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Impact of Serial Correlation Misspecification 
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Linear mixed models are popular models for use with clustered and longitudinal data due 
to their ability to model variation at different levels of clustering. A Monte Carlo study was 
used to explore the impact of assumption violations on the bias of parameter estimates and 
the empirical type I error rates. Simulated conditions included in this study are: simulated 

serial correlation structure, fitted serial correlation structure, random effect distribution, 
cluster sample size, and number of measurement occasions. Results showed that the fixed 
effects are unbiased, but the random components tend to be overestimated and the 
empirical Type I error rates tend to be inflated. Implications for applied researchers were 
discussed. 
 
Keywords: Longitudinal, simulation, linear mixed model 

 

Introduction 

Linear mixed models (LMM) have become much more prominent in educational 

research over the past couple decades, where they are commonly known as 

hierarchical linear models (HLM) (Raudenbush & Bryk, 2002) or multilevel 

models (Goldstein, 2010). The mixed portion in the linear mixed model indicates 

that the model has both fixed and random effects present in the model. These 

models have become more widely used for a couple of reasons: 1) the 

advancements in computing which allow for easier and quicker estimation, 2) the 

notice of the need to model the hierarchical or nested nature of the data, and 3) 

handles unbalanced data/designs well without any additional work. A few common 

data collection settings in education where LMM are used include: students nested 

within classrooms or students nested within schools. For some additional examples 

of how these models are used in education see Bryk and Raudenbush (1987) and 

Raudenbush (1988). 
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Research Problem 

In longitudinal studies, the repeated measures for the same person are likely to be 

more similar due to the fact that the same person is being measured multiple times 

on the same measurement scale (Littell, Henry, & Ammerman, 1998). The multiple 

measurements brings about a dependency due to repeated measurements, or 

alternatively, there is less information available as the measurement occasions 

within an individual are correlated. This dependency can be accounted for in the 

LMM by specifying random effects at the cluster level, the level one covariance 

matrix, or a combination of the two. In most cases, researchers allow the random 

effects to account for the dependency due to repeated measures and assume that the 

variance is the same across the observations with no correlation between the 

observations (e.g. the correlation between observation one and observation two is 

zero) at level one. This level one structure is often called an independence structure. 

For certain repeated measures designs, especially when the repeated measures are 

collected close in time or correlations among the repeated measures do not decay 

quickly, random effects alone may not adequately account for the dependency due 

to the repeated measures and a more complex covariance structure at level one may 

be needed (Browne & Goldstein, 2010; Goldstein, Healy, & Rabash, 1994). 

Unfortunately, few simulation studies have looked at these implications 

(Ferron, Dailey, & Yi, 2002; Kwok, West, & Green, 2007; Murphy & Pituch, 2009) 

in a LMM framework. The current study looks to add to this literature by exploring 

possible implications of misspecifying the level one covariance structure using a 

computer simulation. The primary question of interest will be the extent to which 

the misspecification of the variance matrix for the repeated measures biases the 

parameter estimates (and ultimately inferences as well) for the fixed and random 

portion of the LMM. Interactions to other assumption violations will also be 

explored. 

The Model 

A basic linear mixed model can be written as follows: 

 

 ij ij ij j ij  Y X β Z b e   (1) 

 

In this model, the Yij is the response variable for the ith level 1 unit nested within 

the jth level 2 unit. Next is the Xij, which is an ni × p matrix of covariates in the 

model (also known as the design matrix) where ni is the total number of 

observations for every individual and p is the number of covariates. This matrix 
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includes covariates at both level 1 and level 2 as well as covariates that are 

aggregated over the level 1 units. The β in the model is a p × 1 vector representing 

the fixed effects. Next is the Zij which is the design matrix for the random effects. 

This term is commonly formed from a subset of the columns of Xij. The bj are the 

random effects and are unique for each level 2 unit but are the same for each level 

1 unit within a given level 2 unit. The random effects represent the deviation of the 

jth subject from the group or average growth curve. Finally, the eij are the level 1 

residuals (i.e. measurement or sampling error) similar to simple linear regression. 

These represent deviations from the individual growth curves. 

This model can also be expressed in matrix form: 

 

 j j j j j  Y X β Z b e   (2) 

Model Assumptions 

Just like any statistical model, there are model assumptions that need to be satisfied 

(at least approximately) in order for parameter estimates and inferences to be 

unbiased. The model assumptions for the LMM are as follows (Raudenbush & Bryk, 

2002): 

 

1. The random effects bj are independent across level 2 units, normally 

distributed (multivariate normal when more than one random effect is 

in the model), and each has a mean of 0 and a covariance matrix G. 

This can be succintly written as: bj ∼ iid N(0, G). 

2. Each of the eij are independent and follow a normal distribution with 

mean 0 and variance σ2 for every level 1 unit within level two. This 

can be summed up as: eij ∼ iid N(0, σ2). 

3. The eij are independent of the random effects. 

 

The models considered in this paper are assumed to have a continuous 

response variable with at least an interval scale of measurement and the within 

individual errors (i.e. level one errors) are assumed to be approximately normally 

distributed. 

Violation of Model Assumptions 

Simulation studies that have data conditions similar to longitudinal data have found 

little evidence of parameter bias in the fixed or random effects when the random 

effect distributions are non-normal. However, these studies have reported 
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confidence intervals for the variance of the random effects with poor coverage 

when the random effect distributions are not normal, specifically chi-square with 

one degree of freedom and Laplace distributions (Maas & Hox, 2004a; 2004b). This 

suggests that the standard errors are underestimated for the variance components of 

the random effects. 

