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Non-Normality Propagation among Latent 
Variables and Indicators in PLS-SEM 
Simulations

Ned Kock 
Texas A & M International University 

Laredo, Texas 

 

 
Structural equation modeling employing the partial least squares method (PLS-SEM) has 
been extensively used in business research. Often the use of this method is justified based 
on claims about its unique performance with small samples and non-normal data, which 
call for performance analyses. How normal and non-normal data are created for the 
performance analyses are examined. A method is proposed for the generation of data for 
exogenous latent variables and errors directly, from which data for endogenous latent 
variables and indicators are subsequently obtained based on model parameters. The 

emphasis is on the issue of non-normality propagation among latent variables and 
indicators, showing that this propagation can be severely impaired if certain steps are not 
taken. A key step is inducing non-normality in structural and indicator errors, in addition 
to exogenous latent variables. Illustrations of the method and its steps are provided 
through simulations based on a simple model of the effect of e-collaboration technology 
use on job performance. 
 
Keywords: E-Collaboration; Partial Least Squares; Latent Variable; Indicator; Non-

Normal Data; Monte Carlo Simulation 

 

Introduction 

Structural equation modeling (SEM) employing the partial least squares (PLS) 

method, or PLS-SEM for short, has been extensively used in business research 

(Hair, Ringle, & Sarstedt, 2011; Kock, 2010; 2014). It has also been increasingly 

used in a wide variety of fields; some closely related to business, including 

subfields, and others less so. Examples are information systems (Guo, Yuan, 

Archer, & Connelly, 2011; Kock & Lynn, 2012), marketing (Biong & Ulvnes, 

2011), international business (Ketkar, Kock, Parente, & Vervielle, 2012), nursing 
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(Kim et al., 2012), medicine (Berglund, Lytsy & Westerling, 2012), and global 

environmental change (Brewer, Cinner, Fisher, Green, & Wilson, 2012). 

One of the elements that characterize the PLS-SEM method is that it creates 

latent variables (sometimes referred to as latent “composites”) by means of 

weighted aggregations of their respective indicators, where the weights are 

obtained through iterative algorithms (Cirillo & Barroso, 2012; Lohmöller, 1989). 

The simple model shown in Figure 1 illustrates the main elements of any model 

used in PLS-SEM. 
 
 

 
 
Figure 1. Structural model with two latent variables 
 

*Notes: latent variables within ovals; loadings next to indicator arrows. 

 

 

Our simple model follows from past empirical research (Cassivi, Lefebvre, 

Lefebvre, & Léger, 2004; Chen, Chen, & Capistrano, 2013). It contains two latent 

variables, e-collaboration technology use (T) and job performance (P), which are 

measured indirectly through three indicators each. The unit of analysis is assumed 

to be a team of individuals who collaborate to accomplish work-related tasks in 

their respective organizations. E-collaboration technology use (T) measures the 

extent to which a team uses an integrated technology including e-mail and voice 

conferencing to facilitate the collaborative work of its members. Job performance 

(P) measures the performance of each team, as perceived by individuals who 

receive the outputs of the team to perform downstream work-related tasks. 

The structural error ε, when properly weighted, accounts for the variance in 

the latent variable job performance (P) that is not explained by e-collaboration 

technology use (T). For e-collaboration technology use (T) the indicators are 

1 2,T Tx x .and 3Tx . For job performance (P) the indicators are 1 2,P Px x .and 3Px . 

When properly weighted, the uncorrelated indicator errors 1 2 3 1 2, , , ,T T T P P      
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and 3P  account for the variances in the indicators that are not explained by their 

corresponding latent variables. 

The indicators store answers to question-statements in a questionnaire. The 

question-statements are redundant with one another, with respect to each latent 

variable, and are assumed to “reflect” the latent variable. That is, the indicators 

are assumed to measure only the latent variable to which they refer. This 

measurement carries a certain amount of imprecision, which is indicated by the 

loadings being lower than 1. This implies the existence of measurement error, 

which would be absent if at least one loading were to be equal to 1. 

Because PLS-SEM algorithms are generally claimed to perform particularly 

well with small samples and non-normal data (Hair et al., 2011), it is necessary to 

test that claim by comparing the performance of a PLS-SEM algorithm, such as 

PLS regression (Kock, 2010), in terms of statistical power, against the 

performance of a non-PLS algorithm. A common choice of “control” non-PLS 

algorithm is one where indicators are aggregated to generate latent variable scores 

in a non-weighted fashion; i.e., indicators are aggregated using the same weight. 

