
Journal of Modern Applied Statistical
Methods

Volume 15 | Issue 1 Article 15

5-2016

Bayesian Estimation of the Size of a Street-Dwelling
Homeless Population
Lawrence C. McCandless
Faculty of Health Sciences, Simon Fraser University, lmccandl@sfu.ca

Michelle L. Patterson
Faculty of Health Sciences, Simon Fraser University

Lauren B. Currie
Faculty of Health Sciences, Simon Fraser University

Akm Moniruzzaman
Faculty of Health Sciences, Simon Fraser University

Julian M. Somers
Faculty of Health Sciences, Simon Fraser University

Recommended Citation
McCandless, Lawrence C.; Patterson, Michelle L.; Currie, Lauren B.; Moniruzzaman, Akm; and Somers, Julian M. (2016) "Bayesian
Estimation of the Size of a Street-Dwelling Homeless Population," Journal of Modern Applied Statistical Methods: Vol. 15 : Iss. 1 , Article
15.
DOI: 10.22237/jmasm/1462076040

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss1/15?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages


Bayesian Estimation of the Size of a Street-Dwelling Homeless Population

Cover Page Footnote
Lawrence McCandless if funded by a Discovery Grant from the National Sciences and Engineering Research
Council (NSERC), Canada.



Journal of Modern Applied Statistical Methods 

May 2016, Vol. 16, No. 1, 276-298. 

Copyright © 2016 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Dr. McCandless is an Associate Professor in the Faculty of Health Sciences. Email him 
at: lmccandl@sfu.ca. 

 

 

276 

Bayesian Estimation of the Size of a Street-
Dwelling Homeless Population

Lawrence C. McCandless 
Simon Fraser University 
Burnaby, British Columbia 

Michelle L. Patterson 
Simon Fraser University 
Burnaby, British Columbia 

Lauren B. Currie 
Simon Fraser University 
Burnaby, British Columbia 

 

Akm Moniruzzaman 
Simon Fraser University 

Burnaby, British Columbia 

 

Julian M. Somers 
Simon Fraser University 

Burnaby, British Columbia 

 

 
A novel Bayesian technique is proposed to calculate 95% interval estimates for the size of 
the homeless population in the city of Edmonton using plant-capture data from Toronto, 
Canada. The probabilities of capture in Edmonton and Toronto are modeled as 
exchangeable in a hierarchical Bayesian model, and Markov chain Monte Carlo is used to 
sample from the posterior distribution. Guidelines are recommended for applying the 
method to assess the accuracy of homeless counts in other cities. 

 
Keywords: Bayesian statistics, capture-recapture studies, Markov chain Monte 
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Introduction 

Estimating the size of street-dwelling homeless populations is important for city 

planning. However, it is a daunting task that is fraught with methodological and 

statistical challenges. One strategy is to use a homeless count with the help of 

volunteers. These volunteers serve as census takers, and their job is to walk 

throughout the city on predetermined walking routes and interview and count 

homeless people. For example, in the city of Edmonton, Canada, homelessness 

counts are conducted every 2 years during a single day in October. Table 1 

describes the eight consecutive homeless counts in Edmonton between 1999 and 

2012 (Homeward Trust Edmonton, 2012). Figure 1a plots the total number of 

homeless people that were counted during each year. 

An astonishing fact about homelessness counts is that interval estimates (e.g. 

Bayesian 95% credible intervals (CIs)) for the true population size are rarely 
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provided. For example, the most recent 2012 Edmonton homeless count identified 

a total of 1070 street-dwelling homeless individuals (see Table 1). However, no 

interval estimate was provided. Furthermore, homeless counts are known to be 

notoriously inaccurate because they underestimate the population size (Hopper, 

Shinn, Laska, Meisner, & Wanderling, 2008; US Department of Housing and 

Urban Development, 2008). Homeless people can remain hidden and out of sight. 

The volunteers can make errors in judgement in determining who is homeless. The 

street count walking routes may not be sufficiently comprehensive and the number 

of volunteers may be too few. Variation in counts may also be related to the 

experience of volunteers and how they are trained. Thus plotted curve in Figure 1a 

should be interpreted with extreme scepticism because there is no uncertainty 

assessment, and it is difficult to judge the accuracy of the estimation. 

An important strategy for counting homeless people is to use plant-capture 

studies (Schwarz & Seber, 1999; Laska & Meisner, 1993; Martin, Laska, Hopper, 

Meisner, & Wanderling, 1997; Goudie, Jupp, & Ashbridge, 2007; Hopper et al, 

2008). It is a variation of capture-recapture that requires only a single capture. Fake 

homeless individuals called plants are placed at random locations across the city. 

