0.8667 (0.0500, 28.60) 0.9590 (1.1721, 28.80) 1.1994 (3.9608, 18.08) 5.8085 (13.0289, 0.24) 

LW 0.8678 (0.0006, 25.96) 1.0053 (0.0123, 20.36) 1.4168 (0.0537, 11.64) 14.7874 (1.0500, 0.12) 

HSL 0.8670 (0.0309, 27.48) 0.9562 (0.7374, 25.52) 1.1796 (3.1439, 17.08) 2.7700 (35.1922, 0.24) 

AM 0.8667 (0.0500, 28.60) 0.9590 (1.1721, 28.80) 1.1994 (3.9608, 18.08) 5.8085 (13.0289, 0.24) 

GM 0.8667 (0.0531, 28.64) 0.9595 (2.2919, 33.08) 1.1402 (11.9880, 21.44) 2.2477 (57.2516, 0.28) 

MED 0.8666 (0.0571, 28.92) 0.9583 (1.5774, 29.88) 1.1692 (7.5610, 19.28) 3.0584 (49.7520, 0.28) 

KS 0.8670 (0.0307, 27.44) 0.9749 (0.5443, 24.72) 1.3011 (1.3187, 14.64) 11.1257 (2.2876, 0.16) 

KS_AM 0.8669 (0.0388, 28.16) 0.9835 (0.2472, 22.08) 1.3471 (0.5417, 12.80) 13.4029 (0.9329, 0.08) 

KS_MAX 0.8665 (0.0551, 28.72) 0.9593 (0.6567, 25.16) 1.2253 (2.0058, 15.52) 6.4475 (4.0782, 0.16) 

KS_MED 0.8669 (0.0363, 27.88) 0.9899 (0.1721, 21.60) 1.3934 (0.2030, 11.88) 17.4920 (0.1406, 0.04) 

KS_GM 0.8669 (0.0370, 27.92) 0.9894 (0.1787, 21.68) 1.3839 (0.2675, 12.16) 16.7151 (0.2668, 0.04) 

KM2 1.0119 (5.7916, 99.96) 0.9348 (1.3595, 29.56) 1.2988 (0.8391, 13.28) 13.8647 (0.6424, 0.04) 

KM3 0.8651 (0.2785, 40.32) 0.9691 (9.6830, 39.04) 1.1274 (164.0300, 22.64) 2.3765 (90.5992, 0.24) 

KM4 0.9819 (4.4273, 99.80) 0.9475 (0.7989, 26.08) 1.3550 (0.4078, 12.48) 16.8254 (0.2065, 0.04) 

KM5 0.8650 (0.2289, 38.00) 0.9503 (1.3896, 30.36) 1.2126 (2.9486, 16.92) 6.2501 (6.2615, 0.20) 

KM6 0.9784 (4.2866, 99.64) 0.9445 (0.9231, 27.04) 1.3455 (0.4886, 12.72) 16.5862 (0.2421, 0.04) 

KM7 0.8650 (0.2370, 38.52) 0.9516 (1.1690, 28.60) 1.2323 (2.3762, 15.92) 6.8584 (5.6013, 0.16) 

KM8 1.1763 (34.1253, 100.00) 0.9312 (2.0914, 32.76) 1.2820 (0.9396, 13.28) 13.2874 (0.7194, 0.04) 

KM9 0.8664 (0.0780, 29.76) 0.9579 (3.4085, 39.32) 1.1441 (4.8109, 19.88) 6.2412 (4.2808, 0.16) 

KM10 1.1438 (20.0632, 100.00) 0.9409 (0.9377, 26.92) 1.3513 (0.4309, 12.52) 15.9926 (0.3402, 0.04) 

KM11 0.8667 (0.0525, 28.64) 0.9557 (1.1940, 29.08) 1.2215 (2.5096, 16.44) 8.6147 (3.0609, 0.16) 

KM12 1.1380 (18.8572, 100.00) 0.9392 (1.0620, 27.84) 1.3524 (0.4330, 12.60) 16.3197 (0.3018, 0.04) 

GK 0.8669 (0.0389, 27.96) 0.9731 (0.6089, 25.20) 1.2800 (1.8316, 15.44) 8.5085 (56.0051, 0.24) 

HMO 0.8936 (1.4404, 82.56) 1.0294 (12.1690, 58.72) 1.0577 (29.8000, 27.80) 1.5332 (42.5577, 0.28) 

KD 0.8672 (0.0300, 27.56) 0.9597 (1.1522, 28.72) 1.2004 (3.9409, 18.00) 5.8310 (13.0090, 0.24) 

CJH 0.9395 (3.2631, 94.16) 1.0615 (30.2460, 65.08) 1.0986 (64.1490, 28.36) 3.0802 (840.5210, 0.24) 