Performance analyses usually build on Monte Carlo simulations (Robert & 

Casella, 2005) whereby multiple samples are created and analyzed using the 

algorithms that are being compared. The samples are created based on true 

population coefficients. In this case, these are the standardized regression 

coefficient (β = .3) and the loadings (λTi = λPi = .7, i = 1…3), which are assumed 

to exist in the population from which the samples are taken. Both the standardized 

regression coefficient and the loadings are set by the researcher conducting the 

Monte Carlo simulations. 

We address the issue of how one creates normal and non-normal data for 

such performance analyses. A simple and effective method is proposed for 

creating data for exogenous latent variables and errors directly, from which data 

for endogenous latent variables and indicators is subsequently derived. This 

method is similar to that proposed by Mattson (1997), incorporating elements that 

arguably make it simpler. 

The discussion of the method places emphasis on the issue of non-normality 

propagation among latent variables and indicators in PLS-SEM simulations, 

showing that this propagation can be severely impaired if certain steps are not 

taken. A key step is to induce non-normality in structural and indicator errors, in 

addition to exogenous latent variables. This is illustrated through Monte Carlo 

simulations. 
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A Method for Creating Normal and Non-Normal Data 

Several methods exist to create normal and non-normal data for simulations 

(Headrick, 2010). Power methods relying on polynomial transformations are 

perhaps the most widely used (Fleishman, 1978; Headrick, 2002). A special case 

relies on squaring a standardized normal variable 𝑋  to obtain a non-normal 

variable Xn as shown in (1) and (2). In these equations Rndn(N) is a function that 

returns a different normal random variable each time it is invoked, in the form of 

a vector with N elements, and Stdz(·)is a function that returns a standardized 

variable. 

 

   X Stdz Rndn N   (1) 

 

  2

nX Stdz X   (2) 

 

This method of creating non-normal data has the advantages of introducing 

enough non-normality to be useful in robustness tests, and at the same time 

yielding data that follows a χ2 distribution with 1 degree of freedom. A number of 

properties are known for this distribution, including probability limit skewness 

and kurtosis (a.k.a. excess kurtosis) values. These are 8 2.828  and 12, 

respectively, which combined can be seen as indications of severe non-normality. 

Figure 2 shows two histograms. The one on the left is for a normally 

distributed variable X created based on (1) with N = 1,000. The one on the right 

shows a variable Xn that follows a non-normal distribution created based on (2), 

applied to the normally distributed variable X. Both variables X and Xn are 

standardized. 

Data generated through this method, as well as variations discussed here, is 

initially standardized. Unstandardization can be easily accomplished by 

multiplying by 𝜎 and adding μ, where 𝜎 and μ are the standard deviation and 

mean of the desired unstandardized distribution, respectively. Rounding to the 

closest integer within an ordinal scale (e.g., 1…7) yields unstandardized data on a 

Likert-type scale. 

Not only does the non-normal variable Xn present significant positive 

skewness (i.e., longer tail on the right) and positive kurtosis (i.e., leptokurtosis, or 

“peakedness”), but it also contains more extreme outliers than X. As noted in 

other graphs, this is a common feature of non-normal data created through this 

method. This makes it useful in robustness stress tests; where claimed robustness 
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in the presence of non-normality is tested under non-normality conditions that are 

more extreme than usually found in empirical data. 

The univariate method described above can be easily extended to the 

multivariate case. Multiple exogenous latent variables and errors (i.e., error 

variables) can be created in the same general way, and non-normality can be 

propagated from exogenous latent variables and structural errors to endogenous 

latent variables and indicators. This is discussed in the following sections. 
 
 

 
 
Figure 2. Transforming normal into non-normal data 
 

* Notes: both variables 𝑋 and 𝑋𝑛 are standardized; 𝑋 follows a normal distribution; 𝑋𝑛 follows a 𝜒2 distribution 

with 1 degree of freedom; 𝑋𝑛 was created based on 𝑋. 

 

 

Data with less severe non-normality can be created using the same general 

method, by increasing the number of degrees of freedom of the χ2 distribution 

used. This can be carried out by adding more than one squared standardized 

normal variable to generate the non-normal variable, as indicated in (3) and (4). 

