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Homogeneous Markov Processes For Breast Cancer Analysis 
 

Ricardo Ocaña- Riola     Emilio Sanchez- Cantalejo     Carmen Martinez- Garcia 
 

Escuela Andaluza de Salud Pública 
Granada (Spain) 

 
 
Sometimes, the introduction of covariates in stochastic processes is required to study their effect on disease 
history events. However these types of models increase the complexity of analysis, even for simpler processes, 
and standard software to analyse stochastic processes is limited. In this paper, a method for fitting homogeneous 
Markov models with covariates is proposed for analysing breast cancer data. Specific software for this purpose 
has been implemented. 
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Introduction 

 
Multi-state Markov processes have been introduced 
recently in health sciences in order to study the 
evolution of patients through different states or 
stages before death, even in cases where exact 
transition times are not known (Kay, 1986). This 
type of model has been mainly applied in AIDS (De 
Gruttola & Lagakos, 1989; Frydman, 1992; 
Mariotto et al., 1992), cancer (Kay, 1986), and 
psychiatric research (Keiding & Andersen, 1989), 
employing different methodologies depending on 
the particular conditions of each study. In practice, it 
is often useful to use a homogeneous Markov 
process to model disease history events because 
generally they are easy to interpret and the 
assumption that the process is homogeneous 
simplifies the methods used to fit the model. 
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 In multivariate studies, the use of models 
that incorporate covariates allows analysis of the 
effect of these variables on the outcome variable. 
When multi-state models are used, it is also possible 
to study the effect of these covariates on different 
transitions between states throughout the patient’s 
disease history. 
 Some authors have worked on the 
introduction of covariates in multi-state processes 
and particularly in homogeneous Markov processes 
(Kalbfleisch & Lawless, 1985; Pastorello, 1993); 
however, they mentioned the increased complexity 
of analysis in this sort of model where an added 
problem is the shortage of standard software. In 
spite of these problems, the introduction of 
covariates in stochastic processes is required to 
explain the effect of these factors on disease history 
events. 
 In this paper we present a breast cancer 
study where two transient states and a death state 
have been defined. In this study, observation is 
continuous, i.e., information on exact transition 
times between transient states is available; in this 
context, the main objectives of this paper are: 
 
a) To propose a method, computationally tractable, 
to estimate homogeneous Markov models with 
covariates in continuous time. 
 
b) To study the evolution of patients diagnosed with 
breast cancer in Granada province (South of Spain). 
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Methodology 

 
The study was carried out with 241 women with 
breast cancer diagnosed in 1985-86 who received 
radical treatment and had a period free of symptoms. 
The follow-up ended on 31 of December 1990 
(Ocaña-Riola, 2002). Data originated from the 
Granada Cancer Registry (South of Spain). 
 The variables T, N and Hormonal Status 
(HS) on the disease history of individuals have been 
recorded. The definition of T and N was taken from 
the Classification of Malignant Tumours (Sobin and 
Wittekind, 1997), where these variables are two 
components of the TNM system for describing the 
anatomical extent of disease. Variable M was not 
considered because there were no patients with 
distant metastasis. Additional numbers on TNM 
components indicates the extent of the malignant 
tumour as follows: 
 
a) T: The extent of primary tumour; T0: No 
evidence of primary tumour; T1: Tumour 2 cm or 
less in greatest dimension; T2: Tumour more than 2 
cm but not more than 5 cm in greatest dimension; 
T3: Tumour more than 5 cm in greatest dimension; 
T4: Tumour of any size with direct extension to 
chest wall or skin. 
 
b) N: The absence or presence and extent of regional 
lymph node metastasis; N0: No regional lymph 
node metastasis; N1: Metastasis to movable 
ipsilateral axillary nodes(s); N2: Metastasis to 
ipsilateral axillary node(s) fixed to one another or to 
other structures; N3: Metastasis to ipsilateral internal 
mammary lymph node(s). 
 
 It is considered to be a three-state Markov 
model with two transient states and one absorbing 
(Chiang, 1968). These states are  “With symptoms “ 
(state 1),  “Without symptoms “ (state 2) and  
“Death “ (state 3) where the possible transitions are 
represented in Figure 1 in appendix. 
 We consider the transition intensity matrix: 
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where each transition intensity is dependent on a 
vector of covariates; that is: 
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where ),( 0 bx...,x=x , x0=1, is a vector of 

covariates and )( 0 βββ jbiijij ,...,= ′ is a vector of 
unknown parameters. 
 In order to estimate the model an 
approximate method was used (Ocaña-Riola, 
2002). The Likelihood Ratio Statistic (LRS) was 
used in a backward analysis to test the 
signification of regression parameters (De Groot, 
1986). Moreover, the LRS test was used for the 
goodness of fit of the final model (Kalbfleisch & 
Lawless, 1985). When the transition intensity 
matrix is estimated, the estimated transition 
probability matrix is P(u; x)=exp(Q(x)u), u>0. 
 

