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A common consideration concerning the application of multiple linear regression is the 
lack of independence among predictors (multicollinearity). The main purpose of this 
study is to introduce an alternative method of regression originally outlined by Woolf 
(1951) that eliminates the relatedness between the predictors in a multiple predictor 

setting. 
 
Keywords: multicollinearity, collinearity, multiple linear regression, ordered 
variable regression, OVR 

 

Introduction 

Social and behavioral scientists often use multiple linear regression (MLR) to 

answer research questions that involve multiple predictor variables in both 

experimental and observational research settings. These scientists must consider a 

host of issues when applying MLR, such as the appropriateness of measurement, 

sampling, design, and model assumptions. This paper will focus on one 

commonly encountered problem in the application of MLR: the situation in which 

the predictor variables are related to one another, a condition generally referred to 

as multicollinearity. 

Although multicollinearity can be defined as a condition in which the 

predictor variables are correlated with each other to some degree, the literature 

provides several alternative names and definitions. For instance, Darlington 

(1968) referred to the relatedness between predictors as intercorrelation. Kutner, 

mailto:grayson_baird@brown.edu


BAIRD & BIEBER 

333 

Nachtsheim, Neter, and Li (2004) also referred to the relationship between 

predictors as intercorrelation, but go on to note that extreme intercorrelation is 

often referred to as multicollinearity. Similarly, both Cohen, Cohen, West, and 

Aiken (2003), and Nie, Hull, Jenkins, Steinbrenner, and Bent (1975) directly 

referred to multicollinearity as the situation where two or more predictors are 

highly intercorrelated with each other. Although Gordon (1968) noted others have 

used the term multicollinearity, he refers to high correlation among predictors as 

redundancy, though many texts reserve the term redundancy to denote the squared 

value of the intercorrelation (see Cohen et al., 2003). Weisberg (2005) refined the 

concept of multicollinearity by distinguishing different levels of collinearity, 

where some relatedness between predictors is referred to as approximate 

collinearity, strong relatedness is referred to as collinearity, and perfect 

relatedness is referred to as exact collinearity. 

Throughout the references above, the terms such as high, extreme, some, 

and strong are not numerically specified. However, Tabachnick and Fidell (2007) 

do specifically define thresholds for multicollinearity, indicating that clear 

multicollinearity exists when predictors correlate above .90, where correlations 

above .70 may also be suggestive of multicollinearity. For most social and 

behavioral science researchers, these values are so unattainably high that they 

could leave the impression that multicollinearity never needs to be considered nor 

viewed as problematic within their data. 

Gordon (1968) noted that "statistics texts focus upon conditions of 

extremely high correlation because it is at that point that the resulting problems 

become most nearly statistical ones."(p. 596). Alternatively, Cohen et al. (2003), 

Kutner et al. (2007), and Weisberg (2005) referred to multicollinearity as a 

problematic condition, where Nie et al. (1975) refer to multicollinearity as a 

condition that can cause problems. All the aforementioned authors go on to 

discuss various problems of multicollinearity in application. 

Gordon (1968) observed that discussions of multicollinearity in general are 

brief in statistical texts and Weisberg (2005) observed that [multi]collinearity 

itself has no precise definition. Therefore, it appears that multicollinearity does 

not have a unified definition or meaning and in fact can denote a variety of 

different concepts in the literature. Given the imprecise nature of the term 

multicollinearity, the correlation between predictors in this paper will be referred 

to as simply relatedness. It is hoped that this neutral term expresses the idea of 

correlation between predictors, without implying unintended connotations such as 

strength or threshold of correlation, being problematic or not, etc. 
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Therefore, the intent of this study aims not at defining multicollinearity, but 

rather discussing and demonstrating the impacts of related predictors on the MLR 

model and statistics, for any value of relatedness greater than zero. An alternative 

to MLR, called ordered variable regression (OVR), will be presented in this paper, 

which resolves the issue of related predictors entirely by creating and using 

predictors that are perfectly unrelated. 

Relationship between Predictor Variables 

The predictor variables in the multiple linear regression (MLR) model can be 

either independent of each other (r12 = 0) or correlated to each other (r12 ≠ 0) [for 

simplicity and without loss of generalizability, only two predictors, X1 and X2, 

will be considered throughout this paper]. If two predictors are related to each 

other, then their redundancy (see Cohen et. al. 2003) can be expressed as 2

12r  (i.e., 

the squared value of their correlation; shared variance). 

Figures 1 and 2 will be used extensively throughout this article to present 

the numerous and varied impacts of the relationship between the predictor 

variables on the response variable (Y). In these Venn diagrams, the area within 

any circle is equal to 1 (the total variance of any variable = 1.00), thus the 

partitions of these circles represent proportions of variance (see Kerlinger & 

Pedhazur, 1973). 
 

  
 
Figure 1. Predictors are unrelated Figure 2. Predictors are related 

 

 

Figure 1 illustrates the situation when the two predictors are independent 

(i.e., the circles representing the predictors do not intersect). In this situation, 

regions 1 and 2 represent the proportions of the response variable Y accounted for 

by the predictors X1 and X2 respectively; specifically the size of region 1 is 
2

1YXr  

and the size of region 2 is 
2

2YXr . Region 3 represents that part of Y that can't be 

predicted by X1 or X2, which will be referred to as the error. 
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Conversely, Figure 2 illustrates the situation when the two predictors are 

related to each other (i.e., the circles representing the predictors do intersect). 