 

   iX Stdz Rndn N   (3) 

 

 2

1

k

n i

i

X Stdz X


 
  

 
   (4) 

 



NON-NORMALITY PROPAGATION IN PLS-SEM 

304 

The number k of standardized normal variables Xi (i = 1…k) used to 

generate the non-normal variable Xn equals the number of degrees of freedom of 

the resulting χ2 distribution. The probability limit skewness and kurtosis of such a 

distribution are given by 8 k  and 12 k , respectively. Therefore, we can create 

data with varying degrees of skewness and kurtosis using various values of 𝑘 

through this generalized version of the method. 

For example, if 𝑘 = 3 the non-normal variable Xn will have the following 

probability limit values for skewness and kurtosis: 8 3 1.633   and 12 / 3 = 4, 

respectively. Data created with these distributional properties could be used in a 

robustness test for an intermediated condition that could be referred to as one with 

“moderate” non-normality, and whose results might be contrasted with those for 

two other conditions: normal, where Rndn(N) would be used with no 

transformation; and severely non-normal, where a transformation with k = 1 

would be used. 

Creating Normal and Non-Normal Data for Latent Variables 

The method is illustrated based on the simple model presented earlier, which 

contains only two latent variables, and applies to more complex models, with any 

number of latent variables. In all cases, latent variables and structural errors are 

created first, and indicators and corresponding errors are created afterwards. 

In this model, the normal data for the exogenous latent variable 

e-collaboration technology use (T) is created according to (5). This is the 

predictor latent variable in the model. The non-normal data for this same latent 

variable (Tn) is created according to (6). Analogously, the normal data for the 

structural error 𝜀 is created according to (7). The corresponding non-normal data 

for the structural error (𝜀n) is created according to (8). 

 

   T Stdz Rndn N   (5) 

 

  2

nT Stdz T   (6) 

 

   Stdz Rndn N    (7) 

 

  2

n Stdz    (8) 
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Both T and 𝜀 have probability limit values of 0 and 0 for skewness and 

kurtosis, respectively. Conversely, the non-normal variables Tn and 𝜀n have both 

probability limit values of 8 2.828  and 12  for skewness and kurtosis, 

respectively. As discussed earlier, these values refer to a χ2 distribution with 1 

degree of freedom. 

The normal data for the endogenous latent variable job performance (P) is 

created according to (9). This is the criterion latent variable in the model. The 

non-normal data associated with this latent variable can either propagate 

exclusively from Tn according to (10), or from both Tn and 𝜀n according to (11). 

As will become clear, the latter approach, using (11), is the most advisable of the 

two. In these equations the structural errors are properly weighted (i.e., given the 

weight 21   to account for the variance in P that is not explained by T. 

 

 21P T       (9) 

 

 21n nP T       (10) 

 

 21n n nP T       (11) 

 

Figure 3 shows data points and regression lines for three samples, where the 

predictor latent variable is plotted on the horizontal axis and the criterion latent 

variable on the vertical axis, and in which: (left) both the predictor latent variable, 

e-collaboration technology use (T), and structural error are normal (ε); (middle) 

the predictor is non-normal (Tn) but the error is normal (ε); and (right) both the 

predictor and error are non-normal (Tn and 𝜀n, respectively). The sample sizes are 

1,000 for the three samples. The data was created based on the foregoing 

equations, with 𝛽 = .3 as specified in our model. 

At the top of the graphs are the true sample values of the standardized 

regression coefficients for each case. Their values are relatively stable across 

graphs, and close or identical to the true population value (𝛽 = .3) implying 

robustness in the presence of severe non-normality and outliers. The robustness 

observed is a characteristic of regression methods in general (Haas & Scheff, 

1990; Knez & Ready, 1997), and is one of the reasons why PLS-SEM is also a 

robust method. PLS-SEM builds heavily on regression methods. 
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Figure 3. Normal and non-normal data for latent variables 
 

* Notes: scales are standardized; left - predictor latent variable and error are normal; middle - predictor is non-
normal but error is normal; right - predictor and error are non-normal. 

