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Semiparametric mixed models are increasingly popular for statistical analysis of medical 
device studies in which long sequences of repeated measurements are recorded. Monitoring 
these sequences at different periods over time on the same individual, such as before and 
after an intervention, results in nested repeated measures (NRM). Covariance models to 

account for NRM and simultaneously address mean profile estimation with penalized 
splines via semiparametric regression are considered with application to a prospective 
study of 24-hour ambulatory blood pressure and the impact of surgical intervention on 
obstructive sleep apnea. 
 
Keywords: functional data analysis, semiparametric regression, blood pressure, 
longitudinal data analysis, doubly repeated measures, obstructive sleep apnea, medical 
monitoring, circadian rhythm 

 

Introduction 

Medical device studies frequently involve collections of multiple recordings that 

result in long sequences of repeated measurements for each subject. It is often of 

interest to assess these sequences at different periods of time or recording sessions 

on the same subject. This type of data, commonly called nested repeated measures 

(NRM), yields two sources of intrasubject variation: an inner source arising from 

observations within a sequence and an outer source arising from observations under 

different time periods, such as before and after an intervention. Covariance models 

for NRM have been proposed to account for the intrasubject correlation arising 

from data of this nature (Harville, 1997; Laird & Ware, 1982; Jennrich & 

Schluchter, 1986). More recent work (Park & Lee, 2002) shows covariate effects 

are impacted by the choice of covariance structure and a series of covariance 
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models to account for NRM can be specified in a linear mixed model. In these 

applications, mean profiles are modeled using polynomial regressions. The models 

are used to compare different experimental conditions or mean profiles by assessing 

overall mean differences. 

For experiments in which the mean profile cannot be characterized with a 

parametric function, semiparametric mixed models may be useful. Penalized 

splines are a more flexible alternative to estimate the mean function (Eilers & Marx, 

1996), and can be expressed as the best linear unbiased prediction (BLUP) of a 

linear mixed model (Ruppert, Wand, & Carroll, 2003, p. 99-100). Combining this 

nonparametric representation of the mean function with parametric estimation in 

the linear mixed model is referred to as semiparametric regression. Semiparametric 

mixed models have been used to compare the mean profiles of two independent 

groups (e.g. placebo versus treated) in a study of cardiovascular safety data 

(Maringwa et al., 2008a). Model selection was performed and mean profiles were 

estimated with linear penalized splines. The group-specific mean profiles were 

compared over time using simultaneous confidence bands. This approach, which 

has been used in other biomedical studies (see VanDyke et al., 2012 for an example), 

works well for single repeated measures factors. Semiparametric mixed models 

have also been applied to data arising from crossover designs to compare condition-

specific mean profiles over time (Maringwa et al., 2008b). In this study focused on 

crossover designs, correlation between and within periods were assumed to be 

separable (Jones & Kenward, 2003, p. 193). This assumption corresponds to 

concluding that the outer repeated measures (between periods) may be accounted 

for by using subject-specific random intercepts. In NRM studies where outer 

repeated measures are collected at variable times across subjects, a more complex 

correlation structure may be necessary. 

Despite inferential goals for time-specific comparisons that are similar to 

prior developments, the combination of NRM and an unrecognizable mean 

response function requires further methodological development for efficient 

regression parameter estimates. In this article, a series of semiparametric mixed 

models are proposed which incorporate NRM covariance modeling and mean 

profile estimation approaches. The following section begins with description of the 

ambulatory blood pressure monitoring data, which is the motivation for this 

development. Model selection criteria are then provided along with calculations for 

simultaneous confidence bands to assess time-specific intervention effects with 

application to the motivating data. The appropriateness of each proposed model for 

the data is discussed. Additional details on covariance models and relevant code are 

provided as Appendices. 
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Methodology 

Twenty-Four Hour Ambulatory Blood Pressure Monitoring 

The motivating data arises from a prospective study to examine the effect of a 

surgical intervention on 24-hour ambulatory blood pressure. The importance of 

diurnal changes in blood pressure in predicting target organ damage has been 

demonstrated (Mansoor & Massie, 1999). The application in this article focuses on 

diastolic blood pressure (DBP) profiles arising from ambulatory blood pressure 

monitoring. These profiles are recordings of systolic and diastolic blood pressures, 

observed in 30-minute intervals over a 24-hour period beginning with time of sleep 

onset for each subject. In healthy subjects, these data typically have a marked 

circadian pattern with diurnal features that may not be present in subjects with 

obstructive sleep apnea (Mansoor, 2002). Previous analysis techniques have 

included the use of restricted cubic splines to fit DBP profiles in a study of 

hypertension during pregnancy (Lambert, Abrams, Jones, Halligan, & Shennan, 

2001). 