Regions 1 and 2, as they did in Figure 1, represent the unique contributions to the 

response variable from X1 and X2, respectively. Unlike Figure 1, Figure 2 contains 

two additional regions, 4 and 5, which reflect the redundancy  2

12r  between the 

two predictors. The impact of this relationship between the variables X1 and X2 

complicates the prediction of the response variable by adding a new piece, region 

4 (the shared influence of both predictors on Y) to the circle representing Y. In this 

figure, region 3 is that part of Y which can't be predicted by X1 and/or X2; once 

again the error. 

Implications and Impacts When the Predictors Are Not 
Related 

Simple Linear Regression 

The simple linear regression (SLR) model in which only X1 is used to predict Y 

can be expressed as 

 

 
1 1Ŷ b X   (1) 

 

where b1 is the least squares estimate of the slope associated with X1 and is the 

answer to the research question, "how is X1 predictive of Y?" [without loss of 

generality, it is possible to consider all of the regression models presented in this 

article from the perspective in which X1, X2, and Y are standardized. As a 

consequence and for convenience, the intercept is always 0.] Similarly, 

 

 2 2Ŷ b X   (2) 

 

where b2 is the least squares estimate of the slope associated with X2 and is the 

answer to the research question, how is "X2 predictive of Y?" Because the 

variables have all been standardized, 

 

 1 1YXb r   (3) 

 

and 
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2 2YXb r   (4) 

 

There are two related questions to "how is Xi predictive of Y?" These are "is 

the relationship between Xi and Y statistically significant," and "how much of Y is 

predicted by Xi?" [throughout this paper, the subscript i will be used to designate 

either X1 (i = 1), X2 (i = 2), or a result derived from Xi]. The first of these two 

questions is answered by converting the slope into the t-distribution using  

 

  
 

   

1 2
2

2

1

1

i i
i

i
i

i

b b
t n p

SE b

n s X


   

 
 

 

  (5) 

 

where n is the sample size, p is the number of predictors (i.e., p = 1), SE(bi) is the 

standard error of the slope (bi), and 2

i  is error variance of Y [which is associated 

with Xi and is estimated using the mean squared error (MSEi)], and s2(Xi) is the 

variance of the predictor Xi.  

The second of these questions is answered using the coefficient of 

determination or R2, which represents the proportion of variance in Y accounted 

for (explained, predicted) by either 

 

 2 2 2

i i YXiR b r    (6) 

 

where 2

ib  equals the size of region i. The coefficient of determination can also be 

calculated through the use of the sums of squares presented in the analysis of 

variance table. Although unnecessary in this section, it is presented for 

consistency with subsequent sections of this article. Within the context of SLR, 

the sums of squares can be partitioned as follows 

 

     Total SLR Model i Error i
SS SS SS    (7) 

 

where SSTotal is the total variation found in Y (associated with regions 1, 2, and 3 

in Figure 1; as the circles of Figures 1 and 2 have been standardized to 

variance = 1, the sums of squares are associated with (represented by) the regions 

in concept, but not equal to them in size.), SSSLR Model(i) is the variation in Y 

associated with predictor variable Xi and SSError(i) is the variation in Y not 

associated with the predictor variable Xi. Hence, when i = 1 (predicting Y from X1), 



BAIRD & BIEBER 

337 

SSSLR Model(1) is represented by region 1, and SSError(1) by regions 2 and 3. 

Conversely, when i = 2 (predicting Y from X2), SSSLR Model(2) is represented by 

region 2, and SSError(2) by regions 1 and 3. From this context, the coefficient of 

determination for SLR models is 

 

 
   

   

  2

 

SLR Model i SLR Model i

i

Total SLR Model i Error i

SS SS
R

SS SS SS
 


  (8) 

 

The values for 2

iR  as determined by Equations 6 and 8 are identical. Lastly, the 

significance of 2

iR  can be found by using the Omnibus F-statistic (abbreviated 

throughout the paper as F), 

 

  
 

   
   

, 1
1

SLR Model i SLR Model i

i

iError i

SS p SS p
F p n p

SS n p MSE
   

 
  (9) 

 

where the mean squared error (MSEi) is the estimate of the error variance 

associated with predictor Xi, which was identified as 2

i  in Equation 5. 

Multiple Linear Regression 

Based on the foundational elements for the simple linear regression (SLR) model 

above, it is possible to develop the multiple linear regression (MLR) model, in 

which Y is predicted jointly by both X1 and X2. In a parallel form to the preceding 

section it is possible to start with the fundamental research question, which is 

"how are X1 and X2 jointly predictive of Y?" The answer to this question is found 

in the MLR model 

 

 1 1 2 2Ŷ c X c X    (10) 

 

where c1 and c2 are the least squares estimates of MLR parameters.  

Although Equation 10 is considered to be the answer to the question posed, 

it rests heavily upon how the word jointly is interpreted (this distinction will be 

considered at length in next section considering the implications and impacts 

when the predictors are related). In its standard application, MLR produces an 

additive model (no interaction terms) and thus defines jointly as independent of 

one another. As a consequence, the coefficient c1 is actually the answer to the 
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question, "how is X1 predictive of Y independent of X2," and c2 is the answer to 

the question, "how is X2 predictive of Y independent of X1?" From this perspective, 

it can be seen that the coefficients from the MLR answer a similar, yet very 

distinct question from the context of SLR. 

