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Z and t Distributions in Hypothesis Testing: 
Unequal Division of Type I Risk

Ceyhun O. Ozgur 
Valparaiso University 

Valparaiso, Indiana 

 

 

 

 

 

 
Introductory statistics texts have given extensive coverage to two-sided inferences. All 
texts that were surveyed give significant coverage to one-sided hypothesis tests. Very few 
discussed the possibility of one-sided interval estimation at all. Even fewer mentioned so 
in any detail the possibility of dividing the risk of a type I error unequally between the 

tails for a two-sided confidence interval. None of the textbooks that were reviewed even 
considered the possibility of unequal tails for two-sided hypothesis tests. In this paper, we 
suggest that all statistics courses and texts should cover both one-sided tests and 
confidence intervals. Furthermore, coverage should also be given to unequal division of 
the nominal risk of a type I error for both hypothesis tests and confidence intervals. 
Examples are provided for both situations. 
 

Keywords: Statistical Inference, Division of Type I error risk, Z distribution, 
Hypothesis testing, t distribution, Unequal Division of Type I Error 

 

Introduction 

One-sample Z and t tests are far less robust to departures from normality than are 

two sample tests. This has been known for over a century now. Hence, these 

techniques are usually taught only for pedagogical purposes. All introductory 

statistics textbooks cover two-sided hypothesis tests and confidence intervals with 

alpha split equally between the tails. All gave extensive coverage to one-sided 

hypothesis tests but only a few mention one-sided confidence intervals. Our 

research surveyed some of the most reputable textbooks used in Introductory 

Business Statistics courses. Only one textbook that was surveyed considered the 

possibility of splitting alpha unequally between the tails for a confidence interval 

and none did so for hypothesis tests. Since there is a one-to-one correspondence 

between hypothesis tests and confidence intervals, a strong case can be made that 
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all texts should give detailed coverage to one-sided confidence intervals. Practical 

examples are easy to develop and the intervals are simple to construct. Therefore, 

there is no justification for omitting their coverage. 

In situations where both tails were actually of interest, all of the textbooks 

surveyed split alpha equally between the tails in hypothesis testing situations. 

Ramsey (1990) mentioned in his paper that instead of running a one-tailed test at 

the .05 level, the test could be ran at the .04 level. This would be more powerful 

than a two-tailed test ran at the .05 level because, for results in the predicted 

direction, such a test would be equivalent to a one-tailed test at the .025 level. 

However, results which come out in the opposite direction beyond a .01 

probability could be rejected and taken as evidence against any previous 

knowledge about an outcome in the predicted direction. Of all the texts that were 

surveyed, only Harnett and Soni (1991) mentioned the possibility of an unequal 

split for confidence intervals and they only do so in one sentence. Students would 

develop a better understanding of the rationale underlying the choice of alpha if 

they were given a broad spectrum of possibilities for splitting it between the tails.  

This is particularly true for business students when examples can associate 

specific costs with type I errors. In practice, the costs associated with a type I 

error on one side may be different from the costs on the other side. Therefore, the 

risks should have been split proportionately to the costs. In the next section two 

examples will be provided to demonstrate the unequal split of α between the two 

tails. The example applications involve a service and a manufacturing scenario 

respectively. We surveyed many textbooks and the table of what we found 

regarding the uneven division of alpha can be found in the Table 1. 

Service Application 

Suppose that a fast food restaurant with significant sales from coffee customers at 

the drive-thru window is analyzing coffee temperature. The target temperature for 

a coffee cup is 175 degrees Fahrenheit with a temperature tolerance of ± 5 degrees. 

If a cup of coffee is too hot or in other words, if it is warmer than 180 degrees 

(above the upper tolerance) and someone gets burned, there is the potential for a 

very costly lawsuit, possibly a settlement for $2.4 million. On the other hand, if 

the cup temperature is too cool, below the lower tolerance of 170 degrees, then 

there is likely to be lost sales and possible customer erosion in other product areas. 

