
Journal of Modern Applied Statistical
Methods

Volume 1 | Issue 1 Article 8

5-1-2002

A Measure Of Relative Efficiency For Location Of
A Single Sample
Shlomo S. Sawilowsky
Wayne State University, shlomo@wayne.edu

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Sawilowsky, Shlomo S. (2002) "A Measure Of Relative Efficiency For Location Of A Single Sample," Journal of Modern Applied
Statistical Methods: Vol. 1 : Iss. 1 , Article 8.
DOI: 10.22237/jmasm/1020254940
Available at: http://digitalcommons.wayne.edu/jmasm/vol1/iss1/8

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol1/iss1/8?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol1%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal O f Modem Applied Statistical Methods 
Winter 2002, Vol. 1, No. 1,52-60

Copyright © 2002 JMASM, Inc. 
1538 - 9472/02/$30.00

A Measure Of Relative Efficiency For Location Of A Single Sample

Shlomo S. Sawilowsky 
Evaluation & Research 
College of Education 

Wayne State University

The question o f how much to trim or which weighting constant to use are practical considerations in applying robust 
methods such as trimmed means (L-estimators) and Huber statistics (M-estimators). An index o f location relative effi
ciency (LRE), which is a ratio of the narrowness o f resulting confidence intervals, was applied to various trimmed 
means and Huber M-estimators calculated on seven representative data sets from applied education and psychology 
research. On the basis of LREs, lightly trimmed means were found to be more efficient than heavily trimmed means, but 
Huber M-estimators systematically produced narrower confidence intervals. The weighting constant o f \j/ = 1.28 was 
found to be superior to various competitors suggested in the literature for n < 50.

Keywords: Huber M-estimator, \j/, Trimmed mean, Point estimator, Relative efficiency

Introduction

The development o f robust methods in the past thirty-five 
years has produced a plethora o f modem techniques for 
succinctly describing the most salient characteristics o f a 
data set. With regard to measures of central tendency (lo
cation), the familiar mean, median, mode, and geometric 
mean have been augmented with L-estimators (Linear com
bination o f order statistics), M-estimators (generalized 
Maximum likelihood), and R-estimators (inverted tests on 
Ranks of absolute values).These modem methods are ex
amples o f the “outright rejection” and the “accommoda
tion” approaches to handling outliers (Barnett & Lewis, 
1994, p. 29). To understand the concepts o f these robust 
methods, the mathematically inclined reader is referred to 
Hampel, et al. (1986), Hoaglin, Mosteller, and Tukey 
(1983), Huber (1981), or Staudte & Sheather (1990). An 
excellent “first course” textbook introducing L- and M- 
estimators is Wilcox (1996).

Consider trimmed means, which are typical of L- 
estimators. The trimmed mean is calculated by sorting the 
data set, trimming a certain percentage of observations from 
the top and bottom of the scores, and calculating the aver
age o f the remaining scores. For example, the arithmetic 
mean of a data set containing the scores 7 5 ,7 1 ,70 ,76 ,72 , 
73, 73, 70, 30, and 74 is 68.4. A 2x10% trim (symmetric 
trim of 10% of the smallest and largest observations) is 
calculated as follows:
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1. sort observations: 30, 70, 70, 71, 72, 73, 73, 74, 75, 76
2. trim 10% x 10 scores = 1 score from both ends: 70, 70, 

71,72, 73,73, 74, 75
3. calculate average:

70 + 70 + 71 + 72 + 73+73 + 74 + 75
------------------------------------------------= 72.25

8
In this example, the 2x10% trimmed mean is 

shown to be resistant to the extreme score (30), resulting 
in a value o f 72.25 which is more indicative o f bulk o f the 
scores. The arithmetic mean, in contradistinction, chased 
after the extreme low score, resulting in a measure of loca
tion that was lower than ninety percent o f scores in the 
data set. Thus, the arithmetic mean is said to have a low 
breakdown point, because it is strongly influenced by even 
a single value, such as an outlier.

