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Compound identification is often achieved by matching the experimental mass spectra to 
the mass spectra stored in a reference library based on mass spectral similarity. Because 

the number of compounds in the reference library is much larger than the range of mass-
to-charge ratio (m/z) values, so that the data become high dimensional data suffering from 
singularity. For this reason, penalized linear regressions such as ridge regression and the 
lasso are used instead of the ordinary least squares regression. Furthermore, two-step 
approaches using the dot product and Pearson’s correlation along with the penalized linear 
regression are proposed in this study. 
 
Keywords: Compound identification, mass spectral similarity, metabolomics, 

penalized linear regression 

 

Introduction 

One of the critical analyses on GC-MS data is compound identification, and it is 

often achieved by matching the experimental mass spectra to the mass spectra 

stored in a reference library based on mass spectral similarity (Stein & Scott, 1994). 

To improve the accuracy of compound identification, various algorithms measuring 

mass spectral similarity scores have been developed, such as dot product (Tabb, 

MacCoss, Wu, Anderson, & Yates, 2003; Beer, Barnea, Ziv, & Admon, 2004; 

Craig, Cortens, Fenyo, & Beavis, 2006; Frewen, Merrihew, Wu, Noble, & 
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MacCoss, 2006), composite similarity (Stein & Scott, 1994), probability-based 

matching system (Atwater, Stauffer, McLafferty, & Peterson, 1985), Hertz 

similarity index (Hertz, Hites, & Biemann, 1971), normalized Euclidean distance 

(L2-norm) (Rasmussen & Isenhour, 1979; Stein & Scott 1994; Julian, Higgs, Gygi, 

& Hilton, 1998), absolute value distance (L1-norm) (Rasmussen & Isenhour, 1979; 

Beer et al., 2004), Fourier and wavelet-based composite similarity (Koo, Zhang, & 

Kim, 2011), and mixture partial and semi-partial correlation measures (Kim et al., 

2012). 

Because some compounds have mass spectral information that is similar to 

that of other compounds, an experimental query spectrum of these compounds is 

often matched to multiple mass spectra in the reference library with high similarity 

scores, impeding the high confidence compound identification. That is, the mass 

spectral similarity score of a true positive pair does not always have the top ranked 

score, and it is instead ranked as the second- or the third-highest similarity score 

with an ignorable difference from the top-ranked score. 

In order to avoid the aforementioned issue, Kim et al. (2012) developed a 

novel similarity measure using partial and semi-partial correlations. The partial 

correlation can be seen as the pure relationship between two random variables after 

adjusting the effect of other random variables. On the other hand, the semi-partial 

correlation eliminates the effect of a fraction of other random variables, just 

adjusting the effect of one random variable from a total of two random variables. 

When it comes to compound identification, these partial and semi-partial 

correlations can be applied to calculate the mass spectral similarity score. By 

removing the effect of other mass spectra over the two mass spectra of interest, the 

unique relationship between the mass spectra can be extracted. Using partial and 

semi-partial correlations can obtain high accuracy of compound identification. 

Indeed, Koo, Kim, and Zhang (2013) recently compared among existing spectral 

similarity measures in terms of compound identification and concluded that mixture 

semi-partial correlation measure outperforms others. However, the performance of 

this method suffers from expensive calculation because the data are ultra-high-

dimensional, which propels us to search for an alternative for compound 

identification. 

Another way for compound identification is to use the multiple ordinary linear 

regression-based methods. In the context of linear regression, the response variable 

is an experimental mass spectrum (i.e., query) and all the compounds in the 

reference library are the independent variables. Each regression coefficient reflects 

the strength of their relationships with the response variable, so we could match the 

experimental compound with the reference compound which shows the strongest 
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connection. In particular, the coefficients of the multiple ordinary linear regressions 

are proportional to the semi-partial correlation coefficient, meaning that both 

methods will give us the same result if the maximal coefficient is considered only. 

In other words, the ordinary linear regression is a great alternative to the semi-

partial correlation-based compound identification. 

However, it is not feasible to apply ordinary linear regression in compound 

identification for two reasons. First, our data are high-dimensional data. The size 

of a reference library is much larger than the range of mass-to-charge ratio (m/z) 

values, and the number of variables becomes much larger than the number of 

samples so that the ordinary linear regression will suffer from singularity. Second, 

it is possible that different compounds have identical mass spectra, such as isomers. 