The analyst estimates lost profits from declining sales to be $800,000. In this 

scenario neither a one-tailed inference nor a two-sided inference with equal tails 

would be logically appropriate. 
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Table 1. Statistical books with coverage of Z & t tests and unequal division of alpha 

 

Authors Publishers 
Publication 
Date/Edition 

Book Title Z & t Test 
Unequal Division 

of Alpha 

A.D. Aczel McGraw-Hill-Irwin 1999, 4th edition Complete Business Statistics Yes No 

D. R. Anderson, D.J. 
Sweeney, & T. Williams 

Southwestern 2009, 10th edition 
Statistics for Business and 
Economics 

Yes No 

D. R. Anderson, D.J. 
Sweeney, & T. Williams 

Southwestern 1998, 7th edition 
Quantitative Methods for 
Business 

Yes No 

M. Berenson, & D.M. Levine Prentice-Hall  1999, 7th edition Basic Business Statistics Yes No 

M. Berenson, D. Levine, & 
T.C. Krehbiel 

Prentice-Hall 2000, 2nd edition 
Business Statistics: A First 
Course 

Yes No 

K. Black, & D. Eldredge Southwestern 2002, 1st edition 
Business and Economic 
Statistics 

Yes No 

B. Bowerman & R. 
O’Connell, & J.B. Orris 

McGraw-Hill-Irwin 2004, 1st edition 
Essentials of Business 
Statistics 

Yes No 

Y. Chou Elsevier 1989, 1st edition 
Statistical Analysis for 
Business and Economics 

Yes No 

W. Cochran, & G. Cox John Wiley & Sons 1992, 2nd edition Experimental Designs 
t-test: Yes 
Z-test: No 

No 

D.P. Doane, & L.E. Seward McGraw-Hill 2016, 5th edition 
Applied Statistics in Business 
and Economics 

Yes No 

D.L. Harnett & A.K. Soni Addison-Wesley 1991, 1st edition 
Statistical Methods for 
Business and Economics 

Yes Yes 

J. Hawkes, & W. Marsh Hawkes Publishing 2005, 2nd edition Discovering Statistics Yes No 

D.H. Hildebrand & R.L. Ott Brooks/Cole 1998, 4th edition 
Statistical Thinking for 
Managers 

Yes No 

G. Keller, B. Warrack, & H. 
Bartel 

Wadsworth  1998, 1st edition 
Statistics for Management 
and Economics 

Yes No 

R.I. Levin, & D.S. Rubin Prentice-Hall 1994, 6th edition Statistics for Management Yes No 

D.M. Levine, T. C. Krehbiel, 
M.L. Berenson 

Prentice-Hall 2000, 2nd edition Business Statistics Yes No 

 

Table 1 continued on next page  
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Table 1 cont. Statistical books with coverage of Z & t tests and unequal division of alpha 

 

Authors Publishers 
Publication 
Date/Edition 

Book Title 
Z & t 
Test 

Unequal 
Division of 

Alpha 

R.D. Mason, & D.A. Lind Irwin 1993, 8th edition 
Statistical Techniques in Business and 
Economics 

Yes No 

J.T. McClave, P.G. Benson, 
& T. Sincich 

Prentice-Hall 2011, 11th edition Statistics for Business and Economics Yes No 

G. Meek, H. Taylor, K. 
Dunning, & K. Klafehn 

Allyn & Bacon 1987, 1st edition Business Statistics Yes No 

G. Meek, & S. J. Turner Houghton & Mifflin 1983, 1st edition Statistical Analysis for Business Decisions Yes  No 

W. Mendenhall & R. Beaver PWS-Kent 1992, 3rd edition A Course in Business Statistics Yes No 

J. Neter, M. Kutner, C. 
Nachtsheim, & W. 
Wasserman 

McGraw-Hill 1996, 4th edition Applied Linear Statistical Models Yes No 

J. Neter, W Wasserman, 
G.A. Whitmore 

Allyn & Bacon 1993, 4th edition Applied Statistics Yes No 

P. Newbold Prentice-Hall 1991, 3rd edition Statistics for Business and Economics Yes No 

P. Newbold, W.L. Carlson, 
& B. Thorne 

Prentice-Hall 2007, 6th edition Statistics for Business and Economics Yes No 

M. Pelosi, & T. Sandifer John Wiley & Sons 2002, 2nd edition Doing Statistics for Business with Excel Yes No 

H. Scheffe John Wiley & Sons 
1999, 1st edition 
reprinted 

The Analysis of Variance No No 

A.F. Siegel  Irwin 1990, 1st edition Practical Business Statistics Yes No 

T. Sincich Kraus 1996, 5th edition Business Statistics by Example Yes No 

C. Watson, P. Billingsley, 
D.J. Croft, & D. 
Huntsberger 

Allyn & Bacon 1990, 4th edition Statistics for Management and Economics Yes No 

R. M. Weiers Duxbury 2005, 5th edition  Introduction to Business Statistics Yes No 

 
Note: Most textbooks that were surveyed covered Z and t tests, as well as 1 and 2 sided hypothesis testing. 
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Manufacturing Application 

Consider a manufacturing process in which the first operation is to cut stainless 

steel rods into lengths of two feet prior to machining and threading operations. 