The data analyst might wonder if  a different 
amount o f trim would improve the estimate of location. 
The literature on this question is divided into two camps: 
the “heavily trim” (e.g., a 2x25% trim was recommended 
by Rosenberger & Gasko, 1983, p. 332-333; a 2x20% trim 
was adopted by Wilcox, 1996, p. 16; 1998) and the “lightly 
trim” (either a 2x10% or 2x5% trim, considered by Hill & 
Dixon, 1982; Huber, 1977, p. 1090; Stigler, 1977, p. 1063; 
Staudte & Sheather, 1990, p. 133-134). Simulation evi
dence on a contaminated normal distribution indicated that 
the variances of trimmed means were minimized (and are 
thus one measure o f the optimum trim or “optrim”) for 
sample size n = 10 when the trim was 16.1%; for samples 
of size n = 20 it was almost half as much, as the optrim was 
8.7% (Rosenberger & Gasko, 1983, p. 319). The variance 
of estimators was minimized for data sampled from the 
double exponential and Cauchy distributions for samples 
o f size n = 10 with optrims o f 34% and 40% (p. 330), 
respectively, and was 37% and 39% (p. 331), respectively, 
for samples o f size n = 20. Wilcox (1996) noted, “Cur
rently there is no way of being certain how much trimming
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should be done in a given situation, but the important point 
is that some trimming often gives substantially better re
sults, compared to no trimming" (p. 16).

The problem o f selecting parameters in the ro
bust measures literature, such as how much to trim, is not 
restricted to L-estimators. As an example with M-estima- 
tors, there are many choices pertaining to the weighting 
constant ψ (also referred to as the bending constant or the 
tuning factor) used in the one-step Huber M-estimator. The 
M-estimator has a high breakdown point, determines em
pirically how much and from which side to trim, and has 
other desirable properties (Wilcox, 1996, p. 146, 204).

The formula for the one-step Huber M-estimator, 
with a weighting constant o f ψ = 1.28, is

Huberψ1.28 M-Estimator =

It is calculated on the ten scores as follows:

1. sort observations:30, 70, 70, 71, 72, 73, 73, 74, 75, 76
2. calculate median: 72.5
3. calculate MAD (Median Absolute Difference):

a. calculate |xi - median|: |30-72.5|=42.5, |70- 
72.5|=2.5, |70-72.5|=2.5, |71-72.5|=1.5, |72- 
72.5|=.5,|73-72.5|=.5, |73-72.5|=.5, |74-72.|=1.5, 
|75-72.5|=2.5, |76-72.5|=3.5
b. sort results: .5, .5, .5, 1.5, 1.5, 2.5, 2.5, 2.5, 
3.5,4 2.5
c. MAD = median from step b: 2

4. calculate

5. count i1 (number o f values in step 4 < -1.28): 
1 (observation a)

6. count i2 (number o f values in step 4 > 1.28): 
0

7. calculate Huberψ1.28

The one-step M-estimator is nearly the same as 
the median in this illustration. Wilcox noted that typically 
the M-estimator is between the median and the mean 
(Wilcox, 1996, p. 147). (The constants .6745 and 1.8977 
appearing in the calculation o f the one-step Huber 2g M- 
estimator refer to the inverse cumulative distribution func
tion for x = 0.75 for the standard normal curve (p = 0, a = 

1), and , respectively. This formula, and its constants, 

are given by Wilcox, 1996, p. 147. It should be pointed

out that the second constant, 1.8977, pertains only to \|/ = 
1.28. For example, use 2.2239 in calculating the one-step 
Huber , .  M-estimator.)vj/1.5 '

Some commonly used weights for the one-step 
Huber M-estimator include the following: (a) 1.28, the 
value used in the illustration, which corresponds to the .9 
quantile o f the standard normal distribution (Staudte & 
Sheather, 1990, p. 117), (b) 1.339, used by a popular sta
tistics software package (SPSS, 1996), (c) 1.345, because 
it represents the “0.95 asymptotic efficiency on the stan
dard normal distribution” (Rey, 1980, p. 108-109), (d) 
1.4088 (Hampel, et al., 1983, p. 167), and (e) 1.5, 
(Andrews, et al., 1972, p. 13), which Stigler (1977) stated 
“does particularly well” (p. 1064). Other values are cited 
less frequently in the literature (e.g., Huber, 1964, p. 84- 
85, examined the upper bounds o f the asymptotic variance 
for \|/ = 0 - 3.0 (.1)), but in the absence o f current usage 
they are not considered further.