 

 

It should be emphasized that these standardized regression coefficients are 

not calculated based on the indicators. They are calculated directly based on the 

latent variable scores, which are available in the simulation method we describe 

here. Therefore, these true sample standardized regression coefficients are not 

distorted by measurement error. This is a type of error discussed earlier, whose 

existence is implied by the loadings being lower than 1. 

As can be inferred from the graphs, when the predictor latent variable is 

non-normal but the error is normal (middle), the propagation of non-normality 

from the predictor latent variable Tn to the criterion latent variable job 

performance Ṗn is severely impaired. In this case, while skewness and kurtosis for 

Tn are 2.93 and 11.68 respectively, the criterion latent variable Ṗn is essentially 

normal (skewness = .16, kurtosis = .28).  

Using this approach to create non-normal data in Monte Carlo simulations to 

test a PLS-SEM algorithm would lead to results supporting the conclusion that the 

algorithm is robust to non-normality when that may not be the case. In other 

words, if non-normality propagation is severely impaired, robustness tests would 

be largely meaningless, and may lead to incorrect conclusions. 

However, if the approach associated with the graph at the far right is used, 

where both the predictor and error are non-normal (right), the propagations of 

non-normality from the predictor latent variable Tn and error εn to the criterion 

latent variable Pn is largely unimpaired. Here the same values of skewness and 



NED KOCK 

307 

kurtosis for Tn lead to 2.80 and 11.27 for Pn, because a large amount of the non-

normality comes from the non-normal error εn. 

Why is the propagation so severely impaired when the predictor latent 

variable is non-normal (Tn) but the error is normal (ε)? As it will be clear from our 

discussion of non-normality propagation from latent variables to indicators, the 

reason is the magnitude of the propagation coefficient that links the latent 

variables. 

In this case, this propagation coefficient is the standardized regression 

coefficient 𝛽, whose value is .3 in the model. This value is small compared with 

the propagation coefficient for the error  2 21 1 .3 .954    . Small 

propagation coefficients tend to impair non-normality propagation. 

Small propagation coefficients are likely to be commonly found in PLS-

SEM models, because standardized partial and full regression coefficients tend to 

be relatively small (or small enough to impair propagation) in models that are free 

from vertical and lateral collinearity (Kock & Lynn, 2012). The same applies to 

path models in general, with or without latent variables, and multiple regression 

models. 

Creating Normal and Non-Normal Data for Indicators 

Consider the creation of normal and non-normal data for indicators by creating 

normal and non-normal data for each of the six indicator errors, expressed 

generally as , ,
nTi Pi Ti   , and 

nPi  (i = 1…3).  

The normal data for the indicators associated with the exogenous latent 

variable e-collaboration technology use (T) and the endogenous latent variable job 

performance (P) are created according to (12) and (13), respectively. 

 

 
21Ti Ti Ti Tix T       (12) 

 

 
21Pi Pi Pi Pix P       (13) 

 

Analogously, the non-normal data for the indicators associated with the non-

normal versions of the same latent variables, the exogenous latent variable 

e-collaboration technology use (Tn) and the endogenous latent variable job 

performance (Pn), are created according to (14) and (15), respectively. 
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21

n nTi Ti n Ti Tix T       (14) 

 

 
21

n nPi Pi n Pi Pix P       (15) 

 

Unlike the structural error weight, used in the creation of the endogenous 

latent variable, the weights of the indicator errors will tend to have magnitudes 

that are similar to the magnitudes of the loadings. In some cases, where 

measurement precision is high (i.e., high loadings), the weights of the indicator 

errors will be significantly lower than those of the indicator errors. 

For example, a loading of . 7  will lead to an indicator error weight of 

21 .7 .714  , whereas a loading of .9 will lead to an indicator error weight of 

21 .9 .436  . In the former case, the degree of non-normality propagation, 

measured through the corresponding coefficients of propagation (loading of .7 

and weight of .714), will be about the same from the latent variable and the 

indicator error. In the latter case, the degree of non-normality propagation from 

the latent variable (loading of .9) will be much greater than from the indicator 

error (weight of .436). 
 
 

 
 
Figure 4. Normal and non-normal data for indicators 
 

* Notes: scales are standardized; latent variable - 𝑇; indicator - 𝑥𝑇𝑖; left - latent variable and indicator error are 
normal; middle - latent variable is non-normal but error is normal; right - latent variable and error are non-normal. 
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Figure 4 shows data points and regression lines for three samples, where the 

latent variable is plotted on the horizontal axis and the indicator on the vertical 

axis, and in which: (left) both the latent variable and the indicator error are 

normal; (middle) the latent variable is non-normal but the indicator error is 

normal; and (right) both the latent variable and the indicator error are non-normal. 