Sample size considerations for the LMM is an important consideration when 

planning a study. This is especially true since maximum likelihood is asymptotic 

and require large sample sizes for proper estimation (Maas & Hox, 2004a). 

Typically, the highest level sample size is of most concern as there are fewer 

numbers at this level (Maas & Hox, 2004a). This issue is commonly exacerbated 

for longitudinal studies as the level 1 sample size tends to also be small (i.e. few 

observations per subject); where 10 observations per subject is considered large 

(Snijders & Bosker, 1993). Unfortunately, there have been few studies that have 

studied small level 1 sample sizes commonly found in longitudinal studies. 

Simulation studies that have looked at the sample size needed for unbiased 

estimates for the parameters in general have not found any problems with 

estimating the fixed effects at level 1 or level 2 (Maas & Hox, 2004a; 2005b; 2005; 

Browne & Draper, 2000). Additionally, the standard errors for the fixed effects are 

generally estimated accurately with at least 30 groups (Maas & Hox, 2004a; 2005). 

Covariance Structures 

The variance structure for the response variable is an important aspect of the LMM; 

this is where the dependency due to the repeated measures is taken into account. 

The equation for the variance of the response variable is 

 

     T 2

1Var j j j j j e n j    Y Σ Σ Z GZ I   (3) 

 

As can be seen from the above equation, the variance is composed of two portions, 
T

j jZ GZ  is the portion of the variance that is accounted for by the random effects 

and the 
2

1e n j I  is the portion that is accounted for by the level 1 error. 

Commonly, researchers choose a simple level 1 error structure. The most 

common structure specified by researchers assumes homogeneity of variance with 

no correlation between the time points, known as the independence structure. An 

example of such a matrix with four time points is as follows: 
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where 2

e  represents a common variance across the four time points. 

Complex variance structures can be achieved by including multiple random 

effects (e.g. random effects for intercept, time, time2, etc.) and specifying a 

complex level one error structure. For example, if a researcher fits a model with a 

random effect for intercept and an independence level one error structure. The 

covariance structure for the model would look as follows (assuming four time 

points): 
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  (5) 

 

Here 2

e  represents the error variance and g11 represents the variance of the random 

intercepts. As can be seen from (5) above when a random intercept is included in 

the model and an independence structure is assumed at level one, the covariance 

structure follows a compound symmetry structure (which is what is assumed by 

RM-ANOVA). Although this structure is not very complex and likely not 

justifiable for many longitudinal studies, adding more random effects (i.e. a random 

effect for time) or specifying a more complicated level one error structure (e.g. first 

order autoregressive, toeplitz, etc.) would produce a more complex covariance 

structure. 

With the inclusion of more complicated error terms, it can be helpful to 

include additional notation for the level one residual to separate random error and 

serial correlation denoted as ej = e(1)j + e(2)j. Here e(1)j represents random error and 

e(2)j represents serial correlation. Serial correlation can be thought of as a random 

process of an observed profile within an individual that usually decreases as the 

time lag increases (Diggle, 2002). More simply, serial correlation represents the 

correlation between two observations on the same individual that depends solely 

on the time lag between the observations. Explicitly showing the serial correlation 
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and random error separately in the variance of the response variable leads to the 

following expression: 

 

     T 2 2

1Var j j j j j e n j j      Y Σ Σ Z GZ I H   (6) 

 

Different from (3) above, serial correlation is explicitly shown as τ2Hj, where Hj is 

an nj × nj matrix where the (j, k)th element is the correlation between two time 

points within an individual. 

Most researchers when using a LMM tend to assume the level one residual 

structure follows an independence structure without taking into account the type of 

data (i.e. cross sectional or longitudinal data). This may be chosen due to the 

parsimonious nature of the independence model or the researcher believes that 

including more random effects adequately accounts for the dependency due to 

repeated measures. However, the following question must be asked, after removing 

the variation due to the random effects are the within individual residuals 

independent from one another within an individual (Browne & Goldstein, 2010)? 

In other words, conditional on the random effects, is it tenable to assume that the 

within individual residuals are independent? This assumption may not hold in some 

data situations, especially if the time between observations is very short (i.e. daily 

or weekly observations) or if the correlation between observations does not 

decrease very quickly (Browne & Goldstein, 2010; Goldstein et al., 1994). If the 

level one residuals are not independent of one another, then the level one structure 

takes a form similar to time series models. See Box and Jenkins (1976) to explore 

time series models. 

Misspecification of the Covariance Structure 

There was quite a bit of interest earlier in the history of the LMM on adequately 

modeling the covariance structure (Chi & Reinsel, 1989; Diggle, 1988; Goldstein 

et al., 1994; Keselman, Algina, Kowalchuk, & Wolfinger, 1998; 1999; Núñez-

Antón & Zimmerman, 2000; Wolfinger, 1996). However, only recently have 

simulation studies started exploring the impact of misspecification of the level one 

residual structure (Ferron et al., 2002; Kwok et al., 2007; Murphy & Pituch, 2009). 

Kwok et al. (2007) defined three useful terms to use when talking about 

misspecification of the covariance structure: underspecified, overspecified, and 

general-misspecification. An underspecified covariance structure (US) occurs 

when the specified matrix is simpler but nested within the true covariance matrix 

(e.g. compound symmetry is chosen but the true structure is AR(1)). An 
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overspecified covariance structure (OS) occurs when the specified matrix is more 

complex than the true covariance matrix but the true covariance matrix is nested 

within the specified matrix (e.g. ARMA(1, 1) structure chosen but AR(1) is the true 

structure). Lastly, general-misspecification (GS) occurs when the specified and true 

covariance matrices are not nested (e.g. TOEP(2) structure chosen but AR(1) is the 

true structure). 