The question remains as to which weighting con
stant should be used in practice. As noted by Lee (1995), 
the efficiency o f M-estimation will “depend on the choice
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of ψ" (p. 521). The casual approach in choosing ψ was 
summarized by Hogg (1977), who stated that for optimum 
performance, “let the k [ ψ] of  the Huber statistic decrease 
as measures o f skewness and kurtosis... increase; that is, 
for illustration, use Huber's P20 [ ψ = 2.0], P15 [ ψ = 1.5], 
and P12 [ ψ = 1.2] ,  respectively, as those measures increase. 
Users o f the M-estimators actually seem to do this in prac
tice anyway... to suit the problems at hand” (p. 1089, brack
eted material added for clarification). The casual approach 
is obviously not satisfactory.

Location Relative Efficiency (LRE)
The issues raised above in terms o f how much 

to trim and which weighting constant to use are important 
because they relate to the primary question of which pro
cedure and which parameters o f a procedure to use in esti
mating location in the single sample problem. Stigler’s 
(1977) approach toward discovery of the best estimator 
was “to measure the absolute magnitude o f an estimator’s 
error relative to the size o f errors achieved by other esti
mators” (p. 1062) for some famous physical science data 
sets. However, this technique is only applicable in the im
probable situation where 0, the population parameter for 
location, is exactly known. This is necessary in order to 
measure the variability o f error, a, which is taken to

b e (0 -  Q), the difference between the actual location pa
rameter and the estimated location. (For other limitations, 
see Andrews, 1977, p. 1079;Hoaglin, 1977, p. 1087; Huber, 
1977, p. 1091; and Pratt, 1977, p. 1092.)

Another method is to quantify the comparative 
efficiency of robust measures with their competitors. An 
example is the Cramer-Rao efficiency, which is the ratio 
of the lower bound of a competitor with that o f the best 
estimator. Another method, proposed by Gastwirth and 
Cohen (1970), is the ratio o f the variance of the best esti
mator divided by the variance o f the competitor. Their sta
tistic is called the relative efficiency. (See Rosenberger & 
Gasko, 1983, p. 327, for further discussion, and Staudte, 
1980, p. 15, for a typical application.)

A problem with these two techniques is the need 
to know the best estimator, which if  known, o f course, 
would obviate the initial question. The best estimator is 
dependent on a variety o f factors, including the distribu
tion and sample size. In practice, unfortunately, the evi
dence cited in favor of the best estimator is typically just 
an assertion. Among other difficulties, the lower bound of 
the Cramer-Rao efficiency is frequently impossible to ob
tain. The Gastwirth and Cohen relative efficiency depends 
on the asymptotic variance, as opposed to the actual vari
ance. (See Hampel, et al., 1986, p. 398, for a polemic fa
voring asymptotic variance over the actual variance, when 
taken together with asymptotic normality.)

A statistic was recently proposed (Sawilowsky,

1998) for determining the comparative efficiency of a 
location estimator for a single sample that precludes the 
necessity o f knowing the best estimator. It avoids prob
lems associated with assuming asymptotic normality in 
order to generalize asymptotic variances to actual variances. 
It is not hampered by limitations associated with the arith
metic mean and its impact on actual variances. Finally, it 
is simple to compute. This index is called the Location 
Relative Efficiency (LRE).