The plants are trained to dress and behave in a manner that does not draw attention 

to themselves so they can blend in with the homeless population. They are assumed 

to be indistinguishable from other homeless individuals, so that their probability of 

capture is the same. After the homeless count is complete, the proportion of plants 

that were counted is examined, and these data are used to estimate the size of the 

entire homeless population. The plant-capture design is recommended by the 

United States Department of Housing and Urban Development (2008), which 

develops guidelines for counting homeless people in American cities. 

The validity of the plant-capture methodology depends on several 

assumptions, and these are reviewed by Laska and Meisner (1993) and Martin et al. 

(1997). A stable, closed population of individuals is required, with no entry or exits. 

In practice, this is achieved by conducting the homeless count over a short period 

of time. Plants should have the same probability of capture as other homeless 

individuals, and, in particular, the presence of plants should not affect the 

probability of capture. Plant-capture studies also depend on the accuracy of the data 

collection. The volunteers must respect the study protocol regarding whom to 

approach and how to conduct the interview to ascertain homeless status. They 

should have access to all parts of the street walking routes and a clear understanding 

of the geography of the city and time restrictions. See Martin et al. (1997) for a 

review of the assumptions for homeless street counts.
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Table 1. Description of homeless counts in Edmonton and Toronto 

 

  Edmonton in 1999, 2000, …, 2012,    Toronto in 2006, 2009, 2013 

# of street-dwelling 
homeless who were 

counted  

1070 in 2012, 1533 in 2010; 1862 in 2008; 1774 in 2006; 
1452 in 2004; 1213 in 2002; 650 in 2000; 611 in 1999 

 447 in 2013; 362 in 2009; 735 in 2006 

Definition of 
homelessness 

Asking individuals the question: Do you have a permanent 
residence to return to tonight?" 

 
Any individual sleeping outdoors on the night 

of the survey 

    

Description 
A street count that involved approaching individuals along 

predetermined walking routes where homeless are known to 
congregate. 

 

An outdoor survey where teams were 
instructed to stop everyone they encountered 

to ask screening questions that establish 
housing status. 

Date, time, temperature 
and weather conditions 

2012: October 16, 05:00 to 22:00, 11.5C, Clear skies;2010: 
October 5, 05:00 to 22:00, 10.5C, Clear skies; 2008:October 

21, 05:00 to 22:00, 6C, Cloudy skies; 2006: 05:00 October 
17 to 05:00 October 18, 0.4C, Clear skies; 2004: 04:30 

October 19 to 04:30 October 20, 2.5C, Cloudy skies; 2002: 
04:30 October 23 to 05:00 October 24, -3.5C, Clear skies; 

2000: September 14, 24 hour period, Temperature and 
weather unknown; 1999: November 17, 24 hour period, 

Temperature and weather unknown 

 

2013: April 17, 19:00 to 01:00, 7.5C, Rain 
showers; 2009: April 15, 19:30 to 11:59, 9C, 

No precipitation; 2006: April 19, 20:30 to 
11:59, 13C, No precipitation 

# volunteer enumerators 
300 in 2012; 300 in 2010; 220 in 2008; 300 in 2006; 157 in 

2004; 200 in 2002; 100 in 2000; 100 in 1999 
 569 in 2013; 458 in 2009; 750 in 2006 

Population of city in 2006 739000  2500000 

Area of city in 2006 684 km2  1749 km2 

Plant capture study? No   Yes 
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Figure 1. Estimated size of the homeless population in Edmonton 

 

 

No plant-capture study has ever been done in Edmonton nor is any planned 

for the future. Homelessness counts are politically contentious, and controversy 

surrounds the costs and optics of paying individuals to pretend to be homeless. Thus 

when interpreting Figure 1a, the analyst is left with a basic research question: Is it 

possible to build interval estimates to quantify uncertainty in the population size? 

Is there data that allows us to estimate the proportion of homeless people that were 

counted during each year? 

In this article, a novel Bayesian technique is proposed to calculate 95% 

interval estimates for the size of the homeless population in Edmonton using 

external data in the form of plant-capture studies from Toronto, Canada. The 

Bayesian approach is particularly well-suited to settings where multiple sources of 

information are available (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002; 

Gelman et al., 2013). Synthesizing data into a single model allows propagation of 

evidence and uncertainty about unknown quantities (Sweeting, De Angelis, 

Hickman, & Ades, 2008). This approach is an example of  
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Table 2. Plant-capture studies for the Toronto homelessness counts in 2006, 2009, and 

2013 
 

Year Region 
Plants 

Deployed 
Plants 
Found 

Proportion of 
Plants Found 

2006 Toronto East-York 24 21 88% 

 North York 13 7 54% 

 Etobicoke 4 4 100% 

 Scarborough 8 6 75% 

 Total 50 26 52% 

     

