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Our interest is in estimating the stress-strength reliability R = P[Y < X], where X and Y 
follow the Lomax distribution with common scale parameter. We discuss the problem in 
the situation where the stress measurements and the strength measurements are both in 
terms of records. Firstly, we obtain the MLE of R in general case (the common scale 
parameter is unknown). The MLE of the three unknown parameters can be obtained by 
solving one non-linear equation. We provide a simple fixed point type algorithm to find 

the MLE. We propose percentile bootstrap confidence intervals of R. A Bayes point 
estimator of R, and the corresponding credible interval using the MCMC sampling 
technique have been proposed. Secondly, assuming the common scale parameter is known, 
the MLE of R is obtained. Using exact distributions of the MLEs of the two unknown 
parameters, we construct the exact confidence interval of R. In this case, Bayes estimators 
have been obtained using Lindley's approximations. Analysis of a simulated data set has 
been presented for illustrative purposes. Finally, the different proposed methods have been 

compared via Monte Carlo simulation study. 
 
Keywords: Stress-strength model, Lomax distribution, maximum likelihood 
estimation, bootstrap confidence intervals, credible intervals, Gibbs sampling, Markov 
chain Monte Carlo 
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Introduction 

The problem of estimating R = P[Y < X] arises in the context of mechanical 

reliability of a system with strength (or supply) X and stress (or demand) Y, and R 

is chosen as a measure of system reliability. The system fails if and only if at any 

time the applied stress is greater than its strength. This type of reliability model is 

known as the stress-strength model. This problem also arises in situations where X 

and Y represent lifetimes of two devices and one wants to estimate the probability 

that one fails before the other. For example, in biometrical studies, the random 

variable X may represent the remaining lifetime of a patient treated with a certain 

drug, and Y represent the remaining lifetime when treated by another drug. 

Review of literature 

Parametric and nonparametric inferences on R for several specific distributions of 

X and Y under different conditions have been found in the literature. Nadarajah 

(2004a; 2004b) estimated R = P[Y < X] from Logistic and Laplace distributions. 

Kundu and Gupta (2005) derived the maximum likelihood estimator of R and its 

asymptotic distribution when X and Y are independently distributed as generalized 

exponential distribution. Surles and Padgett (2001) considered the estimation of R 

where X and Y are Burr-X random variables. The theoretical and practical results 

on the theory and applications of the stress-strength relationships in industrial and 

economic systems during the last decades are collected and digested in Kotz, 

Lumelskii, and Pensky (2003). 

The class of life-time distributions (in particular, exponential and gamma) is 

considered by Nadarajah (2003). Estimation of R from exponential case with 

common location parameter (Baklizi & El-Masri, 2004), Burr-III (Mokhlis, 2005), 

beta (Nadarajah, 2005a), gamma (Nadarajah, 2005b), bivariate exponential 

(Nadarajah & Kotz, 2006), and Weibull (Kundu & Gupta, 2006) distributions were 

also studied. Inferences on reliability in two-parameter exponential stress-strength 

model (Krishnamoorthy, Mukherjee, & Guo, 2007) and ML estimation of system 

reliability for Gompertz distribution (Saraçoglu & Kaya, 2007) were considered. 

Kakade, Shirke, and Kundu (2008) studied the exponentiated Gumbel case. Baklizi 

(2008a; 2008b) studied some inference problems of estimating R based on record 

values. Kundu and Raqab (2009) considered the estimation of R when X and Y are 

independent and both having three parameter Weibull distribution with common 

shape and location parameters, but different scale parameters. 

Gupta and Peng (2009) studied the estimation of R in the context of 

proportional odds ratio model. Wang and Shi (2010) obtained the empirical Bayes 
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inference for the Burr type XII distribution based on records. Lomax (1954) used 

this distribution in the analysis of business failure data. Balkema and De Haan 

(1974) showed that this distribution arises as a limit distribution of residual lifetime 

at great age. The Lomax distribution includes increasing and decreasing hazard 

rates as well, and was shown to be useful for modeling and analyzing the life time 

data in medical and biological sciences and engineering, etc. 