The nominal length for each piece is two feet. Customer specifications allow 

± 0.050 inches. If a part is oversized, that is, greater than 24.050, it can be 

“reworked” at a cost of $0.50 while undersized pieces, those less than 23.950, 

must be scrapped at a cost of $2.00. In this example the cost of a steel rod being 

longer than 24.05 is lower than the cost of a steel rod below the lower 

specification limit. This would be an example where dividing the risk of a type I 

error equally between the tails is not a reasonable choice nor is a one-sided 

approach. 

Literature Review 

As mentioned earlier, few authors discuss one-sided confidence intervals. Only 

one to my knowledge even considers the possibility of an asymmetric two-sided 

confidence interval for means. None considered dividing alpha unequally between 

the tails in two-sided hypothesis tests. Hildebrand and Ott (1998) presented a brief 

discussion of one-sided confidence intervals for a mean, providing an equation 

and a very brief example. Neter, Wasserman and Whitmore (1993) provided an 

optional section on one-sided confidence intervals with some development and 

examples. Meek and Turner (1983) provided a detailed example of one-sided 

intervals with cost considerations and discussion. The best and most detailed 

coverage of one-sided confidence intervals is in Siegel (1997). Siegel (1997) also 

included a discussion and examples of one-sided prediction intervals. 

Of the texts that this paper surveyed, only Harnett and Soni (1991) 

mentioned the possibility of splitting alpha unequally in a two-sided situation. 

They provide a brief discussion about asymmetric two-sided confidence intervals 

and the related cost considerations; however, they then dismiss the idea on the 

basis that the costs are not easily obtained (Harnett & Soni, 1991). Of the thirty-

one texts surveyed this was the only one that considered the possibility of an 

unequal split in two-sided hypothesis testing situations. 

Asymmetric Two-Sided Confidence Intervals for a Population Mean 

One-sided confidence intervals are very easy to construct. All textbooks covered 

one-sided tests of hypotheses. Thus, due to the correspondence between 

confidence intervals and hypotheses tests, it is simply proposed that all 
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introductory statistics texts should cover one-sided confidence intervals as well as 

one-sided tests of hypotheses. Coverage of one-sided confidence intervals can be 

used as an important tool to reinforce the explanation of one-sided tests of 

hypotheses since both one-sided hypothesis tests and the one sided confidence 

intervals involve the concept of allocating the risk of a type one error to only one 

tail. 

It is proposed to restrict the discussion to the situation in which it is 

desirable, based on cost considerations, to construct a two-sided confidence 

interval with unequal tails. The development of the equations with the following 

remarks was prefaced. If a desired value is not contained in the confidence 

interval it is assumed that corrective action is to be taken. If the desired value for 

 is below the lower limit of the confidence interval the mean would be adjusted 

downward. If the true mean is actually desired this will result in an increase of 

"small units". Correspondingly, if the desired value for  is greater than the upper 

limit of the confidence interval, an attempt would be made to increase the mean, 

resulting in an increase of "large units" if the true mean is desired. 

The mathematics of constructing such intervals for population means is 

quite simple. Once the decision has been made regarding how alpha is to be 

divided, the appropriate percentage points from either the standard normal or the 

t-table is selected. If the population standard deviation is known, the standard 

normal (Z) distribution should be used. However, if the population standard 

deviation is estimated, t distribution should be used. Assume that it has been 

decided to place pα, 0 < p < 1, in the upper tail and (1 - p) α, 0 < p < 1, in the 

lower tail. Assuming that  is known, the resulting confidence limits are given by 

Equation 1. 

 

 

 

 1

UL

and 

LL

p

p

X Z
n

X Z
n










 

 

  (1) 

 

If the population standard deviation is not known, Equation 1 can be 

modified by replacing the Z-statistic with an appropriate t-statistic with n - 1 

degrees of freedom, where n represents the sample size. If the population standard 

deviation is not known the resulting confidence limits are given by Equation 2.  
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 

 

, 1

1 , 1

UL

and 

LL

p n

p n

s
X t

n

s
X t

n







 

 

 

  (2) 

 

If c1 represents the cost associated with an unnecessary decrease in  and c2 

is the cost associated with an unnecessary increase in , and then setting  

 

 
 

1

1 2

c
p

c c



  (3) 

 

It will provide a split that equalizes the expected costs between the two tails. 