As with the graphs for latent variables, the sample sizes here are 1,000 for the 

three samples. The data were created based on the foregoing equations with the 

loadings as specified in our model. 

Data for only one latent variable and one indicator are used in these graphs. 

These variables serve as an illustration of what would happen with any pair of 

latent variable and corresponding indicator in our model. At the top of the graphs 

are the true sample values of the loadings for each case. 

Non-normality propagation is different for the cases in which the latent 

variable is non-normal but the indicator error is normal (middle) and both the 

latent variable and the indicator error are non-normal (right). In the former case, 

skewness and kurtosis for the latent variable are 2.93 and 11.68 respectively, and 

1.05 and 2.67 for the indicator. In the latter case, the same values of skewness and 

kurtosis for the latent variable lead to 2.05 and 5.24 for the indicator. In neither 

case non-normality propagates fully; both are examples of partial propagation. 

These results bring to the fore two interesting characteristics of non-

normality propagation. One is that there is always some loss in the propagation 

among linked variables; be the propagation among latent variables, or among 

latent variables and indicators. The other interesting characteristic of non-

normality propagation is that the magnitude of the loss is strongly dependent on 

the propagation coefficients (path coefficients, loadings, and error weights), with 

the loss increasing steeply in response to decreases in those coefficients. 

From these results it seems that this problem is more pronounced in the non-

normality propagation from latent variables to indicators, as long as non-normal 

errors are used – otherwise propagation losses are greater among linked latent 

variables, because path coefficients tend to be generally lower in magnitude than 

loadings. 

It could be argued that this loss in propagation is not a characteristic of the 

non-normal data creation method used, but stems from assumptions underlying 

the common factor model (MacCallum & Tucker, 1991). In it, the propagation of 

variance (and thus non-normality) happens only from latent variables to indicators, 

via loadings, and not the other way around. 

Skewness and kurtosis values are not usually found in empirical data as 

extreme as those created. In empirical data, non-normality is often found, but of a 
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less extreme nature. Therefore, it is possible that the loss in non-normality 

propagation that we see in our analyses reflects a corresponding phenomenon in 

actual populations. 

Monte Carlo Simulation Results 

The results of a set of Monte Carlo simulations are shown in Figure 5 where the 

performance of a relatively new and increasingly popular PLS-SEM algorithm, 

namely PLS regression (Kock, 2010), is shown against a control non-PLS 

algorithm in the context of our simple model. We used parametric path analysis as 

the control non-PLS algorithm. WarpPLS version 4.0, was used to analyze the 

data in our Monte Carlo simulations. The focus of our performance analysis is on 

statistical power, which is the probability of avoiding false negatives. We created 

and analyzed 500 samples (or replications) with normal and severely non-normal 

data. The data were created using the method described in the preceding sections, 

for each of the following sample sizes: 50, 100, 150, and 200. 

The p-value calculation method used for PLS regression is the stable method 

(Kock, 2013). This heuristic method employs a built-in table of standard errors 

generated through bootstrapping and jackknifing (Chiquoine & Hjalmarsson, 

2008; Diaconis & Efron, 1983; Efron et al., 2001), but instead of generating 

resamples it obtains standard errors based on nonlinear fitting using the built-in 

table. This significantly increases computational efficiency, particularly when 

large samples are used. In the parametric path analysis algorithm, which is our 

“control” non-PLS algorithm, indicators are aggregated to generate latent variable 

scores using the same weight of 1 for all indicators. The p-value calculation 

method used for parametric path analysis is the “parametric” method (Kock, 

2013). This method calculates standard errors based on a Student’s t-distribution. 

Skewness and excess kurtosis were calculated, and normality tested, for all 

indicators in each of the generated samples. This was done with the goal of 

ensuring that, with non-normal data, sample non-normality propagation to 

indicators occurred to the extent that all indicators followed truly non-normal 

distributions. Two tests of normality were used, each taking as inputs skewness 

and excess kurtosis values: the classic Jarque-Bera test (Jarque & Bera, 1980; 

Bera & Jarque, 1981) and Gel and Gastwirth’s (2008) robust modification of this 

test. Both tests, when applied to non-normal data, indicated statistically 

significantly non-normality in all indicators. 
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Figure 5. Monte Carlo simulation results 
 
* Notes: vertical axis - statistical power values (probabilities of avoiding false negatives); horizontal axis - 

sample sizes; PLSR = PLS regression; PATH = parametric path analysis. 