FG 0.8653 (0.2857, 41.08) 0.9642 (4.7476, 45.12) 1.0884 (12.3090, 24.48) 2.5102 (21.1200, 0.24) 
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Table A7. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than proposed new ridge estimators for different values of n, p = 5, σ = 3.0, and γ = 0.9 
 

Estimator n = 10 n = 20 n = 50 

OLS 67.1158 22.6167 7.7726 

HK 26.2573 (78.0160, 0.12) 10.0504 (83.0563, 0.32) 3.8897 (20.1510, 1.08) 

HKB 20.9523 (1.7574, 0.12) 7.1599 (3.9477, 0.36) 2.8018 (10.1280, 1.52) 

LW 15.9023 (1.3047, 0.12) 11.5401 (1.0943, 0.28) 6.5964 (0.4158, 0.36) 

HSL 9.6370 (6.0834, 0.16) 4.0571 (10.3777, 0.32) 1.4353 (25.3280, 1.64) 

AM 20.9523 (1.7574, 0.12) 7.1599 (3.9477, 0.36) 2.8018 (10.1280, 1.52) 

GM 5.0207 (9.8421, 0.16) 2.8726 (17.2089, 0.28) 1.6304 (36.1640, 1.92) 

MED 6.0914 (12.5365, 0.16) 3.6802 (16.7250, 0.36) 1.7539 (30.9620, 1.52) 

KS 26.9777 (1.1632, 0.12) 11.4083 (1.2309, 0.20) 4.5503 (2.3287, 0.56) 

KS_AM 8.3030 (1.0881, 0.12) 10.4941 (0.7219, 0.08) 5.0463 (1.0467, 0.32) 

KS_MAX 2.6825 (4.3804, 0.12) 3.8964 (2.9958, 0.20) 2.6053 (4.5236,0.56) 

KS_MED 20.9093 (0.3330, 0.12) 19.1547 (0.1196, 0.04) 7.0904 (0.1791, 0.28) 

KS_GM 22.9548 (0.3001, 0.12) 16.7338 (0.2319, 0.04) 6.7395 (0.2876, 0.32) 

KM2 4.0575 (2.5361, 0.12) 6.7336 (1.2331, 0.04) 5.2090 (0.7023, 0.28) 

KM3 1.9326 (49.8389, 0.12) 02.1282 (61.7303, 0.36) 1.7384 (59.9134, 1.52) 

KM4 13.7695 (0.5735, 0.12) 13.7225 (0.3724, 0.04) 6.7678 (0.2385, 0.28) 

KM5 5.7004 (2.5166, 0.12) 4.6168 (3.4765, 0.32) 2.8852 (5.1752, 0.84) 

KM6 13.7148 (0.6410, 0.12) 13.1157 (0.4334, 0.04) 6.7395 (0.2611, 0.28) 

KM7 6.2518 (2.4318, 0.12) 5.1636 (3.2115, 0.32) 2.9637 (4.6849, 0.80) 

KM8 2.6439 (10.0721, 0.12) 5.0384 (2.1737, 0.04) 4.9405 (0.7863, 0.32) 

KM9 2.2439 (5.1076, 0.12) 3.5706 (3.3286, 0.24) 2.4176 (5.2458, 0.68) 

KM10 9.5348 (0.9021, 0.12) 10.6497 (0.6062, 0.04) 6.5327 (0.3014, 0.28) 

KM11 8.7200 (1.6719, 0.12) 6.7272 (1.8406, 0.20) 3.2644 (3.4917, 0.60) 

KM12 14.0551 (0.7741, 0.12) 12.0833 (0.5238, 0.04) 6.7666 (0.2596, 0.28) 

GK 20.2413 (78.082, 0.12) 9.6857 (83.0930, 0.32) 3.8801 (20.1590, 1.08) 

HMO 11.5302 (3.0492, 0.16) 3.1834 (8.8390, 0.32) 1.3795 (37.4880, 2.28) 

KD 28.8528 (1.6649, 0.12) 7.4149 (3.8977, 0.36) 2.8119 (10.1080, 1.52) 

CJH 13.6394 (3.8924, 0.16) 4.2477 (13.8341, 0.28) 1.8765 (38.3210, 1.96) 

FG 9.0114 (2.2648, 0.12) 3.4396 (6.1783, 0.36) 1.6613 (18.5430, 1.64) 

KB1 3.6922 (13.5707, 0.16) 2.5210 (20.7526, 0.36) 1.4909 (36.8980, 1.96) 

KB2 6.4905 (4.7393, 0.16) 3.0329 (9.6154, 0.36) 1.6045 (23.6380, 1.84) 

KB3 1.8130 (57.2684, 0.16) 1.8326 (76.6178, 0.28) 1.2435 (107.5580, 2.32) 

KB4 5.6967 (4.5998, 0.12) 2.8649 (9.7842, 0.36) 1.5804 (24.0460, 1.84) 

