
Journal of Modern Applied Statistical
Methods

Volume 15 | Issue 1 Article 19

5-2016

Estimation of Population Mean Using Exponential
Type Imputation Technique for Missing
Observations
Rajesh Singh
Banaras Hindu University, rsinghstat@gmail.com

Hemant K. Verma
Banaras Hindu University, coolhemant010189@gmail.com

Prayas Sharma
University of Petroleum and Energy Studies, prayassharma02@gmail.com

Recommended Citation
Singh, Rajesh; Verma, Hemant K.; and Sharma, Prayas (2016) "Estimation of Population Mean Using Exponential Type Imputation
Technique for Missing Observations," Journal of Modern Applied Statistical Methods: Vol. 15 : Iss. 1 , Article 19.
DOI: 10.22237/jmasm/1462076280

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol15/iss1/19?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol15%2Fiss1%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 

May 2016, Vol. 15, No. 1, 358-372. 

Copyright © 2016 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Dr. Singh is an Assistant Professor in the Department of Statistics. Email him at: 
rsinghstat@gmail.com. Dr. Sharma, the corresponding author, is a Professor in the 
Department of Decision Sciences, College of Management and Economics Studies. Email 
at prayassharma02@gmail.com. 

 

 

358 

Estimation of Population Mean Using 

Exponential Type Imputation Technique for 

Missing Observations 

Rajesh Singh 
Banaras Hindu University 

Varanasi, India 

 

Hemant K. Verma 
Banaras Hindu University 

Varanasi, India 

 

Prayas Sharma 
University of Petroleum and 

Energy Studies 

Dehradun, India 

 

 
Some imputation techniques are suggested for estimating the population mean when the 
data values are missing completely at random under a simple random sample without 
replacement scheme. Two classes of point estimators are proposed. The bias and mean 
squared error expressions of the proposed point estimators are derived up to first order of 
approximation. It has been shown that the proposed point estimators are more efficient than 
some existing point estimators due to Lee, Rancourt, and Sarndal (1994) and Singh and 
Horn (2000). Theoretical findings are supported by an empirical study based on five 
populations to show the superiority of the constructed estimators and methods of 

imputation over others. 
 
Keywords: Missing data, imputation, bias, mean squared error, simple random 
sampling without replacement 

 

Introduction 

Missing data is a common and serious problem in survey sampling. Missing data 

naturally occurs in sample surveys when a few sampling units refuse to respond or 

are unable to participate in the survey. There are two types of non-responses which 

occur in surveys: unit non-response and item non-response. Unit non-response 

occurs when an eligible sample unit fails to participate in a survey because of failure 

to establish a contact or explicit refusal to cooperate. Item non-response occurs 

instead when a responding unit does not provide useful answers to particular items 

mailto:rsinghstat@gmail.com
mailto:prayassharma02@gmail.com
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of the questionnaire. Such situations create missing data problem. The imputation 

is a well-defined methodology by virtue of which such problems can be unraveled. 

In the literature several imputation techniques are available and discussed. 

Rubin (1976) addressed three concepts: observed at random (OAR), missing at 

random (MAR), and parametric distribution (PD). Rubin defined MAR as the 

probability of the observed missingness pattern, given the observed and unobserved 

data, does not depend on the value of the unobserved data. Heitjan and Basu (1996) 

distinguished the meaning of MAR and missing completely at random (MCAR) in 

a very nice way. The imputation technique is also applicable when information on 

auxiliary variable is available. Lee et al. (1994; 1995) used the information on an 

auxiliary variable for the purpose of imputation, Singh and Horn (2000) suggested 

a compromised method of imputation, Ahmed, Al-Titi, Al-Rawi, and Abu-Dayyeh 

(2006) suggested several new imputation based estimators that use the information 

on an auxiliary variable and compared their performances with the mean method of 

imputation, and Rao and Sitter (1995) used the imputation techniques for variance 

estimation under two phase sampling. Kadilar and Cingi (2008) and Diana and Perri 

(2010) also suggested some imputation techniques in case of missing data. In the 

present study we implicitly assume MCAR. 

Let 

 

 
1

1 N

i

i

Y y
N 

    

 

be the population mean of study variable Y. A simple random sample without 

replacement (SRSWOR), s, of size n is drawn from Ω = {1, 2,…, N} to estimate 

the population mean Y . Let r be the number of responding units out of sampled n, 

then the number of non-responding units is (n − r). Let the set of responding units 

be denoted by R and that of non-responding units be denoted by Rc. For every unit 

i ∈ R, the value yi is observed. However for the units i ∈ Rc, the yi values are 

missing and imputed values are to be derived. We assume that imputation is carried 

out with the aid of a quantitative auxiliary variable x such that, the value of x for 

unit i is xi, known and positive for every i ∈ s. In other words, the data 

xs = {xi : i ∈ s} are known. 

Some Available Methods of Imputation and Estimators 

There are some classical methods of imputation which are commonly used and 

given as follows: 
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Mean Method of Imputation 

In this method of imputation, the study variable y after imputation takes the form 

as 
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y

y i


 


  (1) 

 

and the point estimator of the population mean Y  is given by 

 

 
1

s i

i s
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n 
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Thus, under this method of imputation, the point estimator of the population mean 

Y  is 
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Lemma 1. The expression of Bias and Variance of the point estimator 
my  is 

given as 

 

  Bias 0my    (4) 
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Ratio Method of Imputation 

Following the notations of Lee et al. (1994), in the case of single value imputation, 

if the ith unit requires imputation, the value ˆ
ibx  is imputed. Thus, the study variable 

y after imputation takes the form as 
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Under this method of imputation, the point estimator of the population mean Y  is 

given by 
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Lemma 2. The expression of Bias and Mean Square Error (MSE) of the point 

estimator 
RATy  is given as 

 

    2
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where 
2

yS  is defined as above and 
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Compromised Method of Imputation 

Singh and Horn (2000) proposed compromised imputation procedure. After 

imputation the study variable takes form as 

 

  
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where α is a suitably chosen constant such that the variance of the resultant 

estimator is minimum. Here, we are also using information from imputed values 

for the responding units in addition to non-responding units. 

Thus, under compromised method of imputation, the point estimator of the 

population mean Y  is 

 

  COMP 1 n
r r

r

x
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Lemma 3. The expression of Bias and MSE of the point estimator 
COMPy  is 

given as 
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where opt 1
y

x

C

C
   . Thus 
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Along similar lines, Ahmed et al. (2006) proposed several new imputation 

techniques by introducing some unknown parameters and hence proposed the 

corresponding estimators for estimating the finite population means Y . 

Proposed Imputation Methods and Corresponding 
Estimators 

The following two imputation methods are suggested. After imputation for the first 

proposed imputation of technique, the study variable takes the form as 
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where a, h, and α are suitably chosen constants. We optimize α in such a way that 

the MSE of the resultant estimator is minimum. Thus we have the following 

theorem: 

 

Theorem 1. Under the proposed method of imputation considered in (15), the 

point estimator of the population mean Y  is given as 
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Proof:  
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where R and Rc are the sets of responding and non-responding units in the sample 

s of size n. 

Now putting the values from (15) into (17), the point estimator of population 

is obtained as mean Y  as defined in (16), which completes the proof. 
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Table 1. Members of the class of estimators TP 

 
Estimators Constants 
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Because the point estimator proposed in (16) after imputing the missing 

values, belongs to a class of estimators. Some members of the proposed class of 

point estimator defined in (16) are shown in Table 1 for different choice of a, h, 

and α. 

The study variable after imputation for the second proposed imputation of 

technique becomes 
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where a, h, and α are suitably chosen constants. We optimize α in such a way that 

the MSE of the resultant estimator is minimum. Thus we have the following 

theorem: 

 

Theorem 2. Under the proposed method of imputation considered in (18), the 

point estimator of the population mean Y  is given as 
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where R and Rc are the sets of responding and non-responding units in the sample, 

s, of size n. 

Putting the values from (18) into (20), we get the form of the point estimator 

of population mean Y  as defined in (19), which completes the proof. 

Some members of the proposed class of point estimator defined in (19) are 

shown in Table 2 for different choices of a, h, and α. 

Properties of the Estimators TP and Tg 

To obtain the bias and MSE expressions of the estimators to the first degree of 

approximation, we define 
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Using above terminology, the bias and MSE of the proposed estimators are given 

below. 
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Table 2. Members of the class of estimators Tg 

 
Estimators  Constants 
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Theorem 3. The Bias of the estimator TP is given by 
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and the MSE of the estimator TP is given by 
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where the optimum value of α is given by 

 

 opt

y

x

C
ah

C
    

 

Proof: Expressing the estimator TP in terms of the e’s, we have 
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Taking expectation on both sides, we get the bias expression of estimator TP as 
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To find the MSE of the estimator TP, we have 
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Partially differentiating above equation with respect to α and equating to zero, we 

have 

 

 
   2

2 2

2 2

MSE 1 1 1
2 2 0

P

x y x

T
Y C C C

r N a h ah






   
      

    
  

 

Simplifying the above equation, we get the optimum value of α as 
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Theorem 4. The Bias of the estimator Tg is given by 
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 , (24) 

 

where the optimum value of α is given by 
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Proof: The above theorem can be proved in a similar way to the proof of Theorem 

3. 

Efficiency Comparison 

Estimator TP is more efficient than estimator 
my  if 
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But 

 

 

 2 2 2 2 2

2 2 2

1 1 1 1
1 0

1 1
0

y y

y

Y C Y C
r N r N

Y C
r N





   
       

   

 
  

 

  

 



SINGH ET AL 

369 

since 
1 1

r N
 . Therefore, TP is more efficient than 

my . Similarly, 
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       

  

 

Thus, from the above results, we can say that the estimator TP is more efficient than 

other estimators. 

Empirical Study 

Five populations, A, B, C, D, and E, are considered. Population A is the artificial 

population of size N = 200 from Shukla, Thakur, Pathak, and Rajput (2009), 

population B is from Ahmed et al. (2006), population C is from Dass (1988), 

population D is from Murthy (1967, p. 228), and population E is from Singh, Singh, 

and Kumar (1976, p. 126) with parameters as given in Table 3. 

Let n = 40, r = 35 for population A, n = 200, r = 180 for population B, n = 80, 

r = 72 for population C, n = 23, r = 20 for population D, and n = 6, r = 5 for 

population E respectively. Then the bias and MSE of the proposed point estimators 

are given in Table 4 and Table 5 for populations A, B, C, D and E respectively. 
 
 
Table 3. Parameters for study populations 

 

 Parameters 

Population N Y  X  
2

y
S  

2

x
S  ρ  Cy Cx 

A 200 42.485 18.515 199.0598 48.5375 0.865200 0.37630 0.33210 

B 8306 253.750 343.316 338006.0000 862017.0000 0.522231 2.70436 2.29116 

C 278 39.070 25.110 3199.2400 1660.0200 0.720000 1.44770 1.62260 

D 80 5182.640 285.130 3370161.0000 73129.9400 0.920000 0.35420 0.94840 

E 17 33.290 40.060 287.8600 458.3500 0.720000 0.50970 0.54990 
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Table 4. Biases of estimators 

 
 Populations 

Estimators A B C D E 

m
y  0.0000 0.0000 0.0000 0.0000 0.0000 

RAT
y  0.0051 0.5749 0.0511 19.9568 0.1117 

COMP
y  0.0039 0.2543 0.0328 6.8572 0.0745 

TP(min) -0.0413 -0.9872 -0.8184 -10.3199 -0.3164 

Tg(min) -0.0351 -0.8863 -0.1890 -8.5252 -0.2417 

 
 
Table 5. MSEs of estimators 

 

 Populations 

Estimators A B C D E 

m
y  4.6921 1837.1169 32.9258 126381.0375 40.6391 

RAT
y  4.2110 1867.2341 31.3361 175668.0261 36.9018 

COMP
y  4.1599 1785.9043 30.6224 107777.7488 35.6648 

TP(min) 1.1798 1336.0843 15.8571 19412.1274 19.5718 

Tg(min) 2.8938 1387.2968 18.9807 38015.4161 24.5460 

 
 

Tables 4 and 5 exhibits the bias and MSE of different point estimators and it 

has been observed from the tables that the estimators based on auxiliary information 

are more efficient than the one which does not use the auxiliary information such 

as 
my  to overcome the imputation problems. Both the proposed classes of 

estimators TP and Tg are more efficient than the estimators, 
my , 

RATy  and COMPy , 

scrupulously, TP has minimum MSE among all the estimators considered here. 

Conclusion 

Two imputation techniques are suggested using auxiliary information followed by 

two class of estimators for estimating the population mean in case of data values 

are MCAR under a SRSWR scheme. In addition, some new members are also 

generated from two proposed class of estimators using the suitable values of 

constants. The minimum biases and mean square errors of the proposed class of 

estimators were determined up to the first order of approximation. It was 

established theoretically and empirically that the proposed class of estimator 

performs best among the other estimators considered, and consequently the 
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corresponding (first proposed) method of imputation is better than the other existing 

methods and may be recommended for further use. 
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