Results 
 

In order to estimate the model, we used a partition of 
the time using 35 intervals which extent was 
between 0.002 and 0.260 years (Figure 2 in 
appendix). Because of shortage of subjects in the 
groups N2 and N3 (Table 1), the variable N has 
been transformed in a binary variable as 0=N 1  if 
N=0 and 1=N 1  if N=1, N=2 or N=3.  
 There were not transitions from state 2 to 
state 3 in Non-menopause patients, however there 
are some in the Menopause group; if we interpret 2-
3 as the transition to other causes of death, the 
transitions observed in Menopause group could be 
due to an age effect because older women heavily 
weight this group. For this reason we propose the 
following model: 
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1234

23

 = (   +   +  +   q T T T
+  )if  H S = 1N

 = 0if HS=0 q

β β β β

β  

 
exp 2 3 4230 231 232 23323

1234

23

 = (   +   +  +   q T T T
+  )if  H S = 1N

 = 0if HS=0 q

β β β β

β  

 
where T 2 ,T 3 ,T 4  are dummy variables from T (T1 
is the category of reference). 

 
 A backward analysis using LRS test 
showed that variable N is not statistically significant 
when T and HS are into the model (P=0.482). 
Besides, there is no evidence (P=0.370) against the 
codification of T in only two categories: patients 
with a better prognosis (T1 or T2) and patients with 
a bad prognosis (T3 or T4). Therefore it was 
considered a new covariable, TR, with value 0 for 
T1 or T2 and value 1 for T3 or T4. The final model 
is shown in Table 2. MLE’s for transition intensities 
in different groups of covariates are in Table 3. 
 Figures 3 and 4 show these transition 
probabilities by groups of covariates. These graphs 
show a notable difference between T1-T2 and T3-
T4. A LRS test for the goodness of fit of the final 
model shows that there is no evidence against a 
homogeneous Markov process (p=0.177). 
 

Conclusion 
 
Multi-state Markov models offer some advantages 
over traditional survival models for studying disease 
history events, making it possible to estimate the 
probability that a subject could be in different states 
at any time in the future. Homogeneous processes 
are the simplest of Markov models but in some 
studies it is possible to find evidence against this 
sort of model. The absence of homogeneity in time 
could be the result of the absence of homogeneity 
between people. In this case, the use of covariates 
could improve the fit of the model and 
homogeneous Markov models with covariates are an 
interesting option. 
 However, the incorporation of covariates in 
a stochastic process increases the complexity of 
analysis, even on simple processes. Because of that 
and the shortage of standard software to analyse 