At this point, the most important and logical question is "what is the 

relationship between c1 and b1, and between c2 and b2?" Within the context of 

standardized variables, the MLR coefficients, c1 and c2, can be linked with the 

bi-variate correlations as follows from Darlington (1968).  

 

 1 2 12 2 1 12
1 22 2

12 12

  and  
1 1

YX YX YX YXr r r r r r
c c

r r

 
 

 
  (11) 

 

The relationship of Equation 11 with the part correlations (McNemar, 1962), 

which are also called the semi-partial correlations (Nunnally, 1967), will be 

discussed at length in the consideration of Equation 27. At this point, the 

relationship is inconsequential, because r12 = 0 and as a result Equation 11 

reduces to  

 

 i YXi ic r b    (12) 

 

Thus, if the two predictor variables are not related, then the MLR, c1 and c2, are 

identical to their SLR counterparts, b1 and b2. In addition, the italicized portion of 

the MLR questions above (independent of) can be deleted and also simplify to 

their SLR counterparts. 

The test of the significance of the regression coefficients c1 and c2 is once 

again found through the t-statistics, which in the context for MLR is 

 

  
 

   

1 2
2

2 2

12

1

1

1 1

i i
i

i

i

c c
t n p

SE c

n s X r



   
   
   

     

  (13) 

 

where p is the number of predictors (i.e., p = 2). Because r12 = 0, Equation 13 

reduces to 
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  
 
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2
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c c
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
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  (14) 

 

Although Equation 14 is similar in appearance to Equation 5, they are not 

identical. The standard errors of the regression coefficients [SE(ci)] are smaller 

than the corresponding standard errors [SE(bi)], because the size of the MSE (σ2) 

from the MLR model has been reduced to region 3 only (hence, 2 2

1   and 

2 2

2  ). Therefore, the value of the t-statistics from the MLR model will be 

larger than in the SLR models; however, they will not necessarily result in smaller 

p-values given that the degrees of freedom have been reduced by one. 

As in the previous section, the MLR answer to the question, "how much of Y 

is predicted by X1 and X2," is found using the coefficient of determination. As 

presented in Darlington (1968), the coefficient of determination within the context 

of two predictor variables is 

 

 2 2 2

1 2 1 2 122R c c c c r     (15) 

 

using r12 = 0 and the result of Equation 12  

 

 2 2 2

1 2R b b    (16) 

 

Thus, the coefficient of determination from the multiple regression reduces 

to the sum of the coefficients of determination from the two separate simple 

regressions, see Equation 6. 

From the context of the partitioning of the sums of squares, 

 

  Total MLR Model ErrorSS SS SS    (17) 

 

where 

 

     1 2 2 1MLR ModelSS SS X X SS X X    (18) 

 

Specifically, SS( X1| X2) reflects the amount of variation in Y associated with 

the first predictor independent of any association with the second predictor 
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(represented by region 1 in Figure 1) and SS( X2| X1) corresponds with the amount 

of variation in Y associated with X2 independent of any association with X1 

(region 2). Given that the predictors are not related, then it can be logically 

deduced from the results above that SS( X1| X2) = SSSLR Model(1), 

SS( X2| X1) = SSSLR Model(2), and  

 

      1  2SLR Model SLR Model SLR Model
SS SS SS    (19) 

 

Hence, the amount of variation in Y accounted for jointly by X1 and X2 is 

simply the sum of their variation from the simple regressions. The simultaneous 

use of both predictors results in a single model reflecting both predictive regions 

(1 and 2), while reducing the error to its appropriate minimum (region 3 only). 

Thus the coefficient of determination becomes 

 

 
   

   

2   

 

 1  2

 1  2

MLR Model MLR Model

Total MLR Model Error

SLR Model SLR Model

ErrorSLR Model SLR Model

SS SS
R

SS SS SS

SS SS

SS SS SS

 





 

  (20) 

 

or the sum of the two coefficients of determination presented in Equation 8. 

As with the individual tests of the coefficients, presented in Equation 14, the 

Omnibus F-statistic is not a simple extension from the SLR results, due to the 

reduction in the error term and degrees of freedom. The Omnibus F-statistic for 

the multiple regression is 

 

  
 

     1  2
 , 1

1

SLR Model SLR Model
MLR Model

Error

SS SS pSS p
F p n p

SS n p MSE


   

 
  (21) 

 

Numerical Example 

To illustrate the points made above when considering the SLR and MLR models, 

and their corresponding results, a numerical example is presented in Table 1 for 

data in which r12 = .000. Due to round off errors associated with the 

standardization of any data set, the actual value of the relatedness of X1 and X2 

will not be perfectly zero. For these data the relatedness of X1 and X2 is 6.00E-18. 
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The results can be found by using the regression routine in most statistical 

computer packages. The exception is that a general linear model routine needs to 

be performed in order to obtain the sums of squares breakdown information 

specific to each predictor [SS( X1| X2) and SS( X2| X1)] in the MLR context. 

In summary, when the predictors are not related, the coefficients produced 

by the MLR model are identical to the coefficients produced by the SLR models. 

As a consequence, the R2 and model sum of squares for the MLR model are the 

additive composites of the R2 and model sum of squares produced by the SLR 

models. Thus, the data of Table 1 confirms the derived results presented in 

Equations 12, 16, 19, and 20. These results will hold for any data set in which the 

predictors are unrelated. 