Note that isomers are compounds with the same molecular formula but different 

chemical structures. Because of the existence of isomers, several predictors are 

highly correlated to each other so that their correlation coefficients become almost 

one. This also causes ordinary linear regression to suffer from singularity. 

In order to elude this difficulty, a penalized linear regression is introduced for 

the compound identification. Penalized linear regression can deal with high-

dimensional data, and it is a trade-off between unbiasedness and a smaller 

estimation variance by putting a penalty constraint on coefficients. Different types 

of constrains will result in the lasso and ridge regression, which have L1-norm and 

L2-norm penalties, respectively. To improve the performance of penalized linear 

regression, two-step approaches are introduced using widely used mass spectral 

similarity scoring methods, either dot product or Pearson’s correlations as the first 

step, and then penalized linear regression as the second step. Using the NIST mass 

spectral library, the performance of the proposed penalized linear regression 

approaches and two-step approaches with the dot product and Pearson’s correlation 

are compared in terms of the accuracy of compound identification. 

Methodology 

Mass spectrum matching-based compound identification is achieved by matching 

the experimental mass spectra to the mass spectra stored in a reference library based 

on mass spectral similarity. In other words, all pairwise similarity scores between 

an experimental mass spectrum and each of the library mass spectra are first 

calculated. The compound whose library mass spectrum has the highest mass 

spectral similarity score is considered as the most probable compound that 

generated the experimental mass spectrum. Each mass spectrum is composed of 
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m/z values and their intensities. The intensities are used for calculation of the 

spectral similarity scores. 

In this study, the spectral similarity between experimental mass spectrum and 

each of the reference spectra is calculated. A reference compound is considered as 

the compound given rise to the experimental spectrum if its reference spectrum has 

the best similarity with the experimental spectrum. The following methods are 

applied to calculate the similarity scores between the experimental mass spectrum 

and each of the reference spectra: 

Dot Product 

The dot product, which is also known as the cosine correlation (Stein & Scott, 1994), 

was used to obtain the cosine of the angle between two sequences of intensities, 

x = (xi)i = 1,…, n and y = (yi)i = 1,…, n. It is defined as 
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 x . We calculate the dot product of mass 

spectra for each experimental compound and each reference compound, and a 

greater value of S in (1) indicates a higher chance that the reference compound is 

the compound that generated the experimental mass spectrum. 

Ridge Regression 

Ridge regression is a shrinkage method which imposes a penalty on the size of 

regression coefficients. The ridge coefficients minimize a penalized residual sum 

of squares, 
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where p is the number of variables (e.g., compounds or metabolites), N is the 

number of observations (e.g., intensities or m/z values), and λ ≥ 0, which is a 

complexity parameter and controls the amount of shrinkage. A larger value of λ 

results in a great amount of shrinkage. The coefficients are shrunk toward zero (and 
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each other) (Hastie, Tibshirani, & Friedman, 2009). A well-known equivalent 

method is to solve the following problem, which makes the size constraint on the 

parameters explicit: 
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 . Note that there is a one-to-one correspondence between the 

parameters λ and t. 

For ridge regression, we can also write the above criterion in matrix form, the 

ridge regression can be easily solved as 

 

  
1
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 X X I X y   (4) 

 

where I is the p × p identity matrix. In our case, p ≫ N, so use the singular-value 

decomposition of X, X = UDVT = RVT to calculate the coefficients, where V is 

p × N with orthonormal columns, U is N × N orthogonal, and D is a diagonal 

matrix with elements d1 ≥ d2 ≥⋯≥ dN ≥ 0. The matrix R is N × N with rows ri
T. 

Replacing X by RVT, we have 

 

  
1
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 V R R I R y  . (5) 

The Lasso 

The lasso (Least Absolute Shrinkage and Selection Operator), which was first 

proposed by Tibshirani (1996), is a shrinkage method like ridge, but it has subtle 

and important differences from the ridge regression. The lasso is a penalized least 

squares procedure that minimizes residual sum of squares (RSS) subject to the non-

differentiable constraint expressed in terms of the L1 norm of the coefficients 

(Kyung, Gill, Ghosh, & Casella, 2010). That is, the lasso estimator is given by 
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This L1 norm constraint makes the solutions nonlinear in the yi, resulting in no 

analytical solution different from ridge regression. 