Simulation studies have found little to no bias for fixed effect estimates, 

however there is evidence of bias in the estimates for the standard errors of the fixed 

effects (Ferron et al., 2002; Kwok et al., 2007; Murphy & Pituch, 2009). When the 

covariance structure was US or GS the standard errors for the within-individual 

intercept and slope were overestimated (Kwok et al., 2007). Not suprisingly, the 

bias in the variance components can be quite substantial when the covariance 

structure is ignored. If the covariance structure was US or GS 
00̂  and 

11̂  were 

overestimated (Ferron et al., 2002; Kwok et al., 2007); OS covariance structures 

produced the smallest estimates for 
00̂  and 

11̂  (Kwok et al., 2007). As a result of 

the overestimated 
00̂  and 

11̂ , 
2̂  tended to be underestimated to compensate 

(Ferron et al., 2002). Murphy and Pituch (2009) even found that the variance 

components are biased even when the correct covariance structure was modeled. 

These results produced the following general guidelines: if the researcher is 

only interested in estimates of the fixed effects (i.e. group level estimates) then the 

researcher may not need to model the covariance structure. However, if the 

researcher is interested in the variance components, individual growth curves, 

inferential statisics, or model predictions the researcher should explore alternative 

structures for the level one covariance structure (Ferron et al., 2002; Kwok et al., 

2007; Verbeke & Molenberghs, 2000). 

Selecting a Covariance Structure 

In most cases when researchers use a LMM, they are interested in doing more than 

just looking at the fixed effect estimates and some care should be taken to select a 

covariance structure. However there are no strong descriptive or hypothesis testing 

procedures to detect serial correlation. The few studies that have explored methods 

of selecting and detecting serial correlation have found it difficult to empirically 

select the correct structure (Ferron et al., 2002; Keselman et al., 1998). Another 

study by Verbeke and Molenberghs (2000) showed that including the serial 

correlation regardless if it is correctly modeled, is more important than correctly 

modeling the serial correlation. 
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There are alternative criteria that can be used for selecting the best covariance 

structure based on the data, these are: Akaike’s Information Criterion (AIC), 

Schwartz’s Bayesian Criterion (SBC), or a likelihood ratio test (LRT). Ferron et al. 

(2002) found that the AIC on average identified the correct structure about 79% of 

the time. The SBC and LRT identified the correct model less frequently, on average 

66% and 71% of the time respectively. However, the variability in correct 

identification was very large, the AIC ranged from 7% to 100%.  Increasing the 

number of time points, increasing the sample size, and higher levels of 

autocorrelation improved correct identification (Ferron et al., 2002). In contrast to 

Ferron et al. (2002), Keselman et al. (1998) found that the AIC or SBC were only 

able to correctly identify the covariance structure 47% and 35% of the time 

respectively. The large variability and conflicting results leaves uncertainty in how 

the researcher should proceed when they desire a test to help decide if serial 

correlation is present and should be modeled. 

Methodology 

A factorial research design was used for the computer simulation study. Previous 

simulation work (Ferron et al., 2002; Kwok et al., 2007; Murphy & Pituch, 2009) 

have assessed covariance misspecification under perfect model conditions (i.e. 

normally distributed random effects and residuals); however, a classic study by 

Micceri (1989), showed that real world data are rarely normally distributed and can 

deviate quite substantially from a normal distribution. Therefore, simulating 

conditions more representative of real world data can help inform researchers to the 

robustness of the estimation algorithm, specifically under small sample size 

conditions. In addition, missing data tends to be the rule rather than the exception 

for longitudinal data where the likelihood of missing data commonly increases as 

time increases (i.e. more likely to encounter more missing data further along in the 

study). Understanding the implications of covariance misspecification under more 

common real world data conditions would be helpful and this simulation attempts 

to inform this area. 

In order to simulate conditions that are common in real world data and 

improve external validity but yet keep the simulation design manageable, the 

following data conditions were manipulated: the covariance structure (five levels: 

ID, AR(1), MA(1), MA(2), ARMA(1, 1)), the random effect distribution (three 

levels: Normal, Laplace, Chi–Square(1)), number of subjects (two levels: 25, 50), 

and the number of measurement occasions (two levels: 6, 8). This leaves a total of 

5*3*2*2 = 60 simulated data conditions. To avoid finding a single extreme data 
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condition, five hundred replications were generated for each simulated data 

condition resulting in 60*500 = 30,000 total datasets. Statistics were averaged 

across the 500 replications within each of the 60 simulation conditions. For each 

dataset, all five of the covariance structures were fitted (i.e. ID, AR(1), MA(1), 

MA(2), ARMA(1, 1)), resulting in a total of 30,000*5 = 150,000 models. 

Data 

Population parameters were generated from data collected by the Minnesota 

Mathematics Achievement Project (MNMAP). The MNMAP project collected data 

exploring the relationship between high school mathematics curriculum and 

subsequent college mathematics grades and course taking for students graduating 

from a high school in an upper Midwestern state. A retrospective cohort design was 

used in collecting the data from three sources: high schools, universities or colleges, 

and the state. The resulting dataset contained student, high school, and college 

information on more than 20,000 students, from about 300 high schools, and 

approximately 35 two and four year colleges or universities. In this model, student 

semester GPA from a college mathematics course will serve as the dependent 

variable. Time was the primary within-subject variable, ACT score will serve as 

the single continuous student level predictor and difficulty of the college 

mathematics course will serve as a time varying covariate. The intercepts and the 

slope for time were allowed to vary for every student (i.e. a random intercept and a 

random slope for time were specified in the model). Additional information about 

the data collection procedures from the MNMAP project can be seen in Harwell et 

al. (2009) and Post et al. (2010). 