Many statistical methods have been developed for this distribution. For a 

review of the Lomax distribution, see Habibullah and Ahsanullah (2000), 

Upadhyay and Peshwani (2003), and Abd Ellah (2003; 2006) and references therein. 

A great deal of research was done on estimating the parameters of a Lomax 

distribution using both classical and Bayesian techniques. The form of the 

probability density function (pdf) and cumulative distribution function (cdf) with 

the scale parameter λ and the shape parameter α of the Lomax distribution, denoted 

by Lomax(λ, α), are given, respectively, by 

 

    
 1

f , 0, , 0x x x
   

 
      (1) 

 

    F 1 , 0, , 0x x x
   


       (2) 

 

Record data arise in a wide variety of practical situations. Examples include 

industrial stress testing, meteorological analysis, hydrology, seismology, sporting, 

athletic events, and oil and mining surveys. Specifically, Let {Xj, j ≥ 1}be a 

sequence of independent identically continuous random variables. An observation 

Xj will be called an upper record value if its value exceeds that of all previous 

observations. That is, Xj is an upper record if Xj > Xi for every i < j. An analogous 

definition can be given for lower record values. Record values can be viewed as 

order statistics from a sample whose size is determined by the values and the order 

of occurrence of the observations. 

Maximum Likelihood Estimator of R 

Suppose that X is the strength of a component which is subject to stress Y. The 

system fails if and only if, at any time, the applied stress is greater than strength. 

Let X be a random variable whose pdf is a Lomax distribution with parameters λ 

and α, denoted by Lomax(λ, α), and Y is another Lomax distribution random 

variable with parameters λ and β, denoted by Lomax(λ, β), where X and Y are 

independent. Thus, 
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     
0
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

 



     





  (3) 

 

The interest is in estimating R when the data available on both X and Y are in the 

form of upper record values. To compute the MLE of R, compute the MLE of α and 

β. Suppose x = xU(1), xU(2),…, xU(n) is the first upper record values of size n from 

Lomax(λ, α), and y = yU(1), yU(2),…, yU(m) is an independent set of the first upper 

record values of size m from Lomax(λ, β). The likelihood functions for both 

observed records x and y are given, respectively, by 

 

        
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and 
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where f and F are the pdf and cdf of X ∼ Lomax(λ, α), respectively, and g and G are 

the pdf and cdf of Y ∼ Lomax(λ, β), respectively (Arnold, Balakrishnan, & 

Nagaraja, 1998). Substituting f, F, g and G in the likelihood functions, 

 

       1 1 U
L , | , exp lnn

n
x          

 
x x   (6) 

 

       2 2 U
L , | , exp lnm

m
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y y  , (7) 

 

where 

 

          
1 1

1 2U U

1 1

, , ,
n m

i j
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Therefore, the joint Log-likelihood function of the observed records x and y under 

Lomax distribution is 

 

 

      

        

U

U U U
1 1

, , | data ln ln ln ln

ln ln ln

n

n m

m i j
i j

n m x

y x y

         

   
 

     

      
  (9) 

 

The MLEs of λ, α, and β, say ̂ , ̂ , and ̂ , respectively, can be obtained as the 

solution of 

 

 

       1 1U U U U

ˆ ˆˆ ˆ 1 1
0

ˆ ˆ ˆ ˆ ˆ
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   
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
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ˆ ˆln ln 0

ˆ n

n
x  
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  U

ˆ ˆln ln 0
ˆ m

m
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
     . (12) 

 

From (11) and (12), 
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1

U
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x

n



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 

1

Uˆ ln 1
ˆ

m
y

m



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 , (14) 

 

and ̂  can be obtained as the solution of the following non-linear equation: 
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  (15) 

 

Therefore, ̂  can be obtained as the solution of the non-linear equation of the form 

 

  h     (16) 

 

where 
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 

  

 

Since ̂  is a fixed point solution of non-linear equation (15) and, therefore, it can 

be obtained by using a simple iterative scheme as follows: 

 

   1h j j    , (17) 

 

where λj is the jth iterate of ̂ . The iteration procedure should be stopped when 

1j j    is sufficiently small. Therefore, the MLE of R becomes 

 