The impetus for the LRE was from Dixon and 
Tukey (1968). They calculated the 95% bracketed interval 
for the mean and for one through five units o f Winsorized 
means. Then, they compared the length o f the intervals of 
the Winsorized means with the length of the confidence 
interval associated with Student’s t, characterizing this ra
tio as the “apparent efficiency” (p. 86). This is a Type III 
performance measure o f a bracketed interval in the classi
fication scheme discussed by Barnett and Lewis (1994; 
see their discussion for Types I and II), where they noted 
that, “a natural measure o f its efficiency is the ratio o f the 
lengths of the intervals” ( p. 75). Indeed, Huber (1972) 
noted that, “While for years one had been concerned mostly 
with what was latter called ‘robustness o f validity’ (that 
the actual confidence levels should be close to, or at least 
on the safe side o f the nominal levels), one realized that 
‘robustness o f performance’ (stability o f power, or the 
length o f  confidence intervals) was at least as important” 
(p. 1045-1046, emphasis added).

The LRE for the 95% bracketed interval is de
fined as:

where the LRE is the range (U = upper bound, L = lower 
bound) for the 95% bracketed interval for the one-step 
Huber M-estimator divided by the range for the 95% brack
eted interval o f the competitor. The Huber^ 2g is not as
serted to be the best estimator. Rather, the resulting ratio 
may be greater than or less than one. LREs greater than 
one indicate the competitor yields confidence intervals that 
are narrower and thus more efficient than the Huber , „0.\yl.28
LREs less than one indicate the Huber , „0 is more efficient 
in that it produces narrower bracketed intervals.

The LRE was used to evaluate the performance 
of bracketed intervals produced by a variety o f procedures 
(Sawilowsky, 1998). Four data sets given in Staudte and 
Sheather (1990, p. 133-137) were analyzed and the results 
were as follows: Huber vl2g (1.000), 2x10% trim (.945), 
Sign (.895), Wilcoxon (.869), 2x5% trim (.862), and 
Student’s t (.625). However, note that the location param
eter 0 is not necessarily the same for these varied
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procedures (although Pratt argued that “It doesn’t matter retical distributions such as the deMoivreian (Gaussian),
what an estimator estimates, as long as it is a location pa- logistic, one-out (one score has scale three times the rest),
rameter”, 1977, p. 1092); and these results were based on one-wild (one score has scale ten times the rest), double
four small data sets. The data sets pertained to empirical exponential, and Cauchy (e.g., Rosenberger & Gasko,
measures o f the velocity o f light (n = 66), the percentage 1983, p. 326-330). (The reliance on theoretical distribu-
of seafood in a product to determine if it complied with tions has led to ridiculous statements, such as Hampel et
proposed labeling guidelines (n = 18), the proportion of al., 1986, citing Huber to say the following about the t
DDT in kale (n = 15), and Darwin’s data on plant height (n distribution with three degrees of freedom: “t3 is a suitable
= 15). example for what high-quality data can look like”, p. 23!)

The physical science data sets explored by Stigler Micceri (1986,1989) canvassed the education and
(1977) leave the same question “of whether these data ad- psychology literature and highlighted representative dis-
equately reflect anticipated applications, for example in tributions as the most prevalent in social and behavioral
the social sciences. I have little to add to my previous com- science research. (These data sets were previously investi-
ments on this, other than to reiterate that I would welcome gated, in terms o f their impact on the t-test, by Sawilowsky
evidence on this point” (Stigler, 1977, p. 1098, emphasis & Blair, 1992.) Descriptive statistics on the data sets, in
added). The same is true o f most published simulation work the order that they were presented by Micceri (1986), are
in the robustness literature, which was conducted on theo- compiled in Table 1. The ordering does not, however,

Table 1. Descriptive Statistics For Seven Real Data Sets from Micceri (1986).