Data were simulated according to the following model: 

 

 
   

0 1 2 3 4

0 1 1 2

time diff ACT ACT : time

time

ij ij ij j j ij

j j ij ij ij

Y

b b e e

        

   
  (7) 

 

In this equation, let i represent repeated measurements and j represent 

individuals. The fixed effects are represented by β0, β1, β2, β3, and β4, timeij 

represents the within subject time metric, diffij is a within subject time varying 

covariate representing the difficulty of the mathematics course, and ACT j is a 

continuous subject level covariate representing the mathematics ACT score for 

each subject. The random components of the model are represented by b0j, b1j, e(1)ij,  
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Table 1. Parameter values for all terms 

 
Parameter Value 

β0 2.639 

β1 -0.014 

β2 -0.187 

β3 0.095 

β4 0.003 

Var b0j 0.552 

Var b1j 0.015 

Var eij 0.549 

Φ1 0.450 

θ1 0.500 

θ2 0.300 

Var diffij 1.250 

Var ACT1j 4.905 
 

Note: Var – Variance 

 
 

and e(2)ij which represent subject specific deviations from the average intercept and 

slope, deviations from the subject specific growth curves, and serial correlation 

respectively. Data were simulated from the model shown in (7), where the e(2)ij and 

the distribution of the random components were the primary differences between 

the simulated data. 

Table 1 shows the population values used to generate the data according to 

(7). Table 1 reveals that many parameter values are quite small and are reflective 

of the scale of the dependent variable ranging from zero to four. Of particular note 

are the small values for β1, β4, and Var b1j representing the slope for time, the 

interaction between time and mathematics ACT score, and lastly the variance of the 

random slopes for time. These small values will have to be kept in mind later as the 

bias statistic chosen divides by the parameter value. 

Analysis 

Model convergence, relative bias, and type I error rates were generated for all 

150,000 models fitted. Relative bias was computed for all of the fixed effects and 

the variance components. The formula for relative bias took the form of: 

 

 
ˆ

Rel. Bias
 




   (8) 
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where ̂  is the parameter estimate (i.e. βk or Var(blj) and θ is the parameter value 

set in the simulation. 

The Type I error rate was computed as the proportion of significant fixed 

effect estimates out of the total number of replications. That is, a Wald test statistic 

was set up of the form: 

 

 
ˆ

SE
Z

 
   (9) 

 

where ̂  is the parameter estimate, β is the simulated paramater value shown in 

Table 1, and SE  is the empirical standard error calculated from the model fit. The 

Wald test statistic was assumed to follow a standard normal distribution. If there is 

no bias and the type I error rate is accurate, approximately 5% of the parameter 

estimates should fall outside of ± 1.96 quantile of the standard normal distribution. 

Since a simulation is similar to a completely randomized experiment, the 

relative bias and type I error rates served as dependent variables and the simulated 

conditions were treated as independent variables or factors. These variables were 

analyzed descriptively and inferentially to answer the research questions depicted 

above. 

Inferential Analyses 

All of the simulation factors are between-subject factors except for the covariance 

structure factor which was a within-subject factor as all five covariance structures 

were fitted to each simulated dataset. Due to the within-subject factor, repeated 

measures analysis of variance (RM-ANOVA) is a common analysis for this type of 

data. However, the RM-ANOVA procedure can make interpretation more difficult 

and increase the burden during estimation. Another data analysis option was to treat 

all the design factors as between-subject factors and use univariate analysis of 

variance (UANOVA) to estimate the effects. The UANOVA procedure has the 

disadvantage of reduced power of the within-subject and mixed interaction effects 

(i.e. the interaction between the within-subject and between-subject effects). 

However, with a large sample size in the study (30,000*5 = 150,000 total cases in 

the main analysis) statistical power was not deemed an issue and the UANOVA 

model was fitted to ease interpretation. A similar analysis was done by Kwok et al. 

(2007) in their article addressing misspecification of the covariance structure. 
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The initial UANOVA model that was fitted to the relative bias data took the 

following structure: 

 

 

               

             

           

           

 

ln

ijklmn A j B k C l D m E n AB jk AC jl AD jm

AE jn BC kl BD km BE kn CD lm CE DE mn

ABC jkl ABD jkm ABE jkn ACD jlm ACE jln ADE jmn

BCD klm BCE kln BDE kmn CDE lmn ABCD jklm ABCE jkln

ACDE jlmn

Y         

      

     

     



        

      

     

     

 
    ijklmnBCDE klmn ABCDE jklmn

e  

  (10) 

 

The above equation represents a factorial UANOVA that fits all possible 

interactions. In (10), the α represent cell means, μ is the grand mean, the first set of 

subscripts, A, B, C, D, and E, represent the five simulation conditions, the subscripts 

in parentheses, j, k, l, m, and n, index the factor categories, and i depicts the 

observation number. The model for the empirical type I error rates is simplified 

compared to (10) because there was only one observation per cell. As a result, all 

four and five-way interactions were pooled into the error term. 

Lastly, significance tests were not used due to the large sample size and 

statistical power. Instead, effects sizes were computed to determine which factors 

explained the most variation in the dependent variable. An η2 statistic was used as 

the effect size in this analysis and took the following form: 

 

 2 trt

total

SS

SS
    (11) 

 

In the above equation, SStrt is the amount of variation attributable to the 

treatment of interest (e.g. covariance structure) and SStotal is the total sum of squares 

or the total amount of variation in the dependent variable. η2 values greater 

than .001 and .01 were deemed important predictors for the relative bias and 

empirical type I error rates respectively. 