Two-Step Approach 

To maximize the performance of compound identification and also reduce the data 

dimensionality, the two-step approaches are proposed by combining the dot product, 

Pearson’s correlation, and penalized linear regression. In this procedure, the first 

step is made to precede the first match. Then, select a certain amount of the best 

matches based on the result of the first step and use them to conduct the second step 

which is penalized linear regression. 

 

Dot product and lasso/ridge regression 

 

In this two-step approach, after calculating the dot product of mass spectra for all 

experimental mass spectra and reference mass spectra, rank the results of dot 

product and choose N reference compounds with top N largest dot product values. 

Then conduct the lasso or ridge regression with only these N reference compounds. 

The flowchart is shown in Figure 1. 

 

Pearson’s correlation and lasso/ridge regression 

 

In this case, after calculating the Pearson’s correlation coefficients of an 

experimental spectrum and all reference spectra, sort the correlation coefficients in 

descending order and calculate their (1 – α)% confidence intervals. Then, check if 

there is overlap between two adjacent intervals from the top compounds and stop 

at the Nth compound, if there is no overlap between the Nth interval and (N + 1)th 

interval. By doing so, select N reference compounds and then conduct the 

lasso/ridge regression only with these N reference compounds. Figure 2 shows the 

flow chart. 
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Figure 1. Workflows of the proposed two-step approach using dot product 

 

 
 

 
 
Figure 2. Workflows of the proposed two-step approach using Pearson’s correlation 

along with the lasso/ridge regression 

 

Data 

The National Institute of Standards and Technology (NIST) Chemistry WebBook 

service provides users with chemical and physical information for chemical 

compounds, including mass spectra generated by electron ionization mass 

spectrometry (Linstrom & Mallard, 2001). The mass spectra recorded in the NIST 

main mass spectrometry database and repetitive database were used as the reference 

mass spectra and experimental mass spectra, respectively. For our reference library, 

the mass spectra of 2739 compounds were extracted from NIST Chemistry 

WebBook database. The fragment ion m/z values ranged from 1 to 1036 with a bin 

size of 1. The experimental library contains 1530 mass spectra of compounds 
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extracted from the repetitive database. Because it was assumed the NIST library 

has the mass spectrum information for all the experimental compounds, all the 

compounds that were not present in the NIST main library were removed from the 

repetitive library. 

Performance Evaluation 

Each compound in the NIST database was assigned to a unique Chemical Abstract 

Service (CAS) registry number. To evaluate the performance of compound 

identification of each similarity measure, calculate the identification accuracy. The 

accuracy is the proportion of the spectra identified correctly in query data. In other 

words, if a pair of unknown and reference spectra have the same CAS index, we 

consider this pair as the correct match and if otherwise as the incorrect match. Then 

by counting all the correct matches, the accuracy of identification can be calculated 

by 

 

 
number of spectra matched correctly

accuracy
number of spectra queried

   (7) 

Software 

All the statistical analyses are performed using statistical software R version 2.15.3. 

The comparison of ridge regression and the lasso is performed by the R package 

glmnet. 

Results 

The penalized regressions, lasso and ridge regression, were conducted using R 

package glmnet to compare the identification results. In order to find a proper range 

of the shrinkage factor λ, the shrinkage factor was initially varied widely from 

0.0001 to 1000000 and accuracy was calculated for each method. Figure 3(a) shows 

accuracy along with different shrinkage factor values for these two penalized linear 

regressions. The accuracy trend for the lasso is very different from that of ridge 

regression. For larger values of λ, accuracy tends to be a constant for each 

regression. However, accuracy for the lasso tends to be zero, while the ridge 

regression levels off at 89.20%. Based on this analysis, the shrinkage factors ranged 

from 0.10 to 5000 were focused on and then applied the lasso and ridge regression, 

respectively, to further check the specific trends of each regression. 
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Figure 3. Accuracy vs. shrinkage factor λ. Plot (a) is for the lasso and ridge regression 

using the wide range of λ. Plots (b) and (c) are for the ridge regression and lasso, 
respectively, using the smaller range of λ. 
 