 
ˆˆ

ˆ ˆ
R



 



  (18) 
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Bootstrap Confidence Intervals 

Confidence intervals are proposed based on the parametric bootstrap methods (i) 

percentile bootstrap method (Boot-p) based on the idea of Efron (1982) and (ii) 

bootstrap-t method (Boot-t) based on the idea of Hall (1988). The algorithms for 

estimating the confidence intervals of R using both methods are illustrated as 

follows: 

Percentile Bootstrap Method 

1. From the original two samples of upper records {xU(1), xU(2),…, xU(n)} and 

{yU(1), yU(2),…, yU(m)}, compute ML estimates ̂ , ̂ , ̂ , and R̂  

2. Using ̂  and ̂ , generate a bootstrap upper record sample 

      * * *

U 1 U 2 U
, , ,

n
x x x  and, similarly, using ̂  and ̂ , generate a bootstrap 

upper record sample       * * *

U 1 U 2 U
, , ,

m
y y x . Based on these data, we 

compute the bootstrap estimates, say 
*̂ , 

*̂ , *̂ , and 
*R̂  

3. Repeat step 2 Nboot times 

4. Let    *ˆV Px R x   be the cdf of 
*R̂ . Define  1

boot
ˆ VR x  for a given 

x. The approximate 100(1 – γ)% confidence interval of R is given by 

 

 Boot-p Boot-p
ˆ ˆ, 1

2 2
R R

     
    

    
 . (19) 

Bootstrap-t Method 

1. From the original two samples of upper records {xU(1), xU(2),…, xU(n)} and 

{yU(1), yU(2),…, yU(m)}, compute ML estimates ̂ , ̂ , ̂ , and R̂  

2. Using ̂  and ̂ , generate a bootstrap upper record sample 

      * * *

U 1 U 2 U
, , ,

n
x x x  and, similarly, using ̂  and ̂ , generate a bootstrap 

upper record sample       * * *

U 1 U 2 U
, , ,

m
y y x . Based on these data, we 

compute the bootstrap estimates, say 
*̂ , 

*̂ , *̂ , and compute the 

bootstrap estimate of R using (18), 
*R̂ , and following statistic: 
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 

 

*

*

*

ˆ ˆ

ˆVar

n R R
T

R


  , 

 

where  *ˆVar R  is obtained using the Delta method (Greene, 2000) 

3. Repeat step 2 N boot times 

4. For the T*values obtained in step 2, determine the upper and lower bounds 

of the 100(1 – γ)% confidence interval of R as follows: let H(x) = P(T* ≤ x) 

be the cdf of T*. For a given x, define 

 

      
1

12
Boot-t

ˆ ˆ ˆVar HR x R n R x


   . 

 

Here also,  ˆVar R  can be computed as same as computing the  *ˆVar R . 

The approximate 100(1 – γ)% confidence interval of R is given by 

 

 
Boot-t Boot-t

ˆ ˆ, 1
2 2

R R
     

    
    

  (20) 

Bayes Estimation of R Using MCMC 

The advantage of MCMC is that it not only gives a point estimate of the parameter, 

but also gives an interval estimation based on the final simulated empirical 

distribution. MCMC is essentially an iterative sampling algorithm, drawing values 

from the posterior distributions of the parameter in the concerned model. Consider 

the MCMC method to generate samples from the posterior distributions and then 

compute the Bayes estimates of R under upper record values from Lomax 

distribution. A wide variety of MCMC schemes are available. An important sub-

class of MCMC methods are Gibbs sampling and more general Metropolis-

Hastings (M-H) algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 

1953; Hastings, 1970). For more details about MCMC and the related 

methodologies, one can refer to Gentle (1998), Chen, Shao, and Ibrahim (2000), 

and Robert and Casella (2004). 