This application focuses on whether DBP patterns change in subjects with 

obstructive sleep apnea after an intervention consisting of adenotonsillectomy. For 

the study, each subject wore an ambulatory blood pressure monitoring cuff at two 

separate recording sessions: before and after the intervention. The duration between 

baseline and follow-up ranged from six to twelve months and warranted 

consideration of more complex covariance models, as any level of improvement 

after intervention may be time-sensitive. Immediately prior to receiving the cuff to 

monitor blood pressure, demographic and clinical characteristics were obtained for 

each subject. Although monitoring data were equally spaced and collected both 

before and after the intervention for each of the 58 subjects, there were incomplete 

profiles due to cuff malfunctions that occurred during each 24-hour observation 

period. The timing of the follow-up monitoring and potential for incomplete 

profiles increase the importance of selecting an appropriate covariance model. 

Figure 1 illustrates the pre- and post-surgical intervention profiles of five 

randomly selected subjects, demonstrating the intrasubject variability arising from 

the inner-repeated measures (within profiles) and the outer repeated measures 

(baseline and follow-up profiles), as well as the intersubject variability between 

profiles. Circadian rhythm in daytime and nighttime blood pressures is not apparent 

in the observed profiles, presumably due to the intra- and intersubject variation. In 

addition to assessing intervention effects on mean DBP response, the rate of change  
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Figure 1. Subject-specific observed DBP response, before and after intervention 
 

Five subject-specific profiles during recording of 24-hour diastolic blood pressure (DBP, y-axis) taken prior to 

surgery (left) and after surgery (right); x-axis represents time (in hours) since sleep onset 

 

 

experienced by subjects when awakening from sleep (clinically termed the 

“morning blood pressure surge”) is also of clinical importance. The presence of this 

feature indicates greater subject responsiveness to blood pressure regulation. Rates 

of change close to zero may indicate poor blood pressure control (Amin et al., 2008; 

Crisalli et al., 2012). 

The statistical methodology in this manuscript relates to three inferential 

goals. First, develop an appropriate model for NRM covariance and spline 

representation of baseline and follow-up AMBP profiles. Second, determine how 

the rate of change or “morning surge” changes over time by using first-order 

derivatives of penalized regression splines. Third, construct simultaneous 

confidence bands to compare mean differences between baseline and follow-up 

AMBP profiles during daytime and nighttime. 

Modeling the Mean Response Function 

A penalized spline representation (Eilers & Marx, 1996) is used to model the mean 

DBP response over the 24-hour interval. Ignoring intervention effect, this model 

can be expressed as 
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The term DBPijk represents the measurement of DBP for the ith subject (i = 1,…, n) 

taken at the jth recording session (j = 1,…, ni) at time tijk (k = 1,…, nij) during the 

24-hour interval. The function f(tijk) is a combination of fixed effects parameters 

(β0, β1,…, βp)' and pth degree splines with knots at distinct locations (κ1,…, κL)' 

along the time interval with corresponding coefficients (b1,…, bL)'; assume that 

 2N 0,l bb  . Representations for the error term 
*

ijk  are discussed in the context 

of the linear mixed model later in this section. A series of models similar to those 

from previous work using linear truncated power splines (Maringwa et al., 2008a) 

but expanded to incorporate NRM arise from (1) and may be considered to 

represent the overall shape of the 24-hour DBP, (Table 1). The knot locations are 

in the range of tijk values, where t+ = max(0, t). To fit the mean function in our 

motivating example, quadratic (p = 2) penalized splines were used. 

Structure (1.1) in Table 1 shows a common DBP curve for both pre- and post-

intervention, corresponding to no intervention effect. To assess whether the 

intervention effect is parallel, one can examine Structure (1.2). It is possible that 

post-intervention profiles have an average quadratic trend that differs from the trend 

during pre-intervention, without any changes to the more localized, nonparametric 

(spline) portion of the model. For this case, one can examine Structure (1.3). One 

can fit Structure (1.4) to capture more localized changes in average DBP features. 