 

 

As we can see from the results, PLS regression performed better in terms of 

statistical power than parametric path analysis with both normal and non-normal 

data, particularly so with small sample sizes. For example, PLS regression 

reached the widely accepted power threshold of .8 (yielding false negatives 20 

percent of the time) with a sample size of approximately 75 with normal data, and 

with a slightly greater sample size with non-normal data. 

Overall both algorithms suffered small performance losses with non-normal 

data, compared with their performance with normal data. The fact that those 

losses were small suggests that both algorithms are fairly robust to deviations 

from normality. This is not surprising because regression techniques in general 

and related p-value calculation methods are generally believed to be remarkably 

robust to deviations from normality (Haas & Scheff, 1990; Knez & Ready, 1997). 

PLS-SEM builds heavily on those techniques and methods. 

As a side note, we should clarify that the PLS regression algorithm is 

referred to as “new” in the context of PLS-SEM because it has been more 

commonly used in the past in chemometrics applications (Wold et al., 2001) not 

involving PLS-SEM per se. The use of this algorithm in PLS-SEM is growing. It 

appears to offer some advantages over other PLS algorithms. One of the 

advantages is the de-coupling of the estimation of coefficients for the structural 

and measurement models (Kock, 2010), reducing the likelihood of capitalization 

on error. The advantages tend to become particularly clear when PLS regression 

is compared with the more widely used PLS mode A (Lohmöller, 1989) in PLS-

SEM applications. 
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Conclusion 

A simple and effective method was proposed for the creation of non-normal data 

that follows a χ2 distribution with 1 degree of freedom. This gives access to a 

number of properties, as this is a well known distribution, including probability 

limit skewness and kurtosis (a.k.a. excess kurtosis) values. These are 8 2.828  

and 12, respectively, which reflect severe non-normality and are thus useful in 

robustness tests. It was shown how less severely non-normal data can be 

generated using the same general approach, by increasing the degrees of freedom 

of the χ2 distribution used. 

It was shown that proper propagation of non-normality requires the use of 

non-normal latent variables and errors, which can be created through the same χ2 

distribution approach. It was demonstrated that propagation of non-normality is 

severely impaired when propagating non-normal latent variables are used in 

combination with normal errors, and thus that it is important to use errors that are 

also non-normal. This applies to both structural errors and indicator errors. 

Simulation researchers may be tempted to rescale the indicators directly to 

obtain non-normal data for use in PLS-SEM and other SEM simulations, since the 

indicators form the “raw material” that is used to compare different SEM 

techniques. The problem with this approach is that it removes the interdependence 

between latent variables and indicators, which in turn prevents true sample 

analyses and comparisons. 

The method discussed here generates data for latent variables and errors 

directly, and then for indicators, preserving that interdependence. It gives full 

control of the samples, and the ability to calculate a variety of true sample 

coefficients that are not available from the specified true population model. In fact, 

this method permits creation of very large samples (e.g., with N = 106), from 

which various traits of the population can be ascertained. In samples this large 

sampling error is very small, and thus coefficients tend to very similar to those 

found in the population from which samples are taken. Although the 

parameterized population model used to create data in simulations allows the true 

population path coefficients and loadings to be known, it does not inform the 

shape of the relationship between loadings and weights or the degree of 

collinearity among latent variables. 

The former, the shape of the relationship between loadings and weights, 

could help us develop better PLS algorithms (Kock, 2010), with unbiased 

loadings and weights (Cassel et al., 1999). The latter, the degree of collinearity 



NED KOCK 

313 

among latent variables, could help understand the impact that PLS algorithms 

have on full collinearity variance inflation factors (Kock & Lynn, 2012). 