Markov process with incomplete observations, 
many researchers refuse to use these multi-state 
models. In spite of these problems, some authors 
worked on the inclusion of covariates in a 
homogeneous Markov process (Andersen, 1988; 
Pastorello, 1993; Tuma & Robins, 1990). The more 
used methods are based on the extended Kalbfleisch 
and Lawless algorithm to incorporate covariates 
(Kalbfleisch & Lawless, 1985). 
 In this article we have used a particular 
partition of the time when observation is continuous. 
In this situation an approximate method has been 
proposed in order to introduce covariates and to 
estimate the intensity matrix in a homogeneous 
Markov process (Ocaña-Riola, 2002). MLE’s 
obtained from this method are not computationally 
costly and, in practice, the algorithm converges to 
very similar estimates of parameters given by other 
methods when the length of the intervals uk 1 tends 
to be small (Ocaña-Riola, 2002). Moreover, 
covariates can easily be introduced in the model. 
 The method proposed here consider only 
categorical covariates because this is the sort of 
variables analysed in the breast cancer study. 
Continuous covariables, as age, could be introduced 
in the analysis using different categories for them. 
This idea has been used in some research about 
stochastic processes and in practice it is the most 
used (Tuma & Robins, 1980; Pastorello, 1993). 
 In this breast cancer study, incorporation of 
variables T, N and Hormonal Status in the model 
have allowed us to evaluate its effects on disease 
history. However, covariate information was 
missing for 36 women not included in the analysis. 
In general, it is not a good statistical practice to 
leave out patients with missing values; therefore 
different statistical methods have been published 
recently in order to incorporate these patients into 
the analysis. Some authors have shown that using a 
Bayesian approach implemented via Markov Chain 
Monte Carlo it is possible to obtain a suitable 
regression model for the missing values 
(Raghunathan & Siscovick, 1996). 
 Due to the complexity of the Bayesian 
analysis in a Markov process with covariates, we 
have not implemented this method. However, it 
would an interesting research into stochastic 
processes. 
 Along these lines, Volinksy et al. (1997) 
applied Bayesian Model Averaging to the selection 
of variables in Cox proportional hazard models. 
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Their investigations into the risk factors for strokes 
using this model improve the results obtained by 
traditional stepwise, forward and backward selection 
methods, which have poor properties (Miller, 1990). 
Again, the implementation of Bayesian Statistics 
into Markov processes could yield interesting 
results, although some theoretical research is needed 
before using these methods in practice. 
 In a traditional backward analysis a 
relationship was found between T and Hormonal 
Status and the evolution of patients diagnosed with 
breast cancer. Non-menopausal women with a 
tumour T1 or T2 have the best prognosis since 
recurrence probability and death probability are the 
smallest. In the same way and using traditional 
survival models, other population base studies have 
found that both, T and Hormonal Status, are 
important factors in order to predict survival and 
recurrence probability in breast cancer (Coebergh et 
al., 1995). Other analytic  factors and hormonal data, 
not included in this study, could explain to a great 
extent part of breast cancer survival and recurrence. 
Vascular and lymphatic invasion of cancer cells, 
type of histology, age, site of first recurrence, female 
sex steroid receptors and ploidy measurements have 
been reported in some articles as prognostic factors 
for breast cancer recurrence (Blanco G et al., 1990; 
Murayama et al., 1986). In this way, a prospective 
study could be interesting in order to analyse the 
effect of all these variables on the evolution of 
patients through different states of their disease, 
obtaining a complete and detailed study on breast 
cancer history.  
 In this study, the interpretation of the 
transition from “without symptoms “ to  “death “ is 
difficult in menopausal women. Older women 
heavily weight this group and perhaps the effect of 
age can explain this situation. It might be interesting 
to consider a fourth state “death from other causes “ 
in order to know the proportion of patients dying 
from the direct or indirect consequences of breast 
cancer but unfortunately this information is rarely 
available in the Granada Cancer Registry. 
 From this paper’s findings, it will be 
possible to estimate the proportions of patients who 
shall be in each disease state in the future; therefore 
we will be able to obtain highly relevant information 
for health planning services. Furthermore, the 
proposed method can easily be used for other 
situations in cancer and other disciplines such as 

public health, economics, sociological research or 
medical sciences. 
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Figure 2. Length of the intervals that give a partition of the follow-up time 

 
 



OCAÑA-RIOLA, SANCHEZ-CANTALEJO, & MARTINEZ-GARCIA 

 

216 

T1-T2 / Non-menopause

Years

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

p12(u)

p13(u)

T1-T2 / Menopause

Years

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

p12(u)

p13(u)

T1-T2 / Non-menopause

Years

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

p21(u)

p23(u)

T1-T2 / Menopause

Years

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

p21(u)

p23(u)

 
Figure 3. Estimated transition probabilities for T1-T2 and hormonal status 
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Figure 4. Estimated transition probabilities for T3-T4 and hormonal status 
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Table 1. Breast cancer data. Granada Cancer Registry, 1985-1986. 

 Non-menopause  Menopause 

 N0 N1 N2 N3 Total  N0 N1 N2 N3 Total 

T1 
T2 
T3 
T4 

15 
20 
1 
2 

8 
7 
5 
7 

0 
1 
1 
0 

0 
0 
0 
0 

23 
28 
7 
9 

 29 
41 
7 
4 

6 
21 
4 
15 

0 
3 
1 
2 

0 
0 
2 
3 

35 
65 
14 
24 

Total 38 27 2 0 67  81 46 6 5 138 
Note : There were 36 patients with missing values. 

 
 

Table 2. MLE’s estimates for breast cancer data (standard error in brackets) 

Transition (ij) Constant (β ij0 ) TR ( β ij1 ) Hormonal Status ( β ij2 ) 

1 - 2 *  -0.4665 (0.0108)  0.3321 (0.0067) 

1 - 3 -1.7584 (0.0203) *  0.5802 (0.0235) 

2 - 1 -2.7298 (0.0169)  0.7570 (0.0166)  0.4442 (0.0183) 

2 - 3 -3.7965 (0.0219) * No included 

(*) Null statistical significance for 0.05=α  
 
 
 

Table 3. Estimated transition intensities for breast cancer data. 

T Hormonal Status q12ˆ  q13ˆ  q21ˆ  q23ˆ  

T1 or T2 
T1 or T2 
T3 or T4 
T3 or T4 

Non-menopause 
Menopause 

Non-menopause 
Menopause 

1.0000 
1.3939 
0.6272 
0.8742 

0.1723 
0.3078 
0.1723 
0.3078 

0.0652 
0.1017 
0.1391 
0.2168 

0 
0.0224 

0 
0.0224 
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