2009 Toronto East-York 17 9 53% 

 North York 10 4 40% 

 Etobicoke 6 5 83% 

 Scarborough 12 8 67% 

 Total 45 26 58% 

     

2013 Toronto East-York 18 7 39% 

 North York 10 7 70% 

 Etobicoke 12 7 58% 

 Scarborough 10 5 50% 

  Total 49 38 78% 

 
 

 
 
Figure 2. (a) Frequency histogram of the 12 proportions in Table 2. (b) Posterior 
distribution of the eight quantities pH = (pH1999,…, pH2012) calculated from the Bayesian 

analysis versus the Bayesian analysis with nonparametric regression for the population 
size 
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multiparameter evidence synthesis, which combines information from different 

datasets in order to estimate unknown parameters (Ades & Sutton, 2006). 

To outline the proposed Bayesian methodology, consider the Toronto 

homeless data that is presented in Tables 1 and 2. In 2006, 2009 and 2013, homeless 

counts were conducted in Toronto, and they included plant-capture studies to 

estimate the probabilities of capture in Toronto (Toronto Shelter, Support and 

Housing Administration, 2013). Table 1 describes the homeless counts, and Table 

2 summarizes the results of the plant-capture studies. Table 2 shows the number of 

plants that were deployed to each region of Toronto, by year, and it shows the 

proportion of plants that were captured. Figure 2a gives a histogram of the 12 

proportions from Table 2. The proportions are heterogeneous and range from as 

low as 39% to as high as 100%. The mean is 65% and standard deviation is 19%. 

The heterogeneity is due to random error from the small number of plants in each 

region of Toronto, and additionally, due to variation in the probabilities of capture 

across space and time. 

In this investigation, the histogram in Figure 2a is used to construct a prior 

distribution for the probability of capture for homeless people in Edmonton. 

Building on the work of Castledine (1981) and George and Robert (1992), the 

capture probabilities in Edmonton and Toronto are modelled as exchangeable in a 

hierarchical Bayesian model. They are treated as a random sample from a Beta 

distribution with unknown hyperparameters (Coull & Agresti, 1999; Pledger, 

2005).The prior distribution expresses our initial beliefs about the probabilities of 

capture. It is updated using plant-capture studies from Toronto in order to obtain 

the posterior distribution for the unknown model parameters, including the size of 

the homeless population in Edmonton during each year. 

This article describes the first example of a Bayesian analysis of plant-capture 

data, and it builds on the Bayesian literature for capture-recapture studies (e.g. 

Castledine, 1981; Smith, 1991; George & Robert, 1992; Fienberg, Johnson, & 

Junker, 1999; Basu & Ebrahimi, 2001; King & Brooks, 2001; Tardella, 2002; 

Manrique-Vallier & Fienberg, 2008; Corkrey et al., 2008). This article is organized 

as follows: First, the authors describe the methodology and modelling assumptions. 

An important issue in capture-recapture studies is understanding the role of 

heterogeneity in probability of capture between individuals (Burnham & Overton, 

1978; Coull & Agresti, 1999; Link, 2003; Dozario & Royle, 2003; Pledger, 2005; 

Hwang & Huggins, 2005; Holzmann, Munk, & Zucchini, 2006; Farcomeni & 

Tardella, 2012), and this is discussed in the Statistical Models and Methods section. 

Next, the Results section is presented. The authors describe 95% CIs for the size of 

the homeless population in Edmonton. Further, the results of a simulation are 



BAYESIAN ESTIMATION OF THE SIZE OF A HOMELESS POPULATION 

282 

presented that examines the sensitivity of the choice of prior distribution on the 

analysis results, including the coverage probability of interval estimates. A 

limitation of the analysis is that it ignores the fact that the size of the homeless 

population should change smoothly over time. Accordingly, in the final section of 

the Results, the authors incorporate a nonparametric regression model for the 

population size and study how this impacts uncertainty about the probability of 

capture. The article concludes with the Discussion section, and we provide 

guidelines for applying the method to assess the accuracy of homeless counts in 

other cities. 

Statistical Models and Methods 

Following Laska and Meisner (1993) and Martin et al. (1997), let Hi for i ∈ {1999, 

2000, 2002, 2004, 2006, 2008, 2010, 2012} denote the size of the finite population 

of homeless people in Edmonton during the homeless count in year i. Let nHi denote 

the number of homeless people who were counted in year i. Thus nHi ≤ Hi. The 

quantity nHi is known, whereas Hi is unknown. The objective is to estimate Hi. The 

values of nHi are plotted over time in Figure 1a, and they are listed in the first row 

of Table 1. For example, nH2012 = 1070. Write H and nH to denote vectors of the 

quantities Hi and nHi over i. Following Laska and Meisner (1993) and Martin et al. 