The above distribution and independence assumptions hold in all model settings, 

except Structure (1.5.), which provides different degrees of smoothing based on 

whether the session occurred before or after intervention. 

Semiparametric regression and NRM can be characterized in the familiar 

linear mixed model framework for longitudinal data (Verbeke & Molenberghs, 

2000, p. 23) as 

 

 *

i i i b b i  Y X β Z b   , (2) 

 

where Xi and βi represent the traditional fixed effects design matrix and parameter 

vector, Zb and bb correspond to the previously-described design matrix for the 

spline basis function and coefficient vector, and the overall error vector εi
* 

corresponds to the 
*

ijk  in (1);  * *N 0,i iΣ . The entire response for the ith subject, 

Yi, is an ni∙ × 1 vector, where 
1
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i ijj
n n


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Table 1. Mean response models for twenty-four hour diastolic blood pressure 

 
Effects Description Mean Response Structure* 

(1.1) No intervention effect  
22

0 1 2 =1 +
+ + +

L

ijk ijk l ijk ll
β β t β t b t - κ  

(1.2) Intervention effect constant 
across 24-hour sequence 
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22
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(1.4) Pre- and post-intervention 
profiles smoothed differently 

using distinct vectors for 
coefficients for pre- and post-

intervention profiles 
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(1.5) Separate smoothing and 
distinct smoothing parameters 
for pre- and post-intervention 

profiles 

Same as structure (1.4) but differing variances for smoothing 

coefficients:  pre

pre 2
N 0,

ij

l
l b

b σ  and  post

post 2
N 0,

ij

l
l b

b σ  

 

* The term postij refers to an indicator of post-intervention assessment (1 if observation taken during post-

intervention session, 0 otherwise); preij is defined similarly for pre-intervention 

 
 

The proposed structure provides flexibility for the covariance matrices, which 

may be advantageous for NRM. As described by Park and Lee (2002), the subject-

specific covariance matrix for the error term εi
* is 
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Σ   (3) 

 

The  *Var ij  is the ni∙ × ni∙ variance-covariance matrix for the sequence of 

measurements from the ith subject observed on the jth occasion;  * *Cov ,ij ij    for 

j ≠ j' is the covariance matrix for measurements observed at distinct occasions j 

and j'. Different covariance models are now presented for the motivating example. 



SZCZESNIAK ET AL 

261 

Covariance for Nested Repeated Measures 

Random effects: Random intercepts are one of the most commonly used 

methods to address intrasubject variability. In the case of a single repeated factor, 

subject-specific effects are often included as random intercepts and all 

measurements are assumed to have equal correlation. This assumption corresponds 

to compound symmetry. The approach can be naturally extended to NRM by 

including two additional random effects for occasion and sequence. For a given 

subject, any two measurements taken within a sequence during a single occasion 

have correlation ρs; two measurements taken at the same time point of sequences 

on two distinct occasions have correlation ρo. This covariance model has 

straightforward interpretation but may not be suited for many experiments with 

NRM. In the motivating DBP example, ρs corresponds to an individual’s 

measurements taken within a 24-hour period having the same correlation, 

regardless of the amount of time lapsing between measurements; the outer repeated 

measure correlation ρo assumes that any two DBPs recorded at the same time during 

two separate 24-hour periods have a common correlation. 

 

Composite covariance: Nonconstant correlation within the 24-hour period 

and unequal variances between visits are both plausible but neither can be 

addressed with the aforementioned random effects covariance structure. Instead, 

one can use a composite covariance model (Searle, 2006, p. 348) obtained using 

the right Kronecker product to model the sources of correlation arising from inner 

and outer repeated measures. There are several possibilities for composite 

covariance models, although there are some limitations imposed by software 

capabilities (Park & Lee, 2002). For the DBP example, an unstructured covariance 

for the outer repeated measure (occasion) and AR(1) structure for the inner repeated 

measure (sequence) are considered. The covariance matrix corresponding to the 

direct product of unstructured and AR(1) covariance is 
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Exponential covariance: The composite covariance model assumes equally 

spaced measurement times within each occasion (at the sequence level) and 

between occasions. In the motivating example, the timing of post-intervention 

measurement is not equal across subjects, which suggests the need for a more 

flexible covariance model. The exponential covariance models described in this 

section have their origin in spatial statistics but can be used in the linear mixed 

model framework (Littell, Milliken, Stroup, Wolfinger, & Schabenberger, 2006, p. 