Now, obtain the Bayes estimation of R under assumption that the parameters 

(λ, α, β) are independent random variables. The Bayes estimate of R under the 

squared error loss and the corresponding credible interval by the Gibbs sampling 
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technique are considering. It is assumed that (λ, α, β) have independent gamma 

priors with the pdf's 
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where, a1, b1, a2, b2, a3, and b3 are chosen to reflect prior knowledge about λ, α, and 

β. The expression for the posterior can be obtained up to proportionality by 

multiplying the likelihood with the prior and this can be written as 
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 (24) 

 

where η1(x, λ), η2(y, λ) are given in (8) and 
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 
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  x y

  (25) 

 

Similarly, the full posterior conditional distribution for α and β are given by 
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  
 U*

2 2 2| ,data Gamma , ln 1
n

x
n a b 



  
       

  

  (26) 

 

  
 U*

3 3 3| ,data Gamma , ln 1
m

x
m a b 



  
       

  

 . (27) 

 

It can be seen that (26) is a gamma density with shape parameters (n + a2) and 

 U

2 ln 1
n

x
b



  
     

  

 and (27) is a gamma density with shape parameters (m + a2) 

and 
 U

3 ln 1
m

y
b



  
     

  

. Therefore, samples of α and β can be easily generated 

using any gamma generating routine. However, in our case, the conditional 

posterior distribution of λ equation (25) cannot be reduced analytically to well-

known distributions and, therefore, it is not possible to sample directly by standard 

methods. However, the plot of it shows that it is similar to a normal distribution. 

To generate random numbers from this distribution, use the Metropolis-Hastings 

method with normal proposal distribution. 

Therefore, the algorithm of Gibbs sampling is as follows: 

 

 Start with an 
  0 ˆ   and set = 1 

 Generate α(t) from 
 U

2 2Gamma , ln 1
n

x
n a b



  
      

  

  

 Generate β(t) from 
 U

3 3Gamma , ln 1
m

y
n a b



  
      

  

 

 Using Metropolis-Hastings (see Metropolis et al., 1953), generate λ(t) from 

(25) with the N(λ(t – 1), σ2) proposal distribution, where σ2 is variance-

covariance matrix 

 Compute λ(t), α(t), and β(t). Then compute 
 

 

   

t
t

t t
R



 



 

 Set t = t + 1 

 Repeat steps 2-5 N times 

 We obtain the Bayes MCMC point estimate of R as 
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    

1

1
E | data

N
i

i M

R R
N M  




  , (28) 

 

where M is the burn-in period (that is, a number of iterations before the 

stationary distribution is achieved) and posterior variance of R becomes 

 

       
2

1

1ˆ ˆV | data = E | data
N

i

i M

R R R
N M  




   (29) 

 

 To compute the credible intervals of R, usually, take the quintiles of the 

sample as the end points of the interval. Order R(M + 1), R(M + 2),…, R(N) as R(1), 

R(2),…, R(N – M). Then the 100(1 – γ)% symmetric credible interval is 

 

 
   1

2 2

,
N M N M

R R
     

      
    

 
 
 
 

  (30) 

Estimation of R if λ is Known 

Consider the estimation of R and the corresponding highest posterior density (HPD) 

intervals when λ is known. Assume xU(1), xU(2),…, xU(n) is the first upper record 

values observed form Lomax(λ, α), and yU(1), yU(2),…, yU(m) is the first upper record 

values observed form Lomax(λ, β). Based on these samples, we can estimate R. 

Recently works on interval estimation of R were discussed in Rezaeia, Tahmasbib, 

and Mahmoodi (2010), Baklizi (2008a; 2008b), and Shoukri, Chaudhary, and Al-

Halees (2005). First, consider the MLE of R and its distributional properties. 

MLE of R 

The MLE of R, R̂ , will be 

 

 
ˆˆ

ˆ ˆ
R



 



 , (31) 

 

where 
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   
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 . (32) 

 

Therefore, 
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m
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n
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   

        
   

 . (33) 

 

To study the confidence interval of R, consider the distribution of R̂  as well as the 

distributions of ̂  and ̂ . Consider first 
 

1

U
ˆ ln 1

ˆ

n
x

n




  
    

   

. Arnold et al. 

(1998) obtained the pdf of Rn as follows: 

 

         
1

f f ln 1 F 1 !
n

n

R n n nr r r n

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under Lomax(λ, α) 
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 . (35) 

 

Consequently, the pdf of 
1

ˆZ   as defined in (32