Software 

Data generation, model fitting, and analyses were conducted with R (R 

Development Core Team, 2010). Data generation was undertaken via an author 

written program. In order to replicate the results, a random seed was chosen and to 

ensure independent replications, the random number generation was based on the 
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procedure by L’Ecuyer (L’Ecuyer, Simard, Chen, & Kelton, 2002). This procedure 

has the advantage of producing very large strings of random numbers without 

worrying about duplication and supports multiple threads of random number 

generation which allowed multiple cores of the processor to be used simultaneously 

improving the data simulation speed. Model fitting was done with the nlme package 

found in R (Pinheiro, Bates, DebRoy, & Sarkar, 2012). Lastly, in order to check the 

simulated data conditions, the sample autocorrelation function was plotted to see if 

the values approximately followed the theoretical autocorrelation function. In 

addition, the empirical skewness and kurtosis of the simulated random effect 

distribution was computed to check for accurate random effect simulation. No 

significant deviations were found. 

Results 

The convergence rates for study one can be seen in Table 2. This table breaks down 

the convergence rate of the estimation algorithm by the generated and fitted serial 

correlation structures. As can be seen from the table, convergence rates tended to 

be low ranging from a low of 41.6% to a high of 95.9%. Low convergence rates 

tended to occur when the serial correlation structure was overspecified (e.g. 

ARMA(1, 1) structure fitted to an AR(1) structure) or when a generally 

misspecified serial correlation structure was fitted (e.g. AR(1) structure fitted to a 

MA(1) structure). In general, the AR(1) and ARMA(1, 1) fitted structures had the 

worst convergence rate compared to the other fitted structures and the independent 

structure had the best convergence rate, which is not surprising as no additional 

terms were needed to be estimated with an independent structure. 

Relative Bias 

Summary statistics for the relative bias of the fixed effects can be seen in Table 3. 

The table shows that although the mean and median for all of the parameters were 

very close to zero, the slope terms (i.e. β1 and β4) had large amounts of variation as 

shown by the variance in Table 3. The large amount of variation in the relative bias 

for those two terms is likely attributable to the small parameter values as seen in 

Table 1 (i.e. to get the relative bias, the absolute bias was divided by the parameter 

value which are small for β1 and β4). 
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Table 2. Convergence rates by generated and fitted serial correlation structure 

 
Gen SC Fit SC Convergence % 

Ind Ind 72.48 

Ind AR(1) 68.38 

Ind MA(1) 71.02 

Ind MA(2) 67.23 

Ind ARMA(1, 1) 65.10 

AR(1) Ind 93.88 

AR(1) AR(1) 64.88 

AR(1) MA(1) 81.37 

AR(1) MA(2) 70.78 

AR(1) ARMA(1, 1) 60.45 

MA(1) Ind 92.23 

MA(1) AR(1) 55.12 

MA(1) MA(1) 69.15 

MA(1) MA(2) 65.93 

MA(1) ARMA(1, 1) 63.68 

MA(2) Ind 95.62 

MA(2) AR(1) 61.98 

MA(2) MA(1) 84.50 

MA(2) MA(2) 68.83 

MA(2) ARMA(1, 1) 54.88 

ARMA(1, 1) Ind 98.37 

ARMA(1, 1) AR(1) 42.17 

ARMA(1, 1) MA(1) 88.02 

ARMA(1, 1) MA(2) 72.90 

ARMA(1, 1) ARMA(1, 1) 63.60 
 

Note: Gen – generated, SC – serial correlation, Fit – fitted 

 
 
Table 3. Summary statistics for relative bias of fixed effects 

 
Term Mean Var Med Min Max 

β0 0.0005 0.0054 0.0004 -0.3581 0.4424 

β1 0.0606 26.6853 0.1011 -26.8454 25.1670 

β2 0.0010 0.0905 0.0010 -1.5945 1.7359 

β3 -0.0016 0.1882 -0.0025 -2.4923 2.4803 

β4 0.0579 24.6815 0.0357 -28.2912 30.8497 
 

Note: Var – variance, Med – median, Min – minimum, Max – maximum 

 
 

The variation in the relative bias for the parameters was explored using 

ANOVA. No four or five-way interactions had 
2̂  greater than .001 and were 

dropped from the models, however all two and three-way interactions were retained. 
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The results of these final ANOVAs and the resulting 2̂  can be seen in Table 4 for 

all five fixed effect parameters and the variance of the random components. The 

values in bold in the table are 2̂  statistics that are larger than .001. 

Looking at the first five columns of Table 4 reveals there are no large 2̂  

statistics for any of the fixed effects. This means that the simulation conditions do 

not explain a significant amount of variation in the relative bias of the fixed effects. 

This suggests that the grand mean relative bias for each of the fixed effects acts as 

an adequate summary measure for each fixed effect and can be seen in Table 3. 

Exploring the simple averages shows that relative bias for the two slope terms (i.e. 

β1 and β4) have the largest bias statistics. Even though the slope terms showed slight 

evidence of bias (.0606 and .0579 for β1 and β4 respectively), the relative bias 

statistic is quite small and would likely not seriously distort any findings. 

Summary statistics for the relative bias of the random components can be seen 

in Table 5. The table shows that on average the variance of the random components 

tends to be biased and there was significant variation in the relative bias statistics 

for each term. Since variances can only be positive, it is not surprising that the 

minimum relative bias is small (approximately -1) compared to the maximum 

relative bias (approximately 10, 35, and 6.6 for variance of intercept, slope, and 

within cluster residuals respectively). 

The variation in the relative bias statistics for the random components were 

explored with an ANOVA and the 2̂  can be seen in the last three columns of Table 

4. These columns reveal that there are variables that explain variation in the relative 

bias of the random components (i.e. 2ˆ 0.001  ). The strongest effects were the 

simulated conditions related to the generated and fitted serial correlation structure. 

The significant interaction between the generated and fitted serial correlation 

structures for the random effects are explored in Figure 1. These figures show that 

fitting an underspecified independence structure has severe consequences in terms 

of relative bias of the variance of the random effects. More specifically, when an 

AR(1), MA(1), MA(2), or ARMA(1, 1) structure underlie the data, the 

independence serial correlation structure produces significantly greater bias 

compared to fitting other serial correlation structures. For example, when an 

ARMA(1, 1) structure underlies the data and the serial correlation structure is 

underspecified as independent, the variance of the intercept and slope are 

overspecified by over 1.5 times and at least 6 times respectively. 
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Table 4. Eta-squared statistics for all terms from ANOVA models 

 

Variable 
ˆ

2

0
η β  ˆ

2

1
η β  ˆ

2

2
η β  ˆ

2

3
η β  ˆ

2

4
η β  ˆ

2

0
Varη  b  ˆ

2

1
Varη  b  ˆ

2

Var Resη   

N 0.0000 0.0000 0.0001 0.0000 0.0002 0.0023 0.0123 0.0014 

p 0.0001 0.0000 0.0000 0.0001 0.0001 0.0010 0.0136 0.0031 

RE Dist 0.0001 0.0004 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 

Gen SC 0.0006 0.0008 0.0003 0.0003 0.0001 0.0937 0.0930 0.1704 

Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0904 0.0862 0.1984 

N:p 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0001 

N:RE Dist 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 

N:Gen SC 0.0002 0.0001 0.0003 0.0001 0.0001 0.0002 0.0006 0.0003 

N:Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0004 

p:RE Dist 0.0002 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 

p:Gen SC 0.0004 0.0004 0.0001 0.0004 0.0000 0.0002 0.0013 0.0005 

p:Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0001 

RE Dist: Gen SC 0.0002 0.0003 0.0003 0.0004 0.0001 0.0002 0.0003 0.0001 

RE Dist: Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Gen SC:Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0670 0.0548 0.1658 

N:p:RE Dist 0.0001 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0001 

N:p:Gen SC 0.0002 0.0000 0.0002 0.0002 0.0001 0.0001 0.0002 0.0000 

N:p:Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

N:RE Dist:Gen SC 0.0002 0.0004 0.0001 0.0004 0.0006 0.0001 0.0002 0.0003 

N:RE Dist:Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

N:Gen SC:Fit SC 0.0000 0.0001 0.0000 0.0000 0.0000 0.0006 0.0002 0.0019 

p:RE Dist:Gen SC 0.0002 0.0001 0.0004 0.0001 0.0003 0.0003 0.0004 0.0001 

p:RE Dist:Fit SC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

p:Gen SC:Fit SC 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0006 0.0005 

RE Dist:Gen SC:Fit SC 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

 

Note: Bold numbers are > 0.001, N – cluster sample size, p – within cluster sample size, Gen – generated, RE 

Dist – random effects distribution, SC – serial correlation, Fit – fitted, “:” represents an interaction 

 
 
Table 5. Summary statistics for relative bias of random components 

 

Term Mean Var Med Min Max 

ˆ
j

η b
2

0
Var  0.4012 0.6942 0.2904 -1.0000 10.0186 

ˆ
j

η b
2

1
Var  1.9116 9.2561 1.1211 -1.0000 35.4700 

η̂
2
Var Res  0.1222 0.2645 -0.0151 -0.7943 6.6436 

 

Note: Var – variance, Med – median, Min – minimum, Max – maximum 

 
 

The AR(1) and ARMA(1, 1) fitted structures tend have the smallest bias 

statistics for the variance of the random effects compared to the other structures, 

which may suggest that the moving average component does not aid in modeling 



BRANDON LEBEAU 

405 

serial correlation in longitudinal data. Lastly, even when the correct structure is 

modeled there is still evidence of bias in the variance of the random effects and in 

many cases the correct fitted structure does not produce the smallest average 

relative bias statistics. 

Lastly, Figure 2 shows that the variance of the residuals tend to be 

underestimated when an underspecified independence structure is fit, however this 

underestimation is not as large as the overspecification found in the random effects. 

The largest amount of bias occurs when the underlying structure is ARMA(1, 1), 

which tends to produce average relative bias statistics for the residuals that are 

comparable to the average relative bias for the variance of the intercept. Except for 

the systematic underestimation when an independence structure was fitted when 

serial correlation was present, the average relative bias still tends to be positive 

suggesting that all of the random components are overestimated when serial 

correlation is present. 

Type I Error Rate 

Even though there was no evidence of bias in the fixed effects under any of the 

simulated data conditions, the random components did show evidence of bias; 

therefore, the standard errors of the fixed effects may not be accurate. This may 

cause the type I error rate to be too conservative (type I error rate smaller than the 

specified α) or too liberal (type I error rate greater than the specified α). 

Box plots can be seen in Figure 3 and show the empirical type I error rates for 

each of the fixed effect parameters. This figure shows that the median empirical 

type I error rate for the fixed effects tends to be slightly above the expected α = 0.05, 

however β0 and β3 both include 0.05 in the middle 50% of the distribution. β0, β1, 

and β4 have median type I error rates around 0.06, whereas β2 has a median around 

0.07. The variability in the five box plots tend to be similar indicated by the size of 

the interquartile range. Since there does appear to be variability in the empirical 

type I error rates, these will be modeled inferentially. Table 6 shows the 
2̂  

statistics for the empirical type I error rates for all terms up to three-way interactions. 

All higher order interaction terms were pooled into the error. 
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Figure 1. Relative bias of random effects by generated and fitted serial correlation structure; variance of b0j (left) and b1j (right) 
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Figure 2. Relative bias of the variance of the residuals by generated and fitted serial 

correlation structures 

 

 

As can be seen from the table there were numerous effect sizes greater than 

0.01. Some of the largest effects were the cluster sample size, the interaction 

between the generated serial correlation structure and random effect distribution, 

and the three way interactions between the generated serial correlation structure, 

the random effect distribution, and the cluster sample size or the within cluster 

sample size. These large effects were around 0.10 suggesting that approximately 

10% of the variation in the type I error rates can be explained by each of these terms. 

The average empirical type I error rate for β0 by the generated serial 

correlation structure, random effect distribution and the cluster sample size can be 

seen in Figure 4. From the figure, cluster sample sizes of 25 tend to have larger 

average type I error rates compared to cluster sample sizes of 50. There also was a 

lot of variability in the average type I error rate as the generated serial correlation 

structure differs, with the AR(1) structure having the smallest amount of variation. 

The empirical type I error rate was the smallest when the simulated random effect 

distribution was normally distributed. 
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Figure 3. Box plot of type I error rates by parameter 

 

 

Lastly, the scale of the y-axis should be taken into account. Although there is 

variability in the average type I error rates, this variability ranges from about 0.04 

to just over 0.07 with an even smaller range when the cluster size is 50. Even though 

most conditions are inflated, they may not be inflated enough to significantly 

concern applied researchers. 

Patterns for the empirical type I error rates were similar for the other 

parameters (i.e. β1,…, β4) and are not presented graphically. In addition, the 

patterns were also similar for the three way interaction between the generated serial 

correlation structure, random effect distribution, and within cluster sample size and 

these graphs are not presented. The range of possible average empirical type I error 

rates were smaller for this second three way interaction compared to the one shown 

in Figure 4. 
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Table 6. Eta-squared statistics for all terms from ANOVA models 

 

Variable 
ˆ 2

0
η β  ˆ 2

1
η β  ˆ 2

2
η β  ˆ 2

3
η β  ˆ 2

4
η β  

N 0.0108 0.1111 0.1014 0.0150 0.0866 

p 0.0037 0.0005 0.0152 0.0000 0.0065 

RE Dist 0.1133 0.0119 0.0617 0.0282 0.0286 

Gen SC 0.0416 0.0518 0.0338 0.0196 0.0857 

Fit SC 0.0086 0.0145 0.1579 0.0049 0.0137 

N:p 0.0476 0.0385 0.0240 0.0129 0.0038 

N:RE Dist 0.0160 0.0147 0.0631 0.0072 0.0066 

N:Gen SC 0.0300 0.0090 0.0352 0.1305 0.0755 

N:Fit SC 0.0037 0.0030 0.0079 0.0017 0.0024 

p:RE Dist 0.0102 0.0188 0.0096 0.0075 0.0638 

p:Gen SC 0.0468 0.0306 0.0027 0.0581 0.0356 

p:Fit SC 0.0030 0.0025 0.0034 0.0131 0.0088 

RE Dist: Gen SC 0.0339 0.0525 0.0354 0.0814 0.0820 

RE Dist: Fit SC 0.0060 0.0038 0.0043 0.0117 0.0035 

Gen SC:Fit SC 0.0151 0.0412 0.0351 0.0180 0.0712 

N:p:RE Dist 0.0196 0.0051 0.0047 0.0218 0.0338 

N:p:Gen SC 0.1475 0.0156 0.0601 0.0269 0.0338 

N:p:Fit SC 0.0010 0.0021 0.0115 0.0012 0.0005 

N:RE Dist:Gen SC 0.0397 0.0713 0.0523 0.0747 0.0380 

N:RE Dist:Fit SC 0.0070 0.0084 0.0132 0.0188 0.0084 

N:Gen SC:Fit SC 0.0128 0.0109 0.0103 0.0191 0.0111 

p:RE Dist:Gen SC 0.1112 0.0989 0.0792 0.0969 0.0961 

p:RE Dist:Fit SC 0.0023 0.0038 0.0152 0.0099 0.0107 

p:Gen SC:Fit SC 0.0067 0.0193 0.0147 0.0254 0.0103 

RE Dist:Gen SC:Fit SC 0.0309 0.0205 0.0254 0.0355 0.0228 
 

Note: Bold numbers are > 0.01, N – cluster sample size, p – within cluster sample size, Gen – generated, RE 

Dist – random effect distribution, SC – serial correlation, Fit – fitted, “:” represents an interaction 

Sensitivity Analysis 

An arcsine transformation was done on the empirical type I error rates that were 

analyzed above. The transformation was performed for two reasons, first to remove 

the hard 0 and 1 boundaries of the proportion metric, and second to remove the 

mean and variance relationship of the proportion metric. This transformation took 

the following form: 
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Figure 4. Mean type I error rate for β0 by generated serial correlation structure, random 

effect distribution, and cluster sample size 

 

 

 

1

1

1

ˆ ˆ ˆ2 sin , 0 1

1
ˆ ˆ2 sin , 0

4

1
ˆ ˆ3.14 2 sin , 1

4

k k k

k k k

k k k

p p p

p R p

p R p







   

 
   

 

 
    

 

  (12) 

 

where R refers to the number of simulation replications. After making the 

transformation, the transformed empirical type I error rates will be normally 

distributed with mean p'k and variance 1/Rk (Marascuilo & McSweeney, 1977). 

After the transformation was performed, a similar model was fitted to the data as 

discussed above except now the average arcsine transformed empirical type I error 
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rate was used as the dependent variable. Just as before, η2 served as the effect size 

to identify variables that explained significant variation in the dependent variable 

as opposed to p-values. 

The effect sizes calculated from the arcsine transformed empirical type I error 

rates were similar to the model left in the original proportion metric with no 

additional variables identified as significant. Since the results were similar, 

interpretations made above in the original proportion metric are similar regardless 

of the scale of measurement which adds to the robustness of results. 

Discussion 

The current Monte Carlo study explored the implications for the LMM when model 

assumptions have not been adequately met. Five different generated serial 

correlation structures, independent, AR(1), MA(1), MA(2), and ARMA(1, 1) were 

explored in the current Monte Carlo study along with three different simulated 

random effect distributions, normal, chi-square (1), and Laplace. 

Study results showed that the fixed effects on average were unbiased and none 

of the simulation conditions explained significant variation in the relative bias of 

the fixed effects for either of the studies. However, there was evidence of bias in 

the variance components and simulation conditions did explain significant variation 

in the average relative bias. This is similar to previous research when serial 

correlation was not modeled and the random components were normally distributed 

(Kwok et al., 2007; Murphy & Pituch, 2009). 

Unfortunately, no real pattern to which fitted serial correlation is best emerged, 

for example overspecified or underspecified covariance structures did not 

consistently provide better estimates of the random components. Instead including 

some measure of serial correlation, when present, helps to alleviate some bias 

concern for the random effects. However, even correctly modeling the serial 

correlation structure tended to produce biased random components of the model. 

The AR(1) and ARMA(1, 1) tended to produce the smallest amounts of bias in the 

random components, however the convergence rate was impacted when these 

additional parameters were included in the model. 

For both the fixed effects and random components, the simulated random 

effect distribution did not explain significant variation in the relative bias statistics. 

This is contrary to prior work exploring the robustness of the LMM to normality 

assumptions (Maas & Hox, 2004a; LeBeau, 2013). Results from this prior work 

found that the simulated random effect distribution did not produce bias in the fixed 

effects, but did introduce bias into the random effects. However, these studies did 
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not build explanatory models to see which study conditions explain variation in the 

relative bias statistics. Adding the more complicated serial correlation structures 

may have influenced this relationship and overpowered the influence of the non-

normal random effect distribution. 

This Monte Carlo study also explored the type I error rates of the five fixed 

effects. The fixed effects were all slightly elevated compared to the α = 0.05 level. 

Increasing the sample size at both levels of the model was the best way to help limit 

the slight inflation found in the empirical type I error rates. Trends regarding the 

generated or fitted serial correlation structure and the simulated random effect 

distribution were not as clear. 

Recommendations 

Recommendations for researchers come in three different groups. First, if the 

researcher is only interested in the estimates of the fixed effects, then one does not 

need to worry about the serial correlation. The results showed that the relative bias 

for the fixed effects were not affected by any of the simulation conditions studied, 

including the generated or fitted serial correlation structures, random effect 

distribution, sample size considerations, or missing a random effect. These results 

are similar to other Monte Carlo studies with the linear mixed model (Ferron et al., 

2002; Kasim & Raudenbush, 1998; Kwok et al., 2007; Maas & Hox, 2004a; 

Murphy & Pituch, 2009). 

However, if the researcher is interested in estimates of the random effects, 

more care needs to be taken. In general, the random effects tend to be overestimated 

when serial correlation is present and ignored (i.e. an independence structure is 

assumed to underlie the data when this is not the case). Although still overestimated, 

more measurement occasions (i.e. within cluster sample size) and fitting an AR(1) 

or ARMA(1, 1) serial correlation structure tends to limit the overestimation of the 

random effects. 

Lastly, if the researcher is interested in inference about the fixed effects care 

needs to be taken to explore whether serial correlation is present in the data. This 

is especially important when the number of individuals (clusters) and the number 

of repeated measurements are small. Although not severely inflated, it is likely that 

the α value specified by researchers is slightly larger in practice. 

Unfortunately, there is no a priori test to directly test for the presence of serial 

correlation in the data. To look for serial correlation, a variogram could be used or 

descriptively looking at the average correlations between measurement occasions. 

Another tactic would be to use a procedure such as the likelihood ratio test or model 
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fit indices such as the AIC or SBC to see if modeling the serial correlation improves 

model fit. Unfortunately, these methods have not been very reliable in selecting the 

correct structure (Ferron et al., 2002; Keselman et al., 1998). 

Future Work 

Future work exploring reasons for the poor convergence rate of the models is 

needed. Increasing the variances of the random components to see if that aids the 

poor convergence rates would be helpful. Increasing the variance of the random 

components may also have an impact on the empirical type I error rates and would 

be useful to explore. 

Detecting serial correlation when present in the data is another area of work 

that needs to be explored. Currently it is difficult to detect serial correlation from 

the data putting researchers in a difficult position when searching for serial 

correlation in their data. Procedures to use when looking for serial correlation in 

the data would provide guidance for researchers. Exploring additional missing data 

structures would also be useful. The current study used dropout as a missing data 

structure as this commonly occurs in longitudinal data, however it is not the only 

way missing data occurs. For example, having a subject to re-enter the study after 

missing a measurement occasion is also common in longitudinal data. 

Finally, additional work that relaxes the assumption that random effects are 

uncorrelated across clusters, extending the work done by Browne and Goldstein 

(2010) in a Bayesian framework, could be a new extension of this group of models. 

This would give researchers the flexibility of modeling three levels of nesting 

through the use of a two level model. Situations where this would be most helpful 

would be when relatively few level three units are sampled, for example when only 

five schools are sampled. It would likely not be possible to model this third level 

of nesting with only five units, however accounting for this dependency through 

correlated random effects at level two may be useful and necessary if the third level 

of nesting accounts for a significant amount of variation. 
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