Distribution N Median P SE a 7. y 2
7

U95%CI
7

L95%CI

Achievement 
Smooth Symmetric 5,375 13 13.186 .013 4.907 .005 -.340 13.211 13.160

Achievement 
Discrete Mass At Zero 2,429 13 12.919 .019 4.415 -.034 .312 12.956 12.881

Achievement 
Extreme Asymmetry 2,768 27 24.497 .018 5.788 -1.330 1.106 24.553 24.462

Psychometric 
Extreme Asymmetry 2,047 11 13.667 .021 5.754 1.638 1.522 13.709 13.626

Achievement 
Digit Preference 3,063 535 536.900 .680 37.644 -.065 -.240 536.981 536.914

Psychometric 
Extreme Bimodality 665 4 2.971 .037 1.687 -.078 -1.696 3.044 2.899

Achievement 
Multimodality Lumpy 467 18 21.148 .044 11.917 .194 -1.199 21.234 21.062

Notes: |i = population mean, a = population standard deviation, SE = standard error o f the mean, y1 = skew, y2 = kurtosis, 
ZU95%ci, ZL95%CI = Upper and Lower 95% Confidence Interval based on Z and the SE. Parameters are reported here in 
accordance with Micceri (1986), who took the position that the data sets were considered o f sufficient size to proxy the 
population.
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reflect prevalence o f occurrence. Clearly, the physical 
science data sets and convenient theoretical distributions 
mentioned above have little relevance for the applied so
cial and behavioral science researcher.

Purpose of the Study
In the current study, the data sets provided by 

Micceri ( 1986, 1989) are used to assess the LRE of some 
robust methods o f estimating location of a single sample.

The first question to be considered is whether the “heavily 
trim” or the “lightly trim” approach is more efficient in 
estimating location in real education and psychology data 
sets. Only symmetric trimming is considered because the 
applied researcher will most likely not have a priori knowl
edge o f whether or not the parent population from which 
the data were sampled is asymmetric, and therefore will 
not know which side to trim. The second question is whether 
Huber’s M-estimator is more efficient in estimating

Table 2. Median Location Relative Efficiency For Various Robust Measures Of Location and Sample Sizes For The 
Real Data Sets From Micceri (1986); Huberψ1.28 = 1.000; 1,000 Repetitions.

Statistic 10 20 30 40 50 60 70 80 90 100

Huberψ1.339 .983 .983 .985

Smooth Symmetric (Achievement) 

.986 .991 .994 .994 .993 .997 1.000

Huberψ1.345 .979 .982 .986 .992 .996 .996 .997 .997 1.000 1.000

Huberψ1.4088 .971 .984 .996 .997 1.001 1.004 1.009 1.006 1.010 1.013

Huberψ1.5 1.000 1.000 1.003 1.006 1.009 1.008 1.012 1.013 1.013 1.014

Trim2x25% .731 .828 .891 .895 .908 .915 .920 .930 .937 .938

Trim2x20% .731 .854 .891 .916 .918 .931 .938 .942 .942 .951

Trim2x10% .793 .895 .933 .947 .959 .967 .970 .975 .975 .982

Trim2x5%
* .922 .960 .968 .986 .988 .994 .996 1.002 1.000

Discrete Mass At Zero (Achievement)

Huberψ1.339 .979 .982 .984 .985 .986 .987 .986 .986 .986 .987

Huberψ1.345 .978 .981 .982 .984 .987 .990 .991 .992 .990 .989

Huberψ1.4088 .968 .982 .981 .984 .994 .999 .996 1.004 1.005 1.000
Huberψ1.5 .994 .994 .997 .998 1.003 1.004 1.008 1.007 1.008 1.009

Trim2x25% .716 .830 .888 .886 .915 .920 .920 .922 .932 .932

Trim2x20% .716 .859 .895 .908 .928 .931 .934 .938 .948 .947
Trim2x10% .794 .899 .929 .949 .960 .967 .971 .968 .975 .980
Trim2x5%

* .910 .948 .967 .978 .981 .986 .984 .993 .997

Extreme Asymmetry (Achievement)

Huberψ1.339 .977 .977 .975 .978 .978 .978 .978 .978 .977 .978
Huberψ1.345 .975 .975 .972 .975 .976 .976 .976 .976 .976 .976
Huberψ1.4088 .959 .958 .953 .961 .962 .965 .964 .966 .963 .966
Huberψ1.5 .955 .949 .946 .953 .950 .952 .950 .954 .951 .952