For c1 equal to zero, or alternatively c2 = 0, it becomes a one-sided interval, while 

c1 = c2 gives the standard two-sided symmetric confidence interval for a mean. 

Service Application Revisited 

Let us refer to the service example described earlier involving the temperature of 

coffee. In that situation, it could be stated that a type I error has occurred if the 

actual average temperature of cups of coffee is on target at 175 degrees, but a 

confidence interval indicates that the target value is not contained within the 

limits. There are two possible ways in which the interval may not contain the 

target value: 

 

1. If the entire confidence interval is above 175 degrees, then the 

process mean would be adjusted downward. This type of miss is 

defined as the “low side” miss. 

2. If the entire confidence interval falls below the target value of 175 

degrees, then the process mean would be adjusted upward. This is 

defined as the "high side" miss.  

 

Of course, both types of adjustments given above are erroneous. The “low side” 

miss would result in unnecessarily lowering the temperature, resulting in 

temperatures that are too cool. The “high side” miss would result in temperatures 

that are too hot. As mentioned earlier, if the average coffee temperature is too 

cool, then there is likely to be lost sales estimated at $800,000. If the average 
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coffee temperature is too hot and a customer gets burned, the estimated cost of a 

lawsuit is $2,400,000. Since an unnecessary downward adjustment is three times 

less costly than an unnecessary upward adjustment, it would be preferred to miss 

on the “low side” as opposed to missing on the “high side”. Since c1 = $800,000 

and c2 = $2,400,000, 

 

 
   

1

1 2

800,000 1
.25 ;   1 .75

800,000 2,400,000 4

c
p p

c c
     

 
  

 

For illustrative purposes assume that  is known and the population standard 

deviation is 1.2 degrees, the confidence level, 1 – , is chosen to be 0.90, and a 

sample of 4 cups of coffee resulted in a mean temperature of 174.1 degrees.  The 

appropriate Z statistic values are then determined from the normal Z table. Since 

p(α) = 0.25*0.10 = .025 and (1 - p) = 0.75*0.10 = .075, the corresponding 

Z-values are Z0.025 = 1.96 and Z0.075 = 1.44 for the upper limit and lower limit 

respectively. The resulting confidence limits are calculated as follows: 

 

 
1.2

UL 174.1 1.96  175.276 degrees
4

 
   

 
  

 

 
1.2

LL 174.1–1.44 173.236 degrees
4

 
  

 
  

If the traditional two-sided confidence interval is employed with an equal 

split of alpha between the two tails, using Z.05 = 1.645 on both sides of the 

confidence interval, resulting in an upper limit and a lower limit of 175.09 and 

173.11 respectively. If the estimated costs of c1 and c2 are accurate, then 

compared to the asymmetric limits, symmetric limits will not provide enough 

coverage on the upper tail and will provide unnecessarily high coverage on the 

lower tail. Equation 3 provides the expected cost of a type I error where 

EC = Expected Cost of type I error. 

 

      2 1EC 1p c p c      (4) 

 

Based on the asymmetric limits,  
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        EC .25 .10 2,400,000 .75 .10 800,000 60,000 60,000 $120,000.       

 

On the other hand, based on the symmetric limits, 

 

        EC .5 .10 2,400,000 .5 .10 800,000 120,000 40,000 $160,000.       

 

Therefore, if the symmetric confidence limits are used in lieu of asymmetric 

limits, the decision maker has to incur an additional expected cost of $40,000 

(160,000 - 120,000). 

In this situation it is also possible to construct a one-sided confidence 

interval by constructing only the upper control limit or by constructing only the 

lower control limit. Since the cost of being above the upper control limit is greater 

than the cost of being below the lower control limit, the one-sided interval is 

employed by determining only the upper limit. In this case, Z.10 equals 1.28 and 

the upper limit is calculated as follows: 

 

 
1.2

UL 174.1 1.28 174.868.
4

     

 

However, if the one-sided confidence interval is employed in lieu of asymmetric 

two-sided limits, 

 

   .10 2,40,000 $240,000.EC     

 

If the one-sided confidence limit is used in lieu of asymmetric limits, the decision-

maker has to incur an additional expected cost of $120,000 (240,000 - 120,000). 