198) and have been used in various longitudinal data analysis applications with a 

single repeated measures factor (see Szczesniak et al., 2013 for a recent biomedical 

example). This section covers two general types of exponential covariance models. 

Consider the semivariogram formula for the exponential covariance model 

with nugget effect: 
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ijk ijk
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where |tijk − tijk'| refers to the Euclidean distance between two time points, tijk and 

tijk', thereby relaxing the previously-described assumption of equally-spaced inner 

repeated measures for the AR(1) covariance and accounting for irregular time series. 

The terms Cn, 
2

0nC  , and a0 correspond to the geostatistical parameters referred 

to as the nugget, sill, and range (Wackernagel, 2003, p. 57). The nugget effect is a 

measure of the residual error or white noise of the DBP response; the range 

parameter dictates the decay of the covariance function. Please see Appendix A for 

a graphical explanation of these terms. If the term Cn is excluded, then the model is 

considered an exponential covariance model without the nugget effect. Both 

versions of this exponential covariance model are applied to the motivating 

example. 

Results 

Fifty-eight subjects completed both recording sessions, and their observations 

comprise the data of interest. The median (Q1-Q3) time between pre- and post-

intervention measurement periods was 288.3 (218.1-321.5) days and ranged from 

as few as 177 days between visits to as much as 364 days between visits. This 

indicates the potential need to model unequally-spaced repeated measurements. 

The number of observed half-hourly DBP recordings over the 24-hour period was 

41.0 (34.5-44.8) and 42.4 (36.0-46.2) at the baseline and follow-up sessions, 

respectively. Baseline age and BMI z-score were 9.0 (7.1-11.5) years and 1.47 

(0.34-2.25), respectively; 40.4% of subjects were Caucasian and 46.8% were male. 

The series of models from Table 1 were used to characterize DBP over the 

24-hour sequence and the two measurement occasions. The mean response model 

chosen using adjusted fit statistics presented in previous work (Maringwa et al., 

2008a) had Structure (1.3), which provided separate polynomial terms for each 

occasion but relied on the same smoothing parameter. 

Each of the four previously described covariance functions was applied to 

model the correlation for the εi
* term in (2). SAS code to implement the covariance 

models are in Appendix B. The estimates for the demographic covariates under 

each covariance model are presented in Table 2. Effect estimates were consistent 

across the four different covariance models, except for the effect of race, but this 

effect was not statistically significant in any of the models. Gender and BMI z-

score were statistically significant in all models. 
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Table 2. Linear covariate effects* estimates from covariance models of diastolic blood 

pressure 
 

 Covariance Model 

Effect 

Random Effects 

Estimate (SE)  
p-value 

Composite 
Covariance 

Estimate (SE)  
p-value 

Exponential (with 
nugget effect) 

Estimate (SE)  
p-value 

Exponential 
(without nugget 

effect) Estimate 
(SE) p-value 

Male 3.13970 (1.10020) 3.14310 (1.11280) 3.13940 (1.12850) 3.19640 (1.10690) 

 0.00640 0.00690 0.00780 0.00590 

Caucasian -0.08742 (1.09580) -0.08212 (1.10810) -0.03037 (1.12400) 0.01099 (1.10250) 

 0.93680 0.94120 0.97860 0.99210 

Age (years) 0.18210 (0.22670) 0.19510 (0.23100) 0.18380 (0.23670) 0.17270 (0.23080) 

 0.42570 0.40210 0.44100 0.45780 

Body Mass 
Index (z-score) 

1.47780 (0.48580) 1.49850 (0.51540) 1.51340 (0.56210) 1.55500 (0.52990) 

0.00290 0.00460 0.00900 0.00440 

 

* These effects were assumed to enter the models linearly. Each model included the mean response function 
specified in Table 1, Structure (1.3) 

Evaluating Model Fit 

An important task in the model-building process is to select a suitable covariance 

structure. The effective number of parameters, referred to as Ep, can be obtained for 

each covariance model by estimating the appropriate covariance structure using (3). 

Let C = [X Zb] be the design matrix for the mean response function and 

1

0 0

0 

 
  
 

B
G

, where G corresponds to any random effects being used to model 

covariance (e.g. random intercepts), R = blkdiag(εi
*), i = 1,…, ni. The Ep for each 

covariance model may be computed as: Ep = trace((CTR-1C + B)-1CTR-1C). 