Implications and Impacts When the Predictors Are Related 

Simple Linear Regression 

This section is essentially the duplicate of the simple regression section when the 

predictors are not related. The primary difference is found in region 4 of Figure 2. 

What is the impact of this difference on the results presented previously? 

The questions of "how is Xi predictive of Y" remain the same and bi (the 

estimates of the slopes) are still the answers. However, b1 is now associated with 

regions 1 and 4, and b2 is now associated with regions 2 and 4. Similarly, all of 

the results presented in Equations 3 through 9 remain the same, but are expanded 

to include region 4. Hence, any discussion of X1 now includes both regions 1 and 

4, and any discussion of X2 now includes regions 2 and 4. 

It is important to note that even though all of the results are identical, 

regardless of whether the predictors are related or not, the answers to the 

fundamental questions, "how is Xi predictive of Y," are now more complex. The 

first predictor is no longer solely predictive of Y (represented by region 1), but 

this prediction is now supplemented by a shared element associated with the 

second predictor (region 4). The same situation exists when the focus of the SLR 

is the second predictor. As a consequence, although the fundamental regression 

questions remain simple, the answers aren't. Unfortunately these two aspects of 

the predictor variables are fused together in the answers bi and can't be separated 

within the context of SLR. 
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Table 1. Comparison of Simple and Multiple Regression when the predictors are not related 

 

 SLR(X1) SLR(X2) MLR Comments 

Coefficient 

X1 b1 = .467  c1 = .467 b1 = c1 = rYX1 , Equations 3, 11 

X2  b2 = .312 c2 = .312 b2 = c2 = rYX2 , Equations 4, 11 

Sums of Squares 

X1 16.115  16.115 MLR result = SLR result for X1, Discussion for Equation 19 

X2  7.222 7.222 MLR result = SLR result for X2, Discussion for Equation 19 

Model 16.115 7.222 23.337 MLR result = sum of the SLR results for X1 and X2, Equation 19 

Error 57.884 66.778 50.663  

Total 74.000 74.000 74.000  

R2 Estimates 

R2 .218 .097 .315 MLR result = sum of the SLR results for X1 and X2, Equation 16 

R2 from SS   .315 SSMLR Model / SSTotal = 23.337 / 74.000 = .315, Equation 20 
 

*Note: r12 = .000, rYX1 = .467, rYX2 = .312, n = 75 



BAIRD & BIEBER 

343 

It is important to note that even though all of the results are identical, 

regardless of whether the predictors are related or not, the answers to the 

fundamental questions, "how is Xi predictive of Y," are now more complex. The 

first predictor is no longer solely predictive of Y (represented by region 1), but 

this prediction is now supplemented by a shared element associated with the 

second predictor (region 4). The same situation exists when the focus of the SLR 

is the second predictor. As a consequence, although the fundamental regression 

questions remain simple, the answers aren't. Unfortunately these two aspects of 

the predictor variables are fused together in the answers bi and can't be separated 

within the context of SLR. 

Looking at Figure 2 it can be seen that SSTotal is now represented by regions 

1, 2, 3, and 4. As a result, the SLR for X1 produces  

 

 
   1 2 1 SharedSLR Model

SS SS X X SS    (22) 

 

which corresponds with regions 1 and 4, and an SSError(1) corresponding to regions 

2 and 3. [SSShared will be defined later in Equations 41 and 42.] Similarly, the 

result of the SLR for X2 produces  

 

 
   2 1 2 SharedSLR Model

SS SS X X SS    (23) 

 

which corresponds with regions 2 and 4, and an SSError(2) corresponding to regions 

1 and 3. 

Multiple Linear Regression 

The previous section with MLR when the predictors were not related began with 

the logical research question, "how are X1 and X2 jointly related to Y?" However, 

because the two predictor variables are now related, the definition of the word 

jointly is much more complicated than in this previous section. In fact, there are 

now at least three distinct definitions of this word, which each lead to decidedly 

different conclusions in regard to the regression coefficients, coefficients of 

determination, sums of squares, and statistical tests. 

 

Definition 1. Jointly is viewed as the composite of the influence of X1 to Y and 

the influence of X2 to Y. This definition reflects jointly as the sum of the two 

separate SLR questions, "how is X1 predictive of Y" and "how is X2 predictive of 

Y." The answer to this question is  
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1 1 2 2Ŷ b X b X    (24) 

 

Using Equation 10 and the result of Equation 12, it was found that when r12 = 0 it 

is possible for MLR to generate the model presented in Equation 24. However, 

when r12 ≠ 0, Equation 24 can't be estimated by any single regression model, 

because b1 and b2 must be estimated separately. Thus, Equation 24 should only be 

considered as a conceptual combination of the two predictors.  

From the previous section, the coefficients of determination for these two 

simple regressions are 2

1R  for X1 (regions 1 and 4 in Figure 2) and 2

2R  for X2 

(regions 2 and 4 in Figure 2). As a result, if the two were added together to 

provide a combined estimate, then 

 

 2 2 2 2 2

1 2 1 2 Region 1 + Region 4 + Region 2 + Region 4R R R b b       (25) 

 

Thus, the combined estimate presented in Equation 25 would double count region 

4 and artificially inflate the jointly determined R2 by the size of region 4. This was 

not the case for Equation 16, because region 4 didn't exist. Hence, the use of this 

definition to determine the joint R2 is accurate only when the predictors aren't 

related. 