Production Application Revisited 

This situation was chosen to involve stainless steel rods that were mentioned 

earlier. In that situation a "type I error" would be considered to have occurred if 

the process is set up correctly and is yielding average lengths at or very close to 

24 inches, but a confidence interval indicates otherwise. If the interval does not 

contain the value 24 on the "low side", i.e., the entire interval is above 24, the 

process mean would be adjusted downward, while if it misses on the "high side" it 

would be adjusted upward. Either adjustment would actually be a mistake and 

would result in production of some discrepant parts. Adjusting downward would 
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result in some undersized parts at a cost of $2.00 each while adjusting upward 

would produce some oversized parts that will need to be reworked at a cost of 

$0.50 each. Since an unnecessary downward adjustment is four times as costly as 

an unnecessary upward adjustment, that would be preferred if it was to occur less 

often. In fact, in order to balance expected costs, it is preferred to make 

unnecessary downward adjustments only one quarter as often as unnecessary 

upward ones. Therefore, letting c1 = 2.00 and c2 = 0.50 gives 

 

 
 

2.00
0.8

2.00 .50
p 


, and 1 – p = 0.2. 

 

The following assumptions were made in order to construct the confidence 

interval. For illustrative purposes assume that  is known to equal 0.020 inches, 

the confidence level, (1 - ), is chosen to be 0.95, and a sample of 16 items gave a 

mean of 24.008 inches. The next step was to determine the appropriate values 

from the normal Z table to be used. 

p (α) = 0.8*0.05 = .04 and (1 - p)  = 0.2*0.05 = .01. The corresponding 

Z-values for the upper and lower limits respectively are Z0.04 = 1.75 and 

Z0.01 = 2.326. The resulting confidence limits are:  

 

 UL = 24.008 + 1.75 (0.020/4) = 24.0168 in. 

 

 LL = 24.008 – 2.326(0.020/4) = 23.9964 in. 

 

There was no evidence to suggest that the mean is other than 24 and no 

adjustment would be made at this time. 

If the traditional two-sided confidence interval with an equal split of alpha 

between the two tails used, Z.025 = 1.96 is used on both sides of the confidence 

interval, resulting in an upper limit and lower limit of 24.0178 and 23.9982 

respectively. 

If assumed that c1 and c2 are appropriate cost estimates, then compared to 

the asymmetric limits, the symmetric limits result in unnecessarily high coverage 

of the upper tail and insufficient coverage of the lower tail. Utilizing Equation 3, 

the per part expected cost of a Type I error can be calculated based on the 

asymmetric limits as follows: 

 

 EC = (.8)(.05)(.50) + (.2)(.05)(2.0) = .02 + .02 = $.04 
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On the other hand, based on the symmetric limits the per part expected cost is: 

 

 EC = (.5)(.05)(.50) + (.5)(.05)(2.00) = .0125 + .05 = $.0625 

 

Therefore, if the symmetric confidence limits are used in lieu of the 

asymmetric limits, the decision maker has to incur an additional expected cost per 

part of $.025(.0625 - .04). 

If the one-sided confidence interval was constructed by using only the lower 

control limit, Z.05 = 1.645 would be used and the lower limit is calculated as 

follows: 
.02

24.008 1.645 23.9976
16

LL    . However, if the one-sided 

confidence interval is utilized in lieu of asymmetric two-sided limits,  

 

 EC = (.05)(2.00) = $0.10 

 

If the one-sided confidence limit is used in lieu of asymmetric limits, the decision-

maker has to incur an additional expected cost per part of $.06 (.10 - .04). 

Unequal Tails for Two-Sided Hypothesis Tests about a Population 

Mean 

For two-sided hypothesis tests the approach is similar and one can use either the 

p-value approach with a nominal  or the usual comparison of a sample statistic 

(Z or t) to the appropriate critical value based on an unequal split of the nominal  

between the two tails. Note that the confidence interval approach reacted to the 

position of o relative to the sample mean while the hypothesis test approach 

reacted to the position of the sample mean relative to o. Therefore, the decision 

rule regarding the split of  between the tails is exactly opposite for the two 

approaches. That is, if Ho is rejected incorrectly on the high side, the resulting 

action is to adjust the process downward. On the other hand, if Ho is rejected 

incorrectly on the low side the process would be adjusted upward. 