Ultimately, the adjusted AIC can be computed as AICadj = -2LL + 2Ep. This 

calculation will take into account the additional parameters brought about by fitting 

the mean response function f(t) and the covariance function. SAS code for the Ep 

calculations necessary for model structures in Table 1 and NRM covariance models 

is available from the authors upon request. 

The fit statistics were calculated for each covariance model and are displayed 

in Table 3. The adjusted AIC and the more common information criteria (both 

marginal AIC and BIC) indicated that exponential covariance with a nugget effect 

provides the best fit of the covariance models considered. Subsequent estimation 

for the intervention effect is based on the exponential covariance with nugget. 
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Table 3. Fit statistic results for covariance models 

 
 Fit Statistics 

Covariance Model* -2loglikelihood AIC BIC Ep AICadj 

Random Effects 33494.0 33520.0 33494.0 12.1291 33518.3 

Composite Covariance 33264.9 33296.9 33296.9 12.0024 33288.9 

Exponential (with nugget) 32874.1 32904.1 32874.1 12.0604 32898.2 

Exponential (without nugget) 33042.5 33070.5 33042.5 11.6404 33065.8 
 

* Each covariance model includes the mean response function specified in Table 1, Structure (1.3) 

 
 

 

 
 
Figure 2. Fitted DBP response curves and morning surge, before and after intervention 

 
 

The averaged response (jagged line), fitted curve (smooth, solid line) for f(t) and corresponding 95% 

simultaneous confidence bands (dashed lines) during recording of the 24-hour diastolic blood pressure (DBP, y-

axis) taken prior to surgery in (a) and after surgery in (b). The plot in (c) shows the derivative of the smooth 
function f'(t) for pre- and post-intervention sessions of 24-hour DBP recordings, where the solid (dashed) curve 

represents the rate of change for the pre-intervention (post-intervention) recordings. The difference between 24-

hour DBP mean response functions before and after intervention (solid line) and 95% simultaneous confidence 
bands (dashed lines) are presented in (d). 

 

 

(a) (b) 

(c) (d) 
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Figure 2 (a-b) shows the fitted DBP curves corresponding to occasions before 

and after intervention, which both show smoother trends than the averaged response. 

The 95% confidence bands accompanying each fitted curve are explained in a 

subsequent section. The circadian rhythm is more discernable here than examining 

the individual functions in Figure 1, and corresponds to previously mentioned 

studies that suggest a diurnal response over time. Nocturnal dipping is a feature that 

indicates healthier DBP rhythm. It is present at both occasions and is noticeable 

just before the sleep cycle starts for the next day (around t = 22 hours after sleep 

onset). 

The derivative f'(t) of Structure (1.3) in Table 1 can be used to examine the 

morning surge before and after intervention. By looking at time since sleep onset, 

which corresponds to 0 on the x-axis in Figure 2 (c), the rate of change in average 

DBP is slightly higher for the intervention period; however, the derivative curves 

begin to overlap around t = 12 hours after sleep onset. Presumably, 7-9 hours after 

sleep onset is the interval of interest to assess the morning surge, as this is the time 

frame when subjects begin to wake. Results suggest the rate of change is slightly 

elevated after intervention, as compared to before intervention. From a biomedical 

perspective, this finding may indicate heightened response to wakefulness as a 

result of receiving the intervention. 

Simultaneous Confidence Bands 

It is also of interest to examine the intervention effect on mean DBP response across 

the 24-hour interval. It is plausible to conduct point-by-point comparisons of the 

occasion-specific mean response functions. Rather than making this comparison of 

fpre(t) to fpost(t) for all observed t in the 24-hour interval, one can avoid those 

multiple comparison issues by constructing a simultaneous confidence band for this 

difference by using the following result (Ruppert et al., 2003, p. 142-143): 
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1

1
ˆ

~ N ,
ˆ

T

b b




 
 

  

0 C R C B
b b

 
  (4) 

 

Define a grid g of time points (0, 23) by increments of 0.5 hours such that 

there are T = 49 equally spaced time points (g1,…, g49)'. One can evaluate the 

estimated difference between the two functions as 
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L  is a contrast matrix, X and Zb are the 

design matrices evaluated over g, and Cg = [LX LZb]. 