Trim2x25% .647 .694 .734 .748 .757 .754 .748 .754 .762 .753
Trim2x20% .647 .713 .741 .755 .761 .758 .764 .767 .773 .770
Trim2x10% .685 .755 .744 .750 .750 .758 .746 .748 .749 .747
Trim2x5%

* .740 .733 .748 .747 .755 .746 .754 .749 .748
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n

Statistic 10 20 30 40 50 60 70 80 90 100

Extreme Asymmetry (Psychometric)

Huberψ1.339 .967 .966 .965 .966 .965 .966 .966 .966 .966 .966

Huberψ1.345 .964 .962 .962 .962 .962 .963 .962 .962 .962 .962
Huberψ1.4088 .931 .928 .929 .927 .927 .928 .928 .928 .927 .928

Huberψ1.5 .904 .901 .897 .892 .892 .891 .889 .887 .887 .887

Trim2x25% .510 .503 .449 .457 .443 .444 .424 .443 .418 .432

Trim2x20% .510 .473 .417 .421 .404 .408 .394 .401 .386 .389
Trim2x10% .431 .408 .375 .375 .365 .354 .355 .354 .359 .356

Trim2x5%
* .382 .361 .361 .352 .341 .342 .343 .346 .341

Digit Preference (Achievement)

Huberψ1.339 .980 .984 .986 .996 1.000 .999 .997 .996 .998 1.002

Huberψ1.345 .978 .983 .988 1.003 1.000 .998 .997 1.002 1.001 1.002

Huberψ1.4088 .969 1.000 .994 .999 1.003 1.003 1.004 1.004 1.003 1.006
Huberψ1.5 1.000 1.000 1.000 1.007 1.009 1.010 1.008 1.011 1.009 1.010

Trim2x25% .727 .831 .882 .893 .909 .923 .923 .934 .941 .935

Trim2x20% .727 .841 .892 .904 .917 .929 .932 .933 .945 .936

Trim2x10% .786 .895 .932 .950 .962 .968 .973 .974 .981 .979

Trim2x5%
* .913 .952 .966 .983 .984 .990 .991 .999 .994

Extreme Bimodality (Psychometric)

Huberψ1.339 .976 .979 .980 .981 .981 .982 .982 .983 1.000 1.000
Huberψ1.345 .975 .977 .978 .980 .979 .980 .981 .982 1.000 1.000
Huberψ1.4088 .955 .961 .970 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Huberψ1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Trim2x25% .545 .523 .594 .588 .603 .598 .620 .607 .619 .617

Trim2x20% .545 .609 .651 .675 .678 .687 .702 .704 .707 .720

Trim2x10% .629 .763 .826 .849 .884 .897 .910 .937 .946 .925

Trim2x5%
* .851 .964 .959 1.021 1.013 1.043 1.056 1.079 1.043

Multimodality & Lumpy (Achievement)

Huberψ1.339 .987 1.000 1.000 1.004 1.006 1.009 1.013 1.012 1.014 1.015
Huberψ1.345 .986 1.000 1.000 1.006 1.008 1.013 1.014 1.013 1.016 1.017
Huberψ1.4088 1.000 1.000 1.013 1.019 1.019 1.026 1.029 1.029 1.032 1.035
Huberψ1.5 1.000 1.002 1.027 1.036 1.035 1.042 1.049 1.048 1.053 1.057

Trim2x25% .657 .662 .714 .708 .734 .726 .741 .731 .745 .740
Trim2x20% .657 .732 .757 .775 .788 .798 .805 .805 .811 .815
Trim2x10% .726 .835 .875 .903 .903 .924 .929 .941 .941 .944
Trim2x5%

* .897 .951 .963 .963 .983 .995 .995 1.003 1.002

Note: *Insufficient sample size to trim.



LOCATION RELATIVE EFFICIENCY FOR A SINGLE SAMPLE 58

location in real education and psychology data sets with a 
1.28,1.339,1.345,1.4088, or 1.5 weighting constant. Both 
of these questions will be answered on the basis of LREs. 
That is, evidence in support o f a procedure will be in the 
form of a more efficient or narrower confidence interval.