Let c1 represent the cost of an unnecessary decrease in , occurring when Ho 

is rejected on the high side, and c2 represented the similar cost of an unnecessary 

increase in , occurring with a rejection on the low side. Then, for a given 

significance level of  it is supposed to put (1 - p) in the upper tail for the test 

procedure and p in the lower tail in order to balance the expected costs of a type 

I error between them. Thus, a two-sided test with unequal costs in the rejection 

areas, for the hypotheses Ho: µ = µo versus Ha: µ ≠ µo, assuming  is known, one 
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would reject Ho if the calculated Z-value is either greater than Z(1-p) or less 

than -Zp . Alternatively, Ho is rejected. If either 

 

  1
  or  p p

X Z X Z
n n

 

 
 


      (5) 

 

Production Application Utilizing the same example as the one that was 

presented earlier when confidence intervals are discussed, the hypotheses: 

Ho: µ = 24 versus Ha: µ ≠ 24 is stated. As before, the information includes the 

following: n = 16, σ = 0.020, α = 0.05, c1 = 2.00, c2 = 0.50 and X  = 24.008, 

p = 0.8. Concluding that  is less than 24 will result in adjusting the process 

upward, while concluding  is greater than 24 results in a downward adjustment. 

Therefore, the null hypothesis would be rejected if either 

 

  24 2.326 .020 4 24.0116 or ifX      

 

  24 1.750 .020 4 23.9913X      

 

Since the sample mean value of 24.008 is between the two numbers, Ho could not 

be rejected alternatively, 

 

 

24.008 24 .008
1.6

.02 .005

16

calc
X

calc

X
Z

n

Z









  

  (6) 

 

Since 1.6 < 2.326 and 1.6 > - 1.75, H0 cannot be rejected and is concluded that the 

mean length of steel rods does not appear to differ from 24 inches. 

 

Service Application Based on the service example described earlier 

involving the temperature of coffee, recall that c1 = $800,000, c2 = $2,400,000, 

n = 4, σ = 1.20, α = 0.10, X  = 174.1, and p = .25. Let’s assume that the two-sided 

hypotheses are stated as follows:  
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Ho: µ = 175 versus Ha: µ ≠ 175. Concluding that  is less than 175 will result in 

adjusting the process upward, while concluding that  is greater than 175 results 

in a downward adjustment of the temperature. Therefore, the null hypothesis 

would be rejected if either 

 

  175 1.44 1.2 2 175.864 or ifX      

 

  175 1.96 1.2 2 173.824X      

 

Since the sample mean value of 174.1 is between the two numbers, Ho could not 

be rejected. Alternatively, 

 

 
174.1 175 .90

1.5
1.2 .6

4

calc
X

X
Z

n





  
       

 

Since -1.5 < 1.44 and -1.5 > - 1.96, H0 is not rejected, and conclude that the 

average temperature of a cup of coffee is not significantly different than 175 

degrees.  

Future Research Considerations, Limitations and 
Conclusions  

Most introductory statistics texts fail to discuss one-sided confidence intervals and, 

other than a brief discussion without an example by Harnett and Soni (1991), 

none even consider the possibility of splitting α unequally between the two tails 

when the costs associated with the tails are different. One-sided confidence 

intervals should be standard coverage just as one-sided hypothesis tests are. Also, 

I believe that students should be made aware that the division of the type I risk 

between the tails should be decided by the costs rather than by convenience. In 

addition to the unequal division of type I error risk between the two tails for a 

single mean, that could also utilize this approach when testing a single proportion 

or a single variance, as well as testing the difference between two parameters. The 

latter case, though, is difficult to envision in a practical situation. Unfortunately, 

in many instances the consequences of committing a type I error cannot easily be 

expressed in dollar terms. In certain instances the difficulty of quantifying the cost 

of a type I error is the major drawback of this approach. There are many instances 
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in which cost estimates of committing a type I error are not available or cannot be 

estimated. In other situations it is simply cannot be deciphered the cost of making 

a type I error above the upper control limit vs. cost of making a type I error below 

the lower control limit. In these situations, even though it is not ideal, it may still 

be better to utilize the asymmetric limits in lieu of the symmetric limits based on 

subjective considerations. However, the asymmetric limits and the unequal split 

of alpha work best when cost estimates (c1 and c2) are available and are 

reasonably accurate. A topic for further consideration is the impact of unequal 

tails on the type II error and on balancing expected costs with respect to it as well. 
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