In order to obtain the ˆstdev d d
 
 
f f  for the confidence band, it is necessary 

to compute ˆCov d d
 
 
f f . Using the following result: 
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one can obtain a 95% simultaneous confidence band for fd as 
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where h0.95 is the 1 – α quantile with α = 0.05. Finally, it can be approximated as 
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As an example, if simulations from (4) then computations of (5) are repeated 

10,000 times, then the value of the ranked 9,500th quantity is used as h0.95. Similarly, 

a 95% pointwise confidence band for fd is 
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where Z0.95 = 1.96. SAS code for both simultaneous and pointwise confidence 

bands is available from the authors upon request. 

The simultaneous confidence band for fd in the DBP example is plotted in 

Figure 2 (d). Portions of the band that do not overlap with zero on the y-axis are 

considered to indicate statistically significant differences between pre- and post-

intervention periods. As expected, the significant differences occur roughly for the 

first 5 hours of sleep (from t = 0 to t = 5 hours) and indicate mean DBP lowers after 

intervention. The mean profiles otherwise show substantial overlap, particularly 

during daytime (t > 10 hours). If there is any effect from intervention, it likely 

occurs during nighttime. Although not shown here, pointwise confidence bands for 

fd indicate similar findings but have narrower bands because there is no adjustment 

for simultaneity. 

Conclusion 

With so many devices offering the opportunity to measure real-time subject 

outcomes over extended periods of time, many researchers may be overwhelmed 

by the amount of data and the task of determining an appropriate statistical method 

to assess treatment effects. Extending semiparametric mixed models to account for 

NRM offers a solution to such challenges. In the motivating example with 24-hour 

DBP recording, using this approach shows that intervention effects may be 

observable during sleep. It is likely that these findings would be masked if one tests 

summary measures from the DBP curves. Incorporating penalized splines provided 

a more sensitive means to assess medically important features of the DBP profile, 

such as nocturnal dipping and morning surge. Findings using semiparametric 

regression suggest the presence of an unexpected “daytime dip.” These findings are 

not consistent with the DBP profiles of healthy controls but reflect prior studies of 

rough averages of DBP over the 24-hour period (Amin et al., 2008). 

Ignoring the impact from NRM on the regression model reduces efficiency in 

the parameter estimates and may lead to incorrect conclusions about intervention 

effects. Analyses of the DBP data show improvement in model fit is attributable to 

accounting for unequally spaced measurement times. There are other covariance 

models that can also be implemented in the SAS MIXED procedure to account for 

NRM. Some examples include the Gaussian covariance model (nugget effect 

specification is optional) and the right Kronecker product “AR(1)⨂UN,” which 

corresponds to the DBP data to having AR(1) covariance for the outer repeated 

measure (occasion) and unstructured covariance for the inner repeated measure 

(sequence). The authors attempted to fit these covariance models to the data but 
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estimates were not obtained due to convergence issues from the MIXED procedure. 

An alternative approach to the semiparametric mixed models presented here is to 

perform sequential or hierarchical regression via path analysis (Snijders, 1996). 

Additional consideration in the model setup would be needed to incorporate the 

spline basis functions at subject-specific levels. 

There are several ways in which the semiparametric mixed model with NRM 

covariance presented here can be further explored and extended. Functional 

principal components analysis may be used to examine dominant modes of 

variation in the subject- and visit-specific DBP profiles (Silverman, 1996); recent 

developments have been made to apply this approach on NRM (Shou, Zipunniokov, 

Crainiceanu, & Greven, 2014). If data have a mean response function with sharp 

changes, multiple knots may be desirable in that region, and it may be advantageous 

to change knot locations of sequences observed at different periods. For such 

instances, adaptive spline methods may be useful; however, some methods may 

require different estimation approaches (DiMatteo, Genovese, & Kass, 2001). It 

may also be of interest to assess the correlation between spline coefficients for the 

difference between occasions. Clinical and demographic characteristics in this 

study were assumed to enter the model linearly as covariates, but that assumption 

may be relaxed using generalized additive models (Hastie & Tibshirani, 1990, p. 

136-171). Although not the focus of this work, missing data is a pervasive issue. 