Methodology
A Monte Carlo program was written for Minitab (1996) 
Release 11.1 using the data sets from Micceri (1986) and 
Minitab “macros” D.2.1 (one-sample trimmed mean, p. 
318-319), and D.2.3-D.2.5 (one step Huber M-estimate, 
p. 321-323) from Staudte and Sheather (1990). Each data 
set was randomly sampled to produce sample sizes o f n = 
10 (10) 100. (See Stigler, 1977, for a contrary view on 
“subsampling from large data sets”, p. 1057.) These sample 
sizes were noted to be of interest by Goodall (1983, p. 
395).

For the 2P-trimmed mean (i.e, two-sided trim of 
P percent), degrees o f freedom (df) = n - [2pn] -1 . The df 
are due to Tukey and McLaughlin (1963). The standard 
error for the one-step Huber M-estimator is the square root 
of the estimated asymptotic variance (Staudte & Sheather, 
1990, p. 132, formula 4.6.2).

As noted by Rosenberger and Gasko (1983), 
“Sometimes, in order to obtain a specified amount of trim
ming exactly, we need to trim a fraction of an observation; 
for example, a 5%-trimmed mean from a sample o f size 10 
requires trimming half o f each of the largest and smallest 
observations” (p. 309). They accomplished this feat by 
“giving fractional weight” (p. 310) to the remaining frac
tion. They noted that “Some authors trim only an integer 
number o f observations from each extreme” (p. 310). The 
debate on this issue is amazingly involved; the reader is 
referred to their discussion on the matter (Rosenberger & 
Gasko, 1983, p. 310-311). In the current study, trimming 
is rounded down to the whole number, which was the ap
proach taken by Staudte and Sheather (1990, p. 134) and 
Wilcox (1998, in press). Therefore, the 2x5% trim cannot 
be conducted for sample size n=10. Another anomaly is 
that the 2x25% and 2x20% trims yield identical samples 
(and therefore results) when n = 10.

Results
The study proceeded as follows. The LRE was calculated 
for each statistic. This process was repeated 1,000 times, 
sampling with replacement from the data set. Then, the 
median LRE for each statistic was computed from the 1,000 
samples. The results are compiled in Table 2.

The first question pertained to the amount of trim
ming that would yield the most efficient estimator. With 
the exception of the extreme asymmetric psychometric data 
set, lightly trimmed means produced narrower confidence 
intervals. In the best case (i.e., extreme bimodality

psychometric withn = 20), the 2x5% trim produced confi
dence intervals about 63% narrower than the 2x25% 
trimmed mean. In general, as the sample size increased, 
the confidence intervals produced by the various levels of 
trimming converged, although in half o f the data sets the 
results were less than satisfactory even for n = 100 in the 
sense that the LREs were substantially less than 1.0.

Indeed, the first question appears to be rather 
moot. On the basis o f LREs, trimmed means systemati
cally performed worse than the various Hubers. The 
trimmed means were only competitive for n >90 with the 
smooth symmetric achievement and the digit preference 
psychometric data sets. The latter data set is essentially a 
smooth symmetric data set with certain scores enjoying a 
propensity to protrude. In the worst case (i.e., extreme 
asymmetry psychometric with n = 60), trimmed means pro
duced confidence intervals as much as 293% wider than 
the HuberiJfl 2g. Jackson (1986) noted that “A disadvantage 
of both trimming and Winsorizing is that they down-weight 
the highest and lowest order statistics whether or not all 
observations are sound. Thus, a proportion of the data val
ues are always either omitted altogether or have their val
ues changed towards the centre of the distribution” (p. 27). 
Perhaps this is the reason for the poor performance.

Again, some researchers express disdain in com
paring statistics which estimate different quantities, and 
therefore, would not compare trimmed means directly with 
Huber statistics. Support for those researchers who find 
the comparisons useful is available from Pratt (1977), who 
argued that “It doesn’t matter what an estimator estimates, 
as long as it is a location parameter” (p. 1092).