KB5 8.3678 (3.2453, 0.12) 3.2945(7.7060, 0.36) 1.6849 (19.6580, 1.72) 
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Table A8. Simulated MSE, average ks and proportion of time (%) LSE perform better 

than proposed new ridge estimators for different values of n, p = 5, σ = 10.0, and γ = 0.9 
 

Estimator n = 10 n = 20 n = 50 

OLS 737.0407 242.9571 78.1037 

HK 272.0000 (1.3987, 0) 93.0000 (8.6474, 0) 29.5000 (4.1928, 0.00) 

HKB 223.1200 (1.8062, 0) 67.8198 (4.5231, 0) 20.9440 (13.9677, 0.04) 

LW 153.6900 (1.6560, 0) 103.8625 (1.6510, 0) 53.5800 (1.3756, 0.00) 

HSL 116.1700 (6.1421, 0) 50.8556 (11.0230, 0) 11.7460 (48.0250, 0.04) 

AM 223.1200 (1.8062, 0) 67.8198 (4.5230, 0) 20.9440 (13.9670, 0.04) 

GM 41.7100 (11.4337, 0) 15.4604 (26.2730, 0) 5.2872 (76.8460, 0.00) 

MED 58.2900 (12.5456, 0) 28.2886 (24.1990, 0) 8.7540 (69.4340, 0.04) 

KS 279.7900 (1.3952, 0) 109.0829 (1.4290, 0) 38.4023 (2.8360, 0.00) 

KS_AM  74.7100 (1.1902, 0) 101.9246 (0.7850, 0) 45.2139 (1.2170, 0.00) 

KS_MAX  17.9800 (4.8874, 0) 28.5829 (3.3113, 0) 17.8669 (5.3720, 0.00) 

KS_MED 223.0900 (0.3343, 0) 204.5300 (0.1190, 0) 70.6056 (0.1790, 0.00) 

KS_GM 240.9700 (0.3085, 0) 176.4906 (0.2370, 0) 66.4137 (0.2980, 0.00) 

KM2  37.2600 (2.5292, 0) 65.9034 (1.2148, 0) 50.4013 (0.6740, 0.00) 

KM3 10.9600 (56.5641, 0) 7.9644 (70.3667, 0) 5.2666 (192.4500, 0.04) 

KM4 153.2700 (0.5298, 0) 153.0248 (0.3210, 0) 69.6911 (0.1750, 0.00) 

KM5  51.4400 (2.7141, 0) 35.3579 (4.1621, 0) 18.9584 (7.3710, 0.00) 

KM6 150.7500 (0.6215, 0) 140.6503 (0.4110, 0) 68.2656 (0.2180, 0.00) 

KM7  60.2200 (2.5963, 0) 45.2184 (3.6642, 0) 21.9880 (6.5460, 0.00) 

KM8  21.5800 (10.0380, 0) 46.3192 (2.1200, 0) 47.6514 (0.7460, 0.00) 

KM9  15.7200 (5.3348, 0) 27.3427 (3.4367, 0) 17.5897 (5.4840, 0.00) 

KM10 100.3600 (0.8550, 0) 111.8558 (0.5840, 0) 65.2522 (0.2820, 0.00) 

KM11  85.6400 (1.7224, 0) 63.1383 (1.8982, 0) 26.9247 (3.7130, 0.00) 

KM12 153.5700 (0.7523, 0) 127.6506 (0.5070, 0) 67.7397 (0.2410, 0.00) 

GK 208.0000 (1.3987, 0) 90.0000 (8.6474, 0) 29.5000 (4.1920, 0.00) 

HMO 119.9000 (2.9913, 0) 23.8446 (9.4118, 0) 5.5032 (42.1730, 0.00) 

KD 309.9300 (1.7137, 0) 70.5684 (4.4732, 0) 21.0470 (13.9400, 0.04) 

CJH 143.4400 (3.7576, 0) 35.9131 (13.0910, 0) 11.3326 (37.6000, 0.00) 

FG  91.7100 (2.2766, 0) 26.5555 (6.4474, 0) 8.7287 (20.7300, 0.04) 

KB1 28.3800 (14.9280, 0) 12.9418 (24.9650, 0)   5.0918 (73.2000, 0.04) 

KB2 61.270 (4.8625, 0) 20.2705 (11.6430, 0) 6.3075 (36.1800, 0.04) 

KB3 9.9300 (63.2258, 0) 6.2206 (88.2720, 0) 2.9234 (257.3900, 0.00) 

KB4 51.3900 (5.0065, 0) 17.4754 (11.9870, 0) 6.1536 (35.6300, 0.04) 

KB5 83.2800 (3.3955, 0) 23.2968 (8.7820, 0)   7.5708 (26.6600, 0.04) 
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