(1997), we model nHi using a Binomial distribution 

 

  ~ Binomial ,
i iH i Hn H p   (1) 

 

with size Hi and proportion pHi. Let pH denote the vector of pHi over index i. 

The quantity pHi is defined as the average of the individual-level probabilities 

of capture among the 𝐻𝑖  homeless people in Edmonton during year i. An important 

issue in the analysis of plant-capture data is understanding the role of heterogeneity 

in probability of capture between individuals (e.g. Burnham & Overton, 1978; 

Coull & Agresti, 1999; Link, 2003; Pedger, 2005). To illustrate the idea of 

heterogeneity, consider a hypothetical finite population of homeless individuals of 

size N. Suppose that each individual has only one opportunity for capture. Let Xl = 1 

or 0, for l = 1 to N, be an indicator variable that indicates whether the lth individual 

was captured. Define 
1

N

ll
n X


  as the total number of homeless individuals who 

were captured. Additionally, let P(Xl = 1) = pl denote the individual-level 

probability of capture, so that Xl ~ Bernoulli(pl). Further, suppose that the quantities 

p1,…, pN are independent and identically distributed with expected value E[pl]. 
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Then marginally, averaging over the probability distribution of pl, we have 

Xl ~ Bernoulli(E[pl]) and n ~ Binomial(N, E[pl]). 

Consequently, if one assumes that the detection of homeless individuals in 

Edmonton are treated as independent events, then this implies that the analyst can 

model the total number of homeless individuals who are counted in each year using 

(1), which is a binomial distribution with proportion pHi and no overdispersion. The 

quantity pHi depends on the calendar year i because the proportion of the population 

that is counted can vary from one year to the next. The Edmonton data are unique 

because each homeless individual has only one opportunity for capture in year i. In 

contrast, unmodelled heterogeneity in individual-level capture probabilities can 

greatly affect estimates of population size in capture-recapture studies because the 

same individual has multiple opportunities for capture (Burnham & Overton, 1978; 

Coull & Agresti, 1999; Link, 2003; Pledger, 2005). It can overstate precision about 

the population size (Link, 2003), and it can produce downward bias due to ignoring 

individuals with lower capture probabilities (Hwang & Huggins, 2005). 

From (1), the conditional probability P(nHi | Hi, pHi) is 

 

    P | , 1
i HiHi

i i i i

i

H nni

H i H H H

H

H
n H p p p

n

 
  
 

  (2) 

 

The quantity Hi is large. If pHi is far from zero or one, then we can replace (2) with 

the normal approximation to the binomial distribution. The quantity nHi is modelled 

as normally distributed with mean HipHi and variance HipHi(1 − pHi) which gives 

 

     
  

 

1

1/2

2

2 1
P | , 2 1 exp

i i

i i i i

i i

i H H

H i H i H H

H i H

H p p
n H p H p p

n H p




   

   
  
 

  (3) 

 

This Gaussian approximation can be used to accelerate Markov chain Monte Carlo 

(MCMC) computation. 

The objective is to estimate Hi. A Bayesian approach is used to assign a 

hierarchical prior distribution to the capture probabilities pHi over i. To illustrate, 

write the joint probability density of the quantities (nHi, Hi, pHi) as 

 

      P , , P | , P ,
i i i i iH i H H i H i Hn H p n H p H p    
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Where P(Hi, pHi) is the joint prior distribution for Hi and pHi. Following George and 

Robert (1992) and Tardella (2002), the quantities Hi and pHi are assumed to be 

marginally independent a priori (i.e. that P(Hi, pHi) = P(Hi)P(pHi)). There is no 

reason to believe that the probability of capture depends on the size of the homeless 

population. 

To specify a prior P(Hi), this paper builds on the work of George and Robert 

(1992), who investigate different prior distributions for sample size in capture-

recapture studies, including uniform priors. The following prior distribution is 

assigned 

 

    P ~ Uniform , 10000
ii HH n M    

 

which is a uniform distribution for Hi that ranges from nHi to 10000. This prior 

ensures that Hi cannot be less than nHi. Additionally, it has upper limit M = 10000 

to reflect the prior belief that the size of the homeless population cannot be greater 

than 10000 individuals. It is important that the prior distribution P(Hi) penalize 

large values Hi. The reason is because during joint estimation of (pHi, Hi) the 

MCMC samplers may fail to converge when pHi and Hi simultaneously tend to zero 

and infinity, respectively. Other alternative priors for Hi include the Jeffreys prior 

P(Hi) ∝ 1/Hi (Smith, 1991; George & Robert, 1992) or Rissanen’s prior (Tardella, 

2002). 