The approach used in this study essentially assumed the missing mechanism was 

MAR (Rubin, 1976); however, more recent work has been done to improve 

efficiency of estimators in semiparametric regression models in the presence of 

missing data (Yu & Nan, 2006). That work may be extended to the NRM 

covariance models presented here. 
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Appendix A: Semiovariogram Description 

Revisiting the exponential covariance model from the Methodology section, the 

semivariogram is: 
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The parameters Cn, 
2

0nC  , and a0 correspond to geostatistical parameters: nugget, 

sill, and range. The covariance model with   2

0var nC    is called an 

exponential model with a nugget effect, whereas the covariance model with 

  2

0var    is called no-nugget effect model. In a nugget model, 2

0  is the partial 

sill (see Figure A1 below). 
 
 

 
 
Figure A1. Semivariogram of exponential covariance 

 

Appendix B: SAS Implementation 

Covariance models (a-d) are presented for the four distinct variance-covariance 

matrices discussed in the paper, assuming mean response with Structure (1.3) from 

Table 1. Model structures (1.1-1.5) from Table 1 of the paper may be obtained using 

the approach described by Maringwa et al. (2008a) but assuming the selected 
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covariance function for the DBP data (exponential covariance with nugget effect). 

Models implemented in SAS are indexed below as 1.3(a-d). 
 
 
Table B1. Description of variables used in SAS 

 
Variable Description 

DBP Response variable, diastolic blood pressure 

Visit Occasion of measurement (either pre- or post-intervention) 

Studynr Subject id for the study 

NTime Time of DBP measurement since sleep onset (in hours) 

Timesq Squared value of NTime 

Gender Indicator variable for gender (1 = Male, 0 = Female) 

Bi_race Indicator variable for race (1 = White, 0 = Non-white) 

BMIZ Continuous variable representing BMI z-score from CDC 

NTimecat Duplicate variable of NTime created for class statement 

Z1-Z15 Columns of Z matrix (quadratic) for smoothing (K = 15 knots) 

 
 

Knots were selected using the algorithm from Ngo and Wand (2004). There 

were 15 knots, ranging from 2.54 to 22.97 hours since sleep onset. 

 

Model 1.3a: Random intercepts 
 

proc mixed method=ml data=dataw; 

class studynr visit ntimecat gender bi_race; 

model DBP= visit ntime timesq visit*ntime visit*timesq gender bi_race age 

bmiz /solution ddfm=kr; 

random Z1-Z&nk /type=toep(1) s; 

random studynr studynr*visit studynr*ntimecat; 

title ‘Random intercepts model’; 

run; 
 

Model 1.3b: Composite covariance 
 

proc mixed method=ml data=dataw; 

class studynr visit ntimecat gender bi_race; 

model DBP=visit ntime timesq visit*ntime visit*timesq gender bi_race age 

bmiz/solution ddfm=kr ; 

random Z1-Z&nk /type=toep(1) s; 

random intercept/subject=studynr s; 

repeated visit ntimecat /subject=studynr type=un@ar(1); 
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title ‘AR(1)@UN composite covariance’; 

run; 
 

Model 1.3c: Exponential covariance (with nugget) 
 

proc mixed method=ml data=dataw convf; 

class studynr visit gender bi_race; 

model DBP=visit ntime timesq visit*ntime visit*timesq gender bi_race age 

bmiz/ddfm=kr s; 

random Z1-Z&nk /type=toep(1) s; 

random intercept/subject=studynr s; 

repeated/subject=studynr type=sp(exp) (ntime_all) local; 

title ‘SP(EXP) Covariance (with nugget)’; 

run; 
 

Model 1.3d: Exponential covariance (without nugget) 
 

proc mixed method=ml data=dataw convf; 

class studynr visit gender bi_race; 

model DBP=visit ntime timesq visit*ntime visit*timesq gender bi_race age 

bmiz/ddfm=kr solution; 

random Z1-Z&nk /type=toep(1) s; 

random intercept/subject=studynr s; 

repeated/subject=studynr type=sp(exp) (ntime_all); 

title ‘SP(EXP) Covariance (without nugget)’; 

run; 


	Journal of Modern Applied Statistical Methods
	4-2016

	Semiparametric Mixed Models for Nested Repeated Measures Applied to Ambulatory Blood Pressure Monitoring Data
	Rhonda D. Szczesniak
	Dan Li
	Raouf S. Amin
	Recommended Citation

	Semiparametric Mixed Models for Nested Repeated Measures Applied to Ambulatory Blood Pressure Monitoring Data
	Cover Page Footnote


	Semiparametric Mixed Models for Nested Repeated Measures Applied to Ambulatory Blood Pressure Monitoring Data