In practice, this first definition of jointly would result in answering the 

multiple regression question from the context of performing two simple 

regressions and combining their results at the level of discussion rather than at the 

level of a predictive model. Although the multiple application of SLR in the 

presence of multiple predictors may be found in the literature, their results should 

be viewed with considerable caution. As pointed out in the section above, their 

answers are not as simple as their questions imply (they can't be interpreted 

independently), and the R2 from their conceptual combination (jointly determined 

influence) will increasingly be over estimated as |r12| increases (increasing the size 

of region 4). 

 

Definition 2. Jointly is viewed as the composite of the influence of X1 to Y 

independent of X2 and the influence of X2 to Y independent of X1. In this context 

the word jointly reflects a simultaneous relationship and leads directly to the 

traditional MLR model 

 

 1 1 2 2Ŷ c X c X    (26) 
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In appearance this is exactly Equation 10. However, is it? As presented in 

Equation 11, duplicated here, it is known that 

 

 1 2 12 2 1 12
1 22 2

12 12

  and  
1 1

YX YX YX YXr r r r r r
c c

r r

 
 

 
  (27) 

 

To begin, given that r12 ≠ 0, Equation 27 doesn't simplify as Equation 11 did, and 

the MLR coefficients (ci) won't equal their SLR counterparts (bi). A close 

inspection of Equation 27 reveals that the MLR coefficients are functions of the 

part correlations (McNemar, 1962) [although it is common to speak about the 

multiple regression coefficients as addressing the question of the relationship 

between a predictor and dependent variable partialling out the influence of other 

predictors, this process as actually accomplished through the part correlations, not 

the partial correlations. Symbolically, rYX1.X2 refers to the partial correlation and 

rY(X1.X2) refers to the part correlation.] The part correlation of X1 with Y removing 

the influence of X2 from Y only (directly represented by region 1 in Figure 2) is 

 

 
 

1 2 12

1. 2 2

121

YX YX

Y X X

r r r
r

r





  (28) 

 

and of X2 with Y removing the influence of X1 from Y only (represented by region 

2) is  

 

 
 

2 1 12

2. 1 2

121

YX YX

Y X X

r r r
r

r





  (29) 

 

As a consequence, substituting Equations 28 and 29 into Equation 27, the 

coefficients from the MLR model are 

 

 
   1. 2 2. 1

1 2
2 2

12 12

  and  
1 1

Y X X Y X X
r r

c c
r r

 
 

  (30) 

 

Thus, although Equation 26 looks very similar to Equation 10, it is dramatically 

different. This is the first impact of the relatedness of the predictors; the MLR 

regression coefficients are no longer equal to their SLR counterparts. In MLR the 

coefficients, through their association with the process of part correlation, have 
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had the shared influence (represented by region 4) removed in comparison to the 

coefficients from SLR. This is the direct result of the additive nature of the MLR 

model presented in Equation 26.  

What additional impact does this second definition of jointly have on the 

other results in the multiple predictor setting? Within the context of MLR, the test 

of the significance of the regression coefficients c1 and c2 is found through the 

t-statistic [Equation 13 is duplicated below] 

 

  
 

   

1 2
2

2 2

12

1

1

1 1

i i
i

i

i

c c
t n p

SE c

n s X r



   
   
   

     

  (31) 

 

Unlike Equation 13, Equation 31 doesn't reduce to Equation 14 because r12 ≠ 0. 

As a note,  2

121 1 r  of Equation 31 is commonly referred to as the Variance 

Inflation Factor (VIF). Hence, the impact of the relatedness between the two 

predictors is the inflation of SE (because the VIF must be greater than 1), which 

results in a decrease in the magnitude (and thus significance) of the t-statistic. The 

second impact of the relatedness of the predictors is that their independent 

contributions to predicting Y are less statistically significant. 

What is the impact on the coefficient of determination? From Figure 2, it 

can be seen that R2 should be the combined influence from X1 and X2 

independently (region 1 and 2), and the shared influence of X1 and X2 (region 4), 

such that 

 

 2  region 1 + region 2 + region 4R    (32) 

 

When r12 = 0, it is easy to relate the regions of Figure 1 with the components of 

the R2; as found in Equation 6. However, now that r12 ≠ 0, how do the results from 

the MLR model correspond with the components of R2? Using Equations 28 and 

29 along with the research question posed by the definition of jointly as 

simultaneously, it can be seen that the MLR model, found in Equation 26, 

produces 

 

    
2 2

1. 2 2. 1
region 1   and  region 2

Y X X Y X X
r r    (33) 

 

such that 
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   

2 2 2

 1. 2 2. 1
region 1 region 2MLR Model Y X X Y X X

R r r      (34) 

 

and 

 

 2 2 2

 MLR Model SharedR R R    (35) 

 

where 2

SharedR  equals the size of region 4. Substituting the results of Equation 30 

into Equation 33 produces the association between the regions of Figure 2 and the 

MLR coefficients as 

 

    2 2 2 2

12 1 12 2region 1 1   and  region 2 1r c r c      (36) 

 

Recalling that R2 for the MLR equals Equation 15, the size of region 4 can be 

established in terms of the part correlations as 

 

 
       

2 2 212
12 121. 2 2. 1 1. 2 2. 12

12

region 4 2
1

Shared Y X X Y X X Y X X Y X X

r
R r r r r r r

r
    
 

  (37) 

 

and in terms of the MLR coefficients as 

 

 2 2 2

12 12 1 12 2 1 2region 4 2SharedR r r c r c c c        (38) 

 

It can be seen from this discussion that R2 is actually a combination of two 

separate and independent pieces; that piece associated with the model ( 2

 MLR ModelR ; 

regions 1 and 2) and that piece associated with the shared influence ( 2

SharedR ; 

region 4). The third impact of the relatedness of the predictors is that the R2 is 

unequal to 2

 MLR ModelR , begin inflated by the size of region 4, unless r12 = 0. 