To formulate a prior for pHi, plant-capture data from Toronto is incorporated 

using a Bayesian hierarchical model. The Bayesian approach is well-suited to 

settings where multiple data sources are available (Spiegelhalter et al., 2002; 

Gelman et al., 2013). Referring to the data in Table 2, let Rj denote the number of 

plants that were deployed in region j ∈ {East York in 2006, North York in 2006, 

Etobicoke in 2006, Scarborough in 2006, East York in 2009, North York in 2009, 

Etobicoke in 2009, Scarborough in 2009, East York in 2013, North York in 2013, 

Etobicoke in 2013, Scarborough in 2013}. Similarly, let nRj denote the 

corresponding number of plants that were subsequently captured during the 

Toronto homeless count. So for example, Table 2 illustrates that REtobicoke in 2009 = 6 

and nEtobicoke in 2009 = 5. A binomial model is assigned to nRj, which can be written as 

 

  ~ Binomial ,
j jR j Rn R p   
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where pRj is the capture probability of the Rj plants. The quantity pRj depends on j 

to reflect the fact that the probability of capture may vary by calendar year and 

region. Let R, nR, and pR denote the vector of quantities Rj, nRj, and pRj over j. 

For the Toronto data, both Rj and nRj are known, whereas pRj is unknown. A 

prior distribution for the unknown capture probabilities pRj and pHi is assigned over 

i and j by modelling the quantities as exchangeable within a hierarchical Bayesian 

framework. Following Gelman et al. (2013), a common Beta prior distribution is 

assigned 

 

  , ~ Beta ,
j iR Hp p     (4) 

 

for all i, j, with unknown hyperparameters α and β. Beta priors are common in 

Bayesian analysis of Binomial proportions because they are conditionally 

conjugate. If the prior distribution for pRj or pHi is a Beta, the posterior will also be 

a Beta. This allows rapid updating of parameters during MCMC computation. 

To complete the specification, a prior distribution is required for the unknown 

hyperparameters α and β. Following Gelman et al. (2013, Section 5.3), the 

following prior is assigned 
 
 

 
 
Figure 3. Probabilistic graphical model showing the conditional independence structure 

between data and unknown parameters in Edmonton and Toronto. Square boxes indicate 
quantities that are fixed and known, circles indicate unknown quantities. Our objective is 
to estimate H = (H1999,…, H2012), the size of the homeless population in Edmonton for 

each year 
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    
5

2P ,   


    (5) 

 

which yields a uniform prior on the standard deviation of the Beta distribution in 

(4). 

The practical interpretation of our method is as follows: The collection of 

unknown probabilities of capture for Toronto and Edmonton is treated as a random 

sample from a Beta distribution with unknown hyperparameters α and β. The 

quantities α and β govern the shape of the distribution and, hence, the uncertainty 

of capture probabilities. Because one can estimate pRj for all j, this means that one 

can estimate α and β. Thus the hierarchical model imposes a probability distribution 

on pH, which permits estimation of H. Figure 3 presents a probabilistic graphical 

model showing the conditional independence structure between data and unknown 

parameters in Edmonton and Toronto. 

The full Bayesian model is written as follows: The joint probability density 

P(nH, H, pH, nR, R, pR, α, β) is given by 

 

 

       

     

 

P , , , , , , , P | , P P | ,

P | , P P | ,

P ,

i i i

j j j

H i H i H

i

R j R j R

j

n H p H p

n R p R p

   

 

 

 
  
 

 
 
 







H H R Rn H p n R p

  

 

The quantities (nR, R, nH) are observed, whereas (H, pH, pR, α, β) are unknown. 

The posterior distribution P(H, pH, pR, α, β | nR, R, nH) obeys the proportionality 

 

 

       

   

 

P , , , , | , , P | , P P | ,

P | , P | ,

P ,

i i i

j j j

H i H i H

i

R j R R

j

n H p H p

n R p p

   

 

 

 
  
 

 
 
 







H R R HH p p n R n

  (6) 

 

To fit the Bayesian model, MCMC is used in order to draw an approximate sample 

from the posterior distribution in (6). The yields a Markov chain with stationary 

distribution that is equal to the posterior distribution (Gelman et al., 2013). Using 
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the MCMC sample the analyst can study the marginal posterior distribution of H, 

denoted P(H | nR, R, nH), in order to estimate the size of the homeless population 

in Edmonton. Details of the MCMC algorithm are described in the Appendix. In 

the analyses that follow, the software R is used (R Development Core Team, 2013). 

Sampler convergence is assessed using multiple chains and diagnostic tools 

described by Gelman et al. (2013). 