The second question pertained to the choice o f i|r 
in the one-step Huber M-estimator. The results in Table 2 
suggest that ij; = 1.28 is the best choice regardless o f the 
nature o f the data set for n < 50. For situations where 50 < 
n < 100, i|j = 1.28 remains an excellent choice, although \|i 
= 1.5 produced narrower confidence intervals more fre
quently.

Conclusion
The selection o f robust methods requires more consumer 
input than clicking on a pull-down menu in a statistical 
package. This is because many robust procedures require 
making choices, such as the amount to trim or the value of 
a tuning parameter. Although there are many opinions to 
be found in the literature on which values to use, there has 
not been a systematic study of the impact of these choices. 
For example, this article considered the bracketed interval 
around the location for a single sample.

The results in this article pertain to the 95% brack
eted interval. It was chosen because it was the level used 
by Dixon and Tukey (1968) (who provided the impetus 
for the creation o f the LRE). Another reason is, “The 95% 
confidence level appears to be used more frequently in
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practice than any other level” (Hahn & Meeker, 1991, 
p. 38). Obviously, the results in this study should not be 
generalized to other levels (e.g., 90% or 99%).

There were some assumptions made in this pa
per. First, it was assumed that bracketed intervals should 
have a fixed length. There have been attempts to improve 
on fixed-length bracketed intervals with those that “adjust 
so that their expected length depends... on the data” (Low, 
1997, p. 2548). Second, it was assumed that the brack
eted confidenc intervals should be symmetric with respect 
tO Q .

To restate the interpretation o f the LRE, values 
less than one indicate the length o f the bracketed interval 
is wider for a competitor than for the Huber^ 28. It is desir
able that the choice o f \|/ for constructing the numerator of 
the LRE predominately result in a ratio less than one, and 
only occasionally should a competitor stand out in terms 
of its comparative performance. This study showed that 
the value o f vj/ = 1.28 met this requirement. Specifically, 
for samples of size n  ̂ 30, the LREs were greater than 1.0 
for only 4 out o f 184 (2.2%) outcomes, and for only 10 out 
of 240 (4.2%) outcomes for n < 50.

The results were also generally less than 1.0 for 
all estimators for 50  ̂ n  ̂100, save the Huber , c. An ad-9 \|/1.5
vantage in maintaining \|/ = 1.28 is that its bracketed inter
vals were never more than 6% wider than those for \|/ = 1.5 
for 50 < n  ̂ 100, whereas results for \j/ = 1.5 were as much 
as 13% wider than \j/ = 1.28 for certain distributions and 
sample sizes. (Although it would complicate a simple sta
tistic, and therefore is not recommended, the Monte Carlo 
results indicate that it would be beneficial to compute the 
LREs with \|/=1.28 for 10  ̂ n < 50, and \|/ = 1.5 for 50 £ n 
< 100.)

Huber (1981) defined robustness as “insensitiv
ity to small deviations from the assumptions” (p. 1). In
deed, many previously conducted studies concentrated on 
robustness against contamination in the form o f small de
viations (e.g., one-out or one-wild). Barnett and Lewis 
(1994) noted that “Many such published procedures are 
robust against the possibility that the entire sample comes 
from some other distribution, possibly gamma or Cauchy, 
not too dissimilar to the normal but perhaps somewhat skew 
or fatter-tailed” (p. 56). The purpose o f this paper was to 
examine the LREs o f some robust measures where the 
sample comes from applied social and behavioral science 
data sets where the shape is quite dissimilar to the normal 
curve. The results indicate narrower 95% bracketed inter
vals for the one step Huber M-estimator when \j/ = 1.28 (as 
opposed to \|/= 1.339,1.345,1.4088, and 1.5) for samples 
less than fifty. The results also indicate that, although lightly 
trimmed means o f 2x5% yield narrower 95% bracketed 
intervals than heavily trimmed means of 2x25%, trimmed 
means almost always result in significantly wider

bracketed intervals than M-estimators for the real educa
tion and psychology data sets and sample sizes studied.
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