These results for the R2 can also be illustrated by examining the sum of 

squares. The determination of the sums of squares using this second definition of 

jointly is often referred to as Type III sums of squares, which is presented in 

Equation 40. 

 

 
 Total MLR Model Shared ErrorSS SS SS SS     (39) 
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where 

 

     1 2 2 1MLR ModelSS SS X X SS X X    (40) 

 

and 

 

      1 2 1 2 1
,Shared SLR Model

SS SS X X SS SS X X     (41) 

 

from Equation 22 and 

 

      1 2 2 1 2
,Shared SLR Model

SS SS X X SS SS X X     (42) 

 

from Equation 23. As expressed in Equation 18, SS( X1| X2) reflects the amount of 

variation in Y associated with the first predictor independent of any association 

with the second predictor (region 1) and SS( X2| X1) corresponds with the amount 

of variation in Y associated with X2 independent of any association with X1 (region 

2). SSShared reflects the joint influence of X1 and X2 (represented by region 4), and 

SSError now correctly corresponds with region 3 only. 

In many textbooks and statistical programs, it appears that the SSModel is not 

calculated directly, but rather determined indirectly through the simple subtraction 

whereby SSModel = SSTotal - SSError. This calculation works perfectly when r12 = 0, 

but when r12 ≠ 0 it mistakenly includes the SSShared in the SSModel and inflates the 

sums of squares associated with the model, such that 

 

 
 Model Total Error MLR Model SharedSS SS SS SS SS      (43) 

 

This is perhaps best explained and illustrated by Woolf (1951, see p. 113). 

Therefore, the R2 can be calculated using the sums of squares as 

 

 
   1 2 2 12  

 
MLR Model

MLR Model

Total Total

SS X X SS X XSS
R

SS SS


    (44) 

 

and as 

 

 
2  Total Error MLR Model Shared

Total Total

SS SS SS SS
R

SS SS

 
    (45) 
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It can be seen in Equation 45 that the R2 calculated by the simple subtraction 

method is once again inflated by SSShared (region 4) in comparison to the 2

 MLR ModelR , 

as presented in Equation 44. 

The last impact of the relatedness of the predictors on the MLR results is 

seen in the determination of the Omnibus F-statistic 

 

  
 

  
, 1

1

MLR Model SharedModel

Error

SS SS pSS p
F p n p

SS n p MSE


   

 
  (46) 

 

whose value can be partitioned such that the components of F are equal to the 

sum of  

 

 
 

   1 2 2 1 
 

1

MLR Model
MLR Model

Error

SS X X SS X X pSS p
F

SS n p MSE

   
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  (47) 

and 

 

 
 1

Shared Shared
Shared

Error

SS p SS p
F

SS n p MSE
 

 
  (48) 

 

As with R2, the use of SSModel results in the inflation of the F by SSShared (region 4). 

In summary, the MLR coefficients are the direct answers to the research 

questions posed at the beginning of this section (Definition 2 of the word jointly) 

and the t-statistics provide the appropriate significance tests of these relationships. 

However, both the coefficient of determination and the Omnibus F-statistic are 

inflated in relation to the MLR model by a function of the amount of shared 

variance (region 4). Hence, the MLR model (c1 and c2) is not consistent with the 

commonly reported summary statistics (R2 and F). These results will be 

demonstrated in the numerical example section below. 

 

Definition 3.  Jointly is viewed as the composite of the influence of X1 to Y 

(from Definition 1) and the influence of X2 to Y independent of X1 (Definition 2). 

In this context, the word jointly affects an ordered relationship (note either X1 or 

X2 can be represented in the first question, with the other predictor in the second. 

For convenience only, X1 will be used in the first question and X2 in the second). 

Together this ordered relationship could be represented in the model 
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1 1 2 2Ŷ b X c X    (49) 

 

where b1 comes from Equation 24 and c2 comes from Equation 26. This model 

will be referred to here as Ordered Variable Regression (OVR). [Unlike 

Definition 1 that was only a conceptual combination of the two predictors, 

Definition 3 actually leads to a determinable model, which will be presented later 

in this section.] 

Another way of viewing these two influences is from the context of stepwise 

regression, in which b1 is the answer to the question, "what does X1 contribute to 

Y," and c2 is the answer to the question, "what does X2 contribute to Y beyond 

what is already being contributed by X1?" 

The significance of these two regression coefficients have already been 

presented in Equation 14 and Equation 31, respectively. The determination of the 

sums of squares using this third definition of jointly is often referred to as Type I 

sums of squares, which is presented in Equation 51. 