References 

Bera, A. K., & Jarque, C. M. (1981). Efficient tests for normality, 

homoscedasticity and serial independence of regression residuals: Monte Carlo 

evidence. Economics Letters, 7(4), 313-318. doi:10.1016/0165-1765(81)90035-5 

Berglund, E., Lytsy, P., & Westerling, R. (2013). Adherence to and beliefs 

in lipid-lowering medical treatments: A structural equation modeling approach 

including the necessity-concern framework. Patient Education and Counseling, 

91(1), 105-112. doi:10.1016/j.pec.2012.11.001 

Biong, H., & Ulvnes, A. M. (2011). If the supplier's human capital walks 

away, where would the customer go? Journal of Business-to-Business Marketing, 

18(3), 223-252. doi:10.1080/1051712X.2011.541375 

Brewer, T. D., Cinner, J. E., Fisher, R., Green, A., & Wilson, S. K. (2012). 

Market access, population density, and socioeconomic development explain 

diversity and functional group biomass of coral reef fish assemblages. Global 

Environmental Change, 22(2), 399-406. doi:10.1016/j.gloenvcha.2012.01.006 

Cassel, C., Hackl, P., & Westlund, A. H. (1999). Robustness of partial least-

squares method for estimating latent variable quality structures. Journal of 

Applied Statistics, 26(4), 435-446. doi:10.1080/02664769922322 

Cassivi, L., Lefebvre, E., Lefebvre, L. A., & Léger, P. M. (2004). The 

impact of e-collaboration tools on firms' performance. The International Journal 

of Logistics Management, 15(1), 91-110. doi:10.1108/09574090410700257 

Chen, J. V., Chen, Y., & Capistrano, E. P. S. (2013). Process quality and 

collaboration quality on B2B e-commerce. Industrial Management & Data 

Systems, 113(6), 908-926. doi:10.1108/IMDS-10-2012-0368 

Chiquoine, B., & Hjalmarsson, E. (2008). Jackknifing stock return 

predictions. Washington, DC: Federal Reserve Board. 

Cirillo, M. A., & Barroso, L. P. (2012). Robust regression estimates in the 

prediction of latent variables in structural equation models. Journal of Modern 

Applied Statistical Methods, 11(1), 42-53. Available at: 

http://digitalcommons.wayne.edu/jmasm/vol11/iss1/4 

Diaconis, P., & Efron, B. (1983). Computer-intensive methods in statistics. 

Scientific American, 249(1), 116-130. 

http://dx.doi.org/10.1016/0165-1765(81)90035-5
http://dx.doi.org/10.1016/j.pec.2012.11.001
http://dx.doi.org/10.1080/1051712X.2011.541375
http://dx.doi.org/10.1016/j.gloenvcha.2012.01.006
http://dx.doi.org/10.1080/02664769922322
http://dx.doi.org/10.1108/09574090410700257
http://dx.doi.org/10.1108/IMDS-10-2012-0368
http://digitalcommons.wayne.edu/jmasm/vol11/iss1/4


NON-NORMALITY PROPAGATION IN PLS-SEM 

314 

Efron, B., Rogosa, D., & Tibshirani, R. (2001). Resampling methods of 

estimation. In N. J. Smelser, & P. B. Baltes (Eds.), International Encyclopedia of 

the Social & Behavioral Sciences (pp. 13216-13220). New York, NY: Elsevier. 

Fleishman, A. I. (1978). A method for simulating non-normal distributions. 

Psychometrika, 43(4), 521-532. doi:10.1007/BF02293811 

Gel, Y. R., & Gastwirth, J. L. (2008). A robust modification of the 

Jarque-Bera test of normality. Economics Letters, 99(1), 30-32. 

doi:10.1016/j.econlet.2007.05.022 

Guo, K. H., Yuan, Y., Archer, N. P., & Connelly, C. E. (2011). 

Understanding nonmalicious security violations in the workplace: A composite 

behavior model. Journal of Management Information Systems, 28(2), 203-236. 

doi:10.2753/MIS0742-1222280208 

Haas, C. N., & Scheff, P. A. (1990). Estimation of averages in truncated 

samples. Environmental Science & Technology, 24(6), 912-919. 

doi:10.1021/es00076a021 

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver 

bullet. The Journal of Marketing Theory and Practice, 19(2), 139-152. 

doi:10.2753/MTP1069-6679190202 

Headrick, T. C. (2002). Fast fifth-order polynomial transforms for 

generating univariate and multivariate nonnormal distributions. Computational 

Statistics and Data Analysis, 40(4), 685-711. 

doi:10.1016/S0167-9473(02)00072-5 

Headrick, T. C. (2010). Statistical simulation: Power method polynomials 

and other transformations. Boca Raton, FL: CRC Press. 

Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, 

homoscedasticity and serial independence of regression residuals. Economics 

Letters, 6(3), 255-259. doi:10.1016/0165-1765(80)90024-5 

Ketkar, S., Kock, N., Parente, R., & Verville, J. (2012). The impact of 

individualism on buyer-supplier relationship norms, trust and market 

performance: An analysis of data from Brazil and the U.S.A. International 

Business Review, 21(5), 782–793. doi:10.1016/j.ibusrev.2011.09.003 

Kim, M. J., Park, C. G., Kim, M., Lee, H., Ahn, Y.-H., Kim, E., Yun, S.-N., 

& Lee, K.-J. (2012). Quality of nursing doctoral education in Korea: Towards 

policy development. Journal of Advanced Nursing, 68(7), 1494-1503. 

doi:10.1111/j.1365-2648.2011.05885.x 

http://dx.doi.org/10.1007/BF02293811
http://dx.doi.org/10.1016/j.econlet.2007.05.022
http://dx.doi.org/10.2753/MIS0742-1222280208
http://dx.doi.org/10.1021/es00076a021
http://dx.doi.org/10.2753/MTP1069-6679190202
http://dx.doi.org/10.1016/S0167-9473(02)00072-5
http://dx.doi.org/10.1016/0165-1765(80)90024-5
http://dx.doi.org/10.1016/j.ibusrev.2011.09.003
http://dx.doi.org/10.1111/j.1365-2648.2011.05885.x


NED KOCK 

315 

Knez, P. J., & Ready, M. J. (1997). On the robustness of size and book–to–

market in cross–sectional regressions. The Journal of Finance, 52(4), 

1355-1382.doi:10.2307/2329439 

Kock, N. (2010). Using WarpPLS in e-collaboration studies: An overview 

of five main analysis steps. International Journal of e-Collaboration, 6(4), 1-11. 

doi:10.4018/jec.2010100101 

Kock, N. (2013). WarpPLS 4.0 User Manual. Laredo, TX: ScriptWarp 

Systems. 

Kock, N. (2014). Advanced mediating effects tests, multi-group analyses, 

and measurement model assessments in PLS-based SEM. International Journal of 

e-Collaboration, 10(1), 1-13. doi:10.4018/ijec.2014010101 

Kock, N., & Lynn, G. S. (2012). Lateral collinearity and misleading results 

in variance-based SEM: An illustration and recommendations. Journal of the 

Association for Information Systems, 13(7), 546-580. 

Lohmöller, J.-B. (1989). Latent variable path modeling with partial least 

squares. Heidelberg, Germany: Physica-Verlag. 

MacCallum, R. C., & Tucker, L. R. (1991). Representing sources of error in 

the common-factor model: Implications for theory and practice. Psychological 

Bulletin, 109(3), 502-511.doi:10.1037/0033-2909.109.3.502 

Mattson, S. (1997). How to generate non-normal data for simulation of 

structural equation models. Multivariate Behavioral Research, 32(4), 355-373. 

doi:10.1207/s15327906mbr3204_3 

Robert, C. P., & Casella, G. (2005). Monte Carlo statistical methods. New 

York, NY: Springer. 

Wold, S., Trygg, J., Berglund, A., & Antti, H. (2001). Some recent 

developments in PLS modeling. Chemometrics and Intelligent Laboratory 

Systems, 58(2), 131-150. doi:10.1016/S0169-7439(01)00156-3 

http://dx.doi.org/10.2307/2329439
http://dx.doi.org/10.4018/jec.2010100101
http://dx.doi.org/10.4018/ijec.2014010101
http://dx.doi.org/10.1037/0033-2909.109.3.502
http://dx.doi.org/10.1207/s15327906mbr3204_3
http://dx.doi.org/10.1016/S0169-7439(01)00156-3

	Journal of Modern Applied Statistical Methods
	5-2016

	Non-Normality Propagation among Latent Variables and Indicators in PLS-SEM Simulations
	Ned Kock
	Recommended Citation


	Non-Normality Propagation among Latent Variables and Indicators in PLS-SEM Simulations