 

The Lasso 

After conducting the lasso regression between query data and reference data with 

100 different shrinkage factors λ (range from 0.10 to 5000), correct matches and 

accuracy were calculated. Figure 3(c) displays the change of accuracy 

corresponding to different shrinkage factor values. After a further check, the best 

accuracy for the lasso is 91.50% when λ = 4646.47. This accuracy is higher than 

the highest accuracy from ridge regression. 
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Two-Step Approach 

Dot product and the lasso/ridge regression 

 

The two-step approach, dot product and the lasso/ridge regression were performed 

to optimize the performance of compound identification, and to find the 

relationship between accuracy and different rank levels as well as λ values. A total 

of 12 different rank levels ranging from 25 to 300 were chosen. For λ, 100 values 

ranging from 0.10 to 5000 were used, which is the same with the identification 

using the lasso and ridge regression. Table 1 lists the analysis results. The results 

for this two-step approach are not so clear to interpret, so a contour plot (Figure 4) 

is used to show the relationship among accuracy, rank levels, and shrinkage factors 

for both the lasso and ridge regression. 

In Figure 4, the green color indicates relatively low accuracy, while white and 

pink indicate relatively high accuracy. The highest accuracy, 90.20%, appears at 

rank level = 25 and λ = 0.10, which is shown as a red point in the left plot of Figure 

4. The other four red points in the left plot of Figure 4 also have relatively high 

accuracy. Comparing with ridge regression only, we can see that this two-step 

approach performs better than the ridge regression only (accuracy = 90.20% vs. 

89.74%). In general, we can also see the following trend: when the shrinkage factor 

(λ) increases, the corresponding rank needs to be increased in order to achieve better 

identification accuracy. 
 
 
Table 1. Top 5 best accuracies and corresponding shrinkage factors for the dot product 
and the lasso/ridge regression 
 

Method Rank 
Shrinkage 

factor (λ) 
Number of 

query 

Number of 
correct 

matches Accuracy 

Dot 
Product 

and Ridge 

25 0.10 1530 1380 90.20% 

100 202.12 1530 1380 90.20% 

100 303.12 1530 1380 90.20% 

250 505.14 1530 1380 90.20% 

275 555.64 1530 1380 90.20% 

      

Dot 
Product 

and Lasso 

200 3838.41 1530 1395 91.18% 

300 1363.71 1530 1395 91.18% 

300 1414.21 1530 1395 91.18% 

300 1464.72 1530 1395 91.18% 

300 1515.22 1530 1395 91.18% 
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Figure 4. Accuracy of two-step approach using dot product and ridge (left) and the lasso 

regression (right) 

 

 

The right plot of Figure 4 displays the relationship among accuracy, rank 

levels, and λ values for the two-step approache using the dot product and the lasso 

regression. The highest accuracy 91.18% appears at rank level = 200 and 

λ = 3838.41, which are shown as a red point in the plot. Comparing to the 

identification using the lasso only, this two-step approach has no improvement in 

accuracy, which is different from the two-step approach using ridge regression. 

 

Pearson’s correlation and the lasso/ridge regression 

 

For the Pearson’s correlation and penalized linear regression two-step approach, 

we intend to find the relationship among accuracy, different confidence levels, and 

λ values. The α levels of 0.01, 0.025, 0.05, and 0.1 were chosen, along with 100 

shrinkage factor (λ) values ranging from 0.10 to 5000. The top 5 highest accuracies 

and corresponding shrinkage factors are shown in Table 2. 

The best accuracies for this two-step approach using the lasso and ridge all 

appear at α = 0.1, which are 89.41% (ridge regression) and 77.91% (the lasso). 

However, in this two-step approach, the lasso regression does not seem as good as 

the ridge regression. The contour plots are shown in Figure 5. 

The relationship of accuracy, α levels, and λ values in this two-step approach 

seems much clearer. In the left plot of Figure 5, when the shrinkage factor (λ) is 

greater than a certain value (around 300), it does not influence the accuracy so much. 
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The red points, which indicate the best accuracies, all appear at α=0.1, making a 

red vertical line. 
 