 

 
 Total OVR Model ErrorSS SS SS    (50) 

 

Specifically, 

 

 
 1 2OVR ModelSS SS SS    (51) 

 

where 

 

  1 1 2 SharedSS SS X X SS    (52) 

 

is consistent with Equation 22, which corresponds with regions 1 and 4, and 

 

  2 2 1SS SS X X   (53) 

 

corresponds with region 2, hence 

 

       1 2 2 1 1 2  ,OVR Model MLR Model SharedSS SS X X SS X X SS X X SS SS      (54) 

 

corresponds with regions 1, 2, and 4. The OVR model (Definition 3) now contains 

region 4, where the MLR model (Definition 2) did not. Now, SSTotal - SSError does 
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equal SSModel. The R2 determined from the OVR model does actually include the 

shared variation and does equal Equation 45. Thus, whereas Equation 45 is 

inflated for the determination of R2 when associated with the MLR model, it is 

now correct for the OVR model. Likewise, the F determined from Equation 46 is 

now appropriate for the OVR model by the result of Equation 54. As a 

consequence, the regression model and these summary statistics are now in 

agreement, which was not the case for the MLR model. 

The ordered variable regression (OVR) can easily be performed within any 

statistical package using the following steps. [Although only presented for two 

predictors, the steps can easily be expanded to include any number of predictors. 

In addition, alternative orderings can easily be proposed, considered, and 

compared using the same method.] First, determine the order for considering the 

predictors. This is perhaps the hardest step, but most researchers have little or no 

trouble placing their predictors in some order based on logic, theory, convenience, 

and/or cost considerations. As a consequence, the research questions answered by 

the OVR model are arguably more consistent with real questions than those 

actually answered by the MLR model. For illustration, let X1 be the predictor of 

primary interest. Second, obtain the residuals (X2res) from the regression in which 

X1 is the independent variable and X2 is the dependent variable. The correlation 

between X1 and these residuals will be zero. Thus the entire earlier section when 

the predictors are not related of this article applies. Third, perform the regression 

in which X1 and X2res are the predictors of the response variable Y. The result of 

this regression will be the OVR model expressed in Equation 49. Which will 

produce  

 

  
2 2 2 2

 1 2. 1
Region 1 + Region 4 + Region 2OVR Model Y X X

R b r R      (55) 

 

the R2 value indicated in Equation 32 because  
2

2. 1Y X X
r  is region 2 (from Equation 

33) and  
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  (56) 

 

is region 1 + region 4 from Equations 33 and 37. 
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Numerical Example 

To illustrate the points made in the two sections above for the SLR, MLR, and 

OVR models, and their corresponding results, a numerical example is presented in 

Table 2 for data in which r12 = .469. These results can be found by using the 

regression routine in any of the major statistical computer packages. The 

exception is that a general linear model routine needs to be run in order to obtain 

the sums of squares breakdown information specific to each predictor in the MLR 

and OVR contexts. Due to round off errors in the computation of X2res, the actual 

correlation of X1 and X2res is -5.2E-16 instead of perfect zero. 

At this point, it may seem that the OVR model is nothing more than 

hierarchical multiple regression analysis (HMR) or forward step regression using 

type I sum of squares. It is true that OVR and HMR share a common approach in 

that predictors are entered into the model sequentially and the additive 

contribution of each predictor can be reflected in the type I sum of squares. 

However, OVR differs from HMR in that the additive contribution of each 

predictor is reflected in both the type I sum of squares and the model coefficients. 

This is illustrated in Table 3. Of course, the OVR produces the same model as the 

HMR when predictors are not related.  

It should be noted the concept of [what is referred to in this paper as] OVR 

was proposed by Woolf (1951) as a second method of calculating multiple linear 

regression. The novelty presented here is in the application of OVR as a method 

of regression modeling when faced with multicollinearity; guided by theory, OVR 

can be used to incrementally model the natural relatedness between predictors. As 

a consequence, OVR not only provides an alternative method of dealing with 

multicollinearity in a regression context, but more importantly, it allows the 

evaluation of research questions that assume or hypothesize hierarchical 

relatedness among predictors. 

In summary, when the predictors are related, the coefficients of the SLR, 

MLR, HMR, and OVR models are not equal, but differ from one another in a 

predictable manner based on the amount of the relatedness between the two 

predictors. The data confirmed that the overall summary and test statistics (R2 and 

F) associated with MLR are all inflated in relation to the model by the inclusion 

of the shared variance; as indicated in Equations 35, 45, and 46. In contrast, the 

data showed that these statistics are consistent with the OVR model which does 

included the shared variance. The implications and impacts of the results 

presented in Tables 2 and 3 will hold for any value of the relatedness between 

predictors that is different from zero.  
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Table 2. Comparison of Simple, Multiple, and Ordered Regression when the predictors are related 

 

 SLR(X1) SLR(X2) MLR OVR Comments 

Coefficient 

X1 b1 = .505  c1= .389 .505 b1 = rYX1, b1 ≠ c1, OVR slope = b1, Equations 3, 27, 30, 49 

X2  b1 = .429 
2 .246c   .246 b2 = rYX2, b2 ≠ c2, OVR slope = c2, Equations 4, 27, 30, 49 

Sums of Squares 

X1 18.854  8.753 18.854 Equations 23, 52 

X2  13.592 3.491 3.491 Equations 24, 52 

Model 18.854 13.592 12.244 22.345 MLR (Equation 40), OVR (Equation 54) 

Error 55.146 60.408 51.655 51.655  

Shared   10.101  Equations 41, 42 

Total 74.000 74.000 74.000 74.000 MLR (Equation 39), OVR (Equation 50) 

     For the SS to be additive, MLR must add in SSShared 

R2 Estimates 

X1 .255  .118 .255 MLR (Equation 33), OVR (Equation 6) 

X2  .184 .047 .047 MLR, OVR (Equation 33) 
2

ModelR    .137 .302 MLR (Equation 34), OVR (Equations 35, 55) 
2

SharedR    .165  MLR (Equations 37, 38), OVR is included in the model 

R2   .302  For the R2 to be additive, MLR must add in 2

SharedR  

F Statistics 

FModel   8.533 15.573 MLR (Equation 47), OVR (Equation 46) 

FShared   7.040  MLR (Equation 48) 

F   15.573 15.573 Overall F value, MLR (Equation 46) must include FShared 
 

*Note: r12 = .469, rYX1 = .505, rYX2 = .429, rY(X1.X2) = .344, rY(X2.X1) = .217, n = 75 
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Table 3. Comparison of Hierarchical Multiple Regression, Forward Step Regression, and 

Ordered Variable Regression when predictors are related 
 

 HMR FSR OVR Comments 

Coefficient 

X1 .389 .389 .505 Note that the coefficients produced by 
HMR and FSR are identical to MLR from 
Table 3, but not OVR. X2 .246 .246 .246 

Sums of Squares (Type I) 

X1 18.854 18.854 18.854 

Note that the type I sum of squares 
matches across all models 

X2 3.491 3.491 3.491 

Model 22.345 22.345 22.345 

Error 51.655 51.655 51.655 

Shared    

Total 74.000 74.000 74.000 

R2 Estimates 

X1 .2548 .2548 .2548 

 X2 .0472 .0472 .0472 

2

ModelR  .302 .302 .302 

 

*Note: HMR and FSR models were run using SAS Software 9.3, using PROC REG, GLM and STEPWISE (SAS 

Institute Inc., Cary, NC) 

 
 

Conclusion 

Although there is no agreed upon definition of multicollinearity in the literature, 

the impacts of multicollinearity (or interrelatedness of the predictors) are 

straightforward, as presented in both of the implications and impacts sections of 

this article; regardless of the size of the relatedness. Specifically, when the 

predictors are interrelated, the model coefficients for the SLR models, the MLR 

model, and the OVR model are all different. What is more, the shared 

contribution resulting from the interrelatedness in MLR is included in the overall 

R2 and F, but not in the model coefficients nor in the MLR model itself. However, 

this is not a problem for the OVR model as the same shared contribution is 

included in the R2 and F as well as the model coefficients (and thus the OVR 

model). 
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Although rare, when no interrelatedness exists between the predictors, the 

SLR, MLR, and OVR coefficients and R2 values are all consistent with each other. 

In addition, the MLR and OVR model coefficients, R2 values, and F test statistic 

are all identical. In short, when interrelatedness does not exist between the 

predictors, all three definitions of joint contribution and their corresponding 

models are identical. This is summarized in Table 4. 
 
 
Table 4. Summary of Simple, Multiple, and Ordered Regression when the predictors are 

related (regions of Figure 2) 
 

 SLR Models MLR 
Model 

OVR 
Model 

Comments 
X1 X2 

Coefficients     Shared contribution is 
not included in MLR but 
is included in OVR X1 1,4  1 1,4 

X2  2,4 2 2 

R2 Estimates    

2

ModelR  1,4 2,4 1,2 1,2,4 Shared contribution is 
included in R2 and F for 

MLR, although MLR 
does not contain shared 
contribution. This is not 
a problem for the OVR 

R2 1,4 2,4 1,2,4 1,2,4 

F Statistics   

FModel 1,4 2,4 1,2 1,2,4 

F 1,4 2,4 1,2,4 1,2,4 
 

*Note. The shaded area indicates problems (the impacts) associated with the application of MLR. 

 
 

Multicollinearity defined as the simple relatedness between predictors 

(r12 ≠ 0) is a universal condition that exists within real data unless the predictors 

have been experimentally designed to be independent of each other. Consequently, 

the use of MLR will result in the impacts of multicollinearity as presented in this 

paper to an increasing degree as |r12| increases. Multicollinearity defined as a 

problematic condition that exists once |r12| increases beyond some threshold level, 

still results in the impacts presented in this paper. This second definition of 

multicollinearity is plagued by the need to ascertain a logical, reasonable, and 

appropriate threshold value. Although this is probably the more common of the 

two definitions, it presents the researcher with the hope of zero impact when in 

truth some degree of impact actually does exist (albeit smaller than the threshold 

amount). In either case, MLR results in a model that doesn't include the 

relatedness between the predictors. 

OVR is presented as a method of modeling data when relatedness exists 

between predictors, a common issue in applied research. However, the behavior 



THE GOLDILOCKS DILEMMA 

356 

and generalizability of OVR with regard to other common applied issues, such as 

small sample size and departures of model assumptions, needs to be examined. 

Therefore, an essential next step in the research is to use Monte Carlo simulations 

to evaluate statistical power (of the corresponding F and t tests) and robustness of 

estimation and efficiency of OVR under conditions where asymptotic behavior 

often breaks down. 

When faced with a regression problem with multiple related predictors, a 

researcher is confronted with the Goldilocks dilemma (see Nestrick, 1962). It is 

possible to address the problem from the perspective of the multiple application of 

simple regression (the papa bear solution which over includes the shared variance, 

Equation 25), from the perspective of multiple regression (the mama bear solution 

which doesn't include the shared variance, Equation 34) and from the perspective 

of order variable regression (the baby bear solution which appropriately considers 

the shared variance, Equation 55). 
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