Results 

Bayesian Estimation of the Size of the Homeless Population in 

Edmonton 

A preliminary analysis is presented for the idealized scenario where the probability 

of capture is assumed to be exactly equal to 65% for each and every homeless count 

in Edmonton between 1999 and 2012. Recall from the Introduction that the value 

65% is the sample average of the 12 proportions from Toronto listed in Table 2. 

Thus a naive estimate of H is obtained by ignoring uncertainty in the capture 

probabilities pHi and setting pHi = 65% for all i during MCMC computation. When 

pHi is fixed and known, then the analyst can sample from the posterior distribution 

in (6) by updating H from (A1) and ignoring pH and (α, β) altogether. 

Figure 1b gives posterior means and 95% highest posterior density CIs for H. 

Recall that each component of H is the size of the homeless population in 

Edmonton during year i. Compared to Figure 1a, the resulting curve is shifted 

upwards to reflect that only 65% of the population was counted. The interval 

estimates are very narrow because we have fixed pHi = 65%. 

Next, the full Bayesian analysis is fitted, which samples from the posterior 

distribution in (6) and estimates all unknown parameters. The results are plotted in 

Figure 1c, which depict posterior means and 95% CIs for H. The point estimates 

are similar to those of Figure 1b, however the interval estimates are dramatically 

wider to reflect the uncertainty about the parameter vector pH. 

To shed further light on the methodology, the solid curves in Figure 2b depict 

the posterior distribution of each of the eight quantities pH = (pH1999,…, pH2012), 

which are the average probabilities of capture in Edmonton during each of the eight 

homeless counts. The eight solid curves lie on top of one another, and they are a 

Beta approximation to the histogram in Figure 2a. The posterior mean of each 

quantity is roughly 55%, and the interquartile ranges are from 47% to 64%. Thus 

Figure 2 illustrates that the Bayesian method is working as expected. The 

uncertainty about the probabilities of capture in Edmonton translates into a broad 
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range of uncertainty about the size of the homeless population, and this stretches 

the size of the interval estimates. 

A Simulation Study to Examine the Sensitivity of the Prior Distribution 

on Analysis Results 

A difficulty with the preceding analysis is that the results depend heavily on the 

prior distribution for pH. If the analyst chooses the “right prior” and the assumption 

of exchangeability between pH and pR is reasonable, then the interval estimates for 

the size of the homeless population in Edmonton will be suitably shifted towards 

the truth. However many things could go wrong. If the prior distribution for pH is 

poorly chosen then the intervals will miss the truth entirely. Do 95% CIs have 95% 

frequentist coverage probability? To what extent will the coverage probability 

deteriorate through a careless choice of prior distribution for pH? 

The coverage probability of 95% CIs is examined using a simulation study. 

In the Edmonton data example, the quantities nH, R, and nR are known. Suppose 

that pH* and H* denote vectors of the true underlying probabilities of capture and 

true homeless population size for simulation purposes. A simulation is conducted 

as follows: 
 
 
Table 3. Simulation study to examine the sensitivity of the prior distribution for pH on the 

analysis results. Cells give the coverage probability of 95% CIs for the size of the 
homeless population in Edmonton for each year 
 

Simulation #1 where the true capture probabilities are fixed as pHi* for each year 

 Coverage probability of 95% CIs 

  1999 2000 2002 2004 2006 2008 2010 2012 

Bayesian analysis assuming 
pHi = 65% and ignoring 

uncertainty 

94.4% 95.0% 95.5% 95.2% 95.2% 95.0% 95.2% 93.9% 

Bayesian analysis with 
hierarchical prior, which assumes 

that pH and pR are exchangeable 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

         

Simulation #2 where the true capture probabilities are simulated as pHi* ~ Beta(α* = 3.37, β* = 1.84) for each year 

 Coverage probability of 95% CIs 

  1999 2000 2002 2004 2006 2008 2010 2012 

Bayesian analysis assuming 
pHi = 65% and ignoring 

uncertainty 

12.1% 10.7% 7.9% 8.7% 6.6% 5.8% 7.3% 9.6% 

Bayesian analysis with 
hierarchical prior, which assumes 

that pH and pR are exchangeable 

83.4% 87.4% 81.6% 78.3% 80.5% 77.2% 79.3% 81.1% 
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1. Conduct a full Bayesian analysis of the homelessness data (nH, R, nR) 

to obtain 95% CIs, denoted IHi, for the size of the homeless population 

Hi in each year i. 