 
Table 2. Top 5 best accuracies and corresponding shrinkage factors for Pearson’s 

correlation and the lasso/ridge regression 
 

Method α 

Shrinkage 
factor (λ) 

Number of 
query 

Number of 
correct 

matches Accuracy 

Dot 
Product 

and Ridge 

0.1 101.11 1530 1368 89.41% 

0.1 353.63 1530 1368 89.41% 

0.1 404.13 1530 1368 89.41% 

0.1 454.64 1530 1368 89.41% 

0.1 505.14 1530 1368 89.41% 

      

Dot 
Product 

and Lasso 

0.1 0.10 1530 1192 77.91% 

0.1 50.60 1530 1192 77.91% 

0.1 101.11 1530 1192 77.91% 

0.1 151.61 1530 1192 77.91% 

0.1 202.12 1530 1192 77.91% 

 
 

 
 
Figure 5. Accuracy of two-step approach using Pearson’s correlation and ridge (left) and 

the lasso regression (right) 

 

 

The relationship among accuracy, α levels, and λ values in Pearson’s 

correlation and the lasso two-step approach is similar to that when ridge regression 

is used, as can be seen in the right plot of Figure 5. As in the two-step approach 
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using ridge regression, the red points all appear at α=0.1, which make a red vertical 

line. The selection of λ value does not influence the accuracy, although it is clear 

that a greater α level results in higher accuracy. 
 
 
Table 3. Compound identification methods and their performance. 

 
Method Lambda Rank (Alpha) Accuracy (%) 

Dot Product -- -- 89.54 

Pearson’s Correlation -- -- 89.54 

Ridge 1363.71 -- 89.74 

Lasso 4646.47 -- 91.50 

Dot Product and 
Ridge 

0.10 25.0 90.20 

Pearson’s Correlation 
and Ridge 

353.63~858.67 0.1 89.41 

Dot Product and 
Lasso 

3838.41 200.0 91.18 

1363.71~1515.22 300.0  

Pearson’s Correlation 
and Lasso 

0.10~960.00 0.1 77.91 

 

The Best Performance 

The performance of four compound identification methods involving penalized 

linear regression were tested. In addition, previously widely used methods were 

included. Table 3 shows these new methods and their best performance (accuracy), 

including the corresponding shrinkage factor (λ) value, rank selection (for dot 

product and the lasso/ridge regression two-step approach), and alpha selection (for 

Pearson’s correlation and the lasso/ridge regression two-step approach). The 

performance of the dot product and Pearson’s correlation in compound 

identification are also listed. Overall, the lasso only performs the best among other 

approaches (accuracy = 91.50%, line 4 in Table 3). 

Conclusion 

New approaches for compound identification were proposed using penalized linear 

regressions, and further two-step approaches are introduced. In particular, an 

alternative to the semi-partial correlation-based approach using multiple linear 

regressions was pursued. 

From the results using a small data set, it can be seen that the lasso achieves 

the highest accuracy of compound identification, which is 91.50% with λ of 4646.5, 
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resulting in 1% greater accuracy than that of the dot product. Nevertheless, the 

accuracy for the lasso is highly related to the selection of shrinkage factor λ, so we 

have to tune up the shrinkage factor, such as using cross-validation, when using the 

lasso for compound identification. This additional work will result in a longer 

calculation time. Although ridge regression shows a worse accuracy than the lasso, 

its property that accuracy becomes constant after a certain λ value makes the ridge 

regression a better choice in terms of computational expense. In addition, the two-

step approach using the dot product and the lasso has accuracy 91.18 %, which is 

similar to that of the lasso only. Because the dot product reduces the size of library, 

the following lasso regression becomes much inexpensive that the lasso regression 

only in terms of computational time. In this regard, this method could be a best 

alternative to the lasso regression only to achieve a higher accuracy. 

Furthermore, the same data used here were applied to the mixture semi-partial 

correlation approach with the mixture weight of 0.7 and the rank of 100 (Kim et al. 

2012), resulting in a slightly better performance than that of the lasso only with 

92.9% of identification accuracy. Although the two-step approach using Pearson’s 

correlation and the lasso/ridge regression has no improvement in identification 

accuracy, it shows that the shrinkage factor selection has no effect upon the 

accuracy of compound identification, which means that there should be no concern 

about the selection of shrinkage factors. 
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