2. For t from 1 to 1000: 

a. For Simulation #1: Set the true probabilities of capture as 
 

* 65%
i

t

H
p   for each i. 

b. For Simulation #2: Simulate 
   *

* *~ Beta 3.37, 1.84
i

t

H
p     for each i, which is a Beta 

distribution with mean 65% and standard deviation 19%. 

c. Given 
 

*
i

t

H
p  and nHi, simulate the true homeless population size 

 * t

iH  from the conditional distribution   *P |
ii

t

i HH
H p n  given 

in (A1) using MCMC. 

d. Calculate the coverage indicator variable 
 

 *1 t
i Hi

t

i H I
Q


  for 

each year i. 

3. Calculate the average coverage probability    1000

1
1/1000

t

it
Q

  for 

each year i. 

 

The results are given in Table 3. Simulation #1 considers the scenario where 

the true probabilities of capture are equal to 65% during each of the Edmonton 

homeless counts. As expected, the Bayesian analysis that correctly assumes 

pHi = 65% gives 95% CIs that have correct 95% coverage probability. The Bayesian 

analysis with hierarchical priors is too conservative and the coverage is 100% 

during each calendar year. In contrast, Simulation #2 describes the more realistic 

scenario where the true probabilities of capture pH* are heterogeneous and sampled 

from a Beta distribution with mean 65% and a standard deviation 20% (Gelman et 

al., 2013). Simulation #2 reveals that the hierarchical Bayesian model gives a large 

improvement in coverage probability compared to interval estimates that ignore 

uncertainty in the probability of capture. 

Increasing Precision Using Bayesian Nonparametric Regression for 

the Population Size 

One problem with Figure 1c is that the population sizes Hi are estimated 

independently. The inferences for Hi are driven entirely by nHi and pHi (see (A1)). 

But this ignores the reality that the population size should change smoothly over 
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time. For example, if we know that H2004 = 2000, then can we not surmise that H2002 

and H2006 are also close to 2000? This modelling information is ignored in Figure 

1c. In other words, Figure 1c uses independent priors for each component of H. 

To incorporate dependence in the prior for H, a model is required for the way 

in which the population size changes over time. Natural cubic splines are used 

(Gelman et al., 2013) 

 

  
3

2

1

~ N g ,i k k

k

H i 


 
 
 
   

 

with a single knot at i equal to the year 2005, which is the median of the collection 

of years. The quantities gk(i) and φk are natural cubic spline basis functions and 

regression coefficients, respectively, and σ2 is the unknown variance. 

A relatively uninformative prior distributions is assigned to the regression 

parameters. The following prior is given to the coefficients 

 

  3

1 2 3, , ~ N 0,10     

 

and the variance is given the prior 

 

  2 2 3 3~ Inv 10 ,10      (7) 

 

Write φ = (φ1, φ2, φ3). The posterior distribution becomes 

 

 

 

     

   

     

2

2

2

P , , , , , , | , ,

P | , P | , P | ,

P | , P | ,

P , P P

i i i

i i i

H i H i H

i

R i R R

j

n H p H p

n H p p

  

  

 

  

 
  
 

 
  
 







H R R HH p p φ n R n

φ

φ

  (8) 

 

To fit the regression model using MCMC, additional updates of φ and σ2 are 

required. However, the required conditional distributions are available analytically 

using Bayesian linear regression. Details are given in the Appendix. 
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The results of fitting the model are given in Figure 1d. The posterior means 

of H are smoother than in Figure 1c because they have been shrunk together to fit 

the nonparametric curve. Interestingly, the interval estimates for H are sharply 

contracted compared to Figure 1c. When the analyst assumes that the population 

changes smoothly over time, then this gives more precise estimates of the 

population size because the regression model stabilizes the predictions.  

Using a nonparametric curve to estimate the population size also implies a 

reduction in uncertainty about the probabilities of capture pH. This is illustrated in 

Figure 2b. The dashed curves plots the posterior distribution of each of the eight 

quantities pH = (pH1999,…, pH2012). The dashed curves are narrower than the solid 

curves. The locations of the curves are distorted to assist with fitting the 

nonparametric curve. This means that if the analyst assumes that the population size 

changes smoothly over time, then this induces a correlation among the pHi from one 

year to the next. The analysis with independent priors for H is too pessimistic about 

the magnitude of uncertainty about the probabilities of capture. 

Discussion 

The most recent homeless count in Edmonton occurred on October 17, 2012. A 

team of 300 volunteers found 1070 homeless people. Based on the Bayesian 

analysis that incorporates plant-capture data from Toronto, it is estimated that the 

true size of the homeless population is 2007 individuals with 95% Bayesian 

credible interval 1137 to 3042 (see Figure 1c). The city of Edmonton hopes to 

eliminate homelessness over the next decade, and an important question for 

government policy-makers is to determine whether the size of the homeless 

population is decreasing over time. The 2012 Edmonton Homeless Count Report 

states that “Between 2008 and 2012, the unsheltered homeless decreased by 30%” 

(Homeward Trust Edmonton, 2012). This calculation was based on the number of 

homeless people who were counted in 2012 (1070 individuals) versus 2010 (1533 

individuals) because (1533-1070)⁄1533 = 30%. The estimation completely ignores 

uncertainty in the population size. 

In contrast, the proposed Bayesian analysis directly contradicts this 

conclusion in the government report. The posterior mean of the ratio 

(H2010 − H2012)⁄H2010, based on the Bayesian nonparametric regression analysis, is 

equal to 13% with 95% CI -40% to 58%. This implies a mere 13% reduction in the 

population size between 2010 and 2012, and there is a huge range of uncertainty 

and the interval estimate covers zero. Thus this analysis highlights the value of 

Bayesian uncertainty assessments when estimating the size of street-dwelling 
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homeless populations. The failure to quantify uncertainty using posterior credible 

intervals can result in erroneous conclusions, which directly impact government 

policy decisions. 

Our analysis depends on the assumptions that underlie plant-capture studies 

in general. See Laska and Meisner (1993) and Martin et al. (1997) for review. An 

important issue in the analysis of capture-recapture data is understanding the role 

of heterogeneity in probability of capture between individuals (Burnham & Overton, 

1978; Coull & Agresti, 1999; Link, 2003; Pledger, 2005). In the analysis it is 

assumed that the homeless detections are independent events. As described the 

Statistical Models and Methods section, this assumption implies that the total 

number of homeless individuals who are counted in each year can be modelled 

using a binomial distribution with no overdispersion (see (1)). However, the 

assumption neglects the fact that homeless people usually live in groups (Martin et 

al., 1997). If homeless people aggregate into small groups, then the whole group is 

either spotted or lost. In principle, one could extend the modelling approach to 

model dependence in the probabilities of capture. For example, it is possible to 

model the probabilities of capture using a mixture of Beta distributions (Coull & 

Agresti, 1999). However, relaxing the independence assumption can cause the 

model to be nonidentifiable (Link, 2003). 

More generally, the proposed Bayesian method can be used to quantify the 

accuracy of homeless counts in other cities. For example, Hopper et al. (2008) 

evaluated a plant-capture study of homelessness in New York City in 2005. The 

authors estimated the proportion of plants who were counted and, additionally, they 

conducted postcount interviews of homeless individuals to inquire about their 

whereabouts on enumeration night in order to establish if they were visible. A 

different example of plant-captures studies of homelessness is described by Martin 

(1992). In principle, these data could be used to assess the accuracy of homelessness 

counts in other American cities. Combining data from different cities requires a 

careful a careful examination of the exchangeability assumption. 
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Appendix 

Bayesian Computation for Estimating the Homeless Population Size 

The Metropolis Hastings algorithm is used to sample from the posterior distribution 

P(H, pH, pR, α, β | nR, R, nH) given in (6) by updating in blocks. This involves 

updating from the following conditional distributions 
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To update H, we have from (6) 
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  ( 9) 

 

where the last line uses the Gaussian approximation to the binomial distribution 

given in (3). The quantity H is updated using a random walk Metropolis Hasting 

step with proposal distribution that is multivariate normal with mean that is a zero 

vector and variance that is equal to the identity matrix multiplied by a tuning 

parameter that is set by trial MCMC simulation runs. In principle, updating H could 

be improved by using a proposal distribution that approximates a negative binomial 

distribution (Castledine, 1981). 

Updating pH and pR from P(pH, pR | nH, H, nR, R, α, β) is straightforward 

because the capture probabilities are conditionally conjugate under a Beta prior and 

Binomial model for nH and nR. For all i and j, we have 
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Hence updating pH and pR is accomplished by direct simulation from a vector of 

independent Beta random variables. 

To update α and β, note that P(α, β | nH, H, pH, nR, R, pR) = P(α, β | pH, pR). 

Then 
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Given (pH, pR), the right hand side of this equation can be evaluated as a function 

of α and β. Updating from P(α, β | nH, H, pH, nR, R, pR) is achieved using a random 

walk Metropolis Hastings step with proposal distribution that is independent 

bivariate normal with mean zero and variance that is a tuning parameter set during 

initial MCMC runs. 

Bayesian Computation for the Non-Parametric Regression Analysis 

To sample from the posterior distribution in (8), the same MCMC procedure as the 

one described above is used except with additional updates of φ and σ2. The 

required conditional distributions for φ and σ2 are 
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Both of these distributions are conditionally conjugate based on the prior 

distributions in (7), and the analyst can sample from them directly using Bayesian 

linear regression (Gelman et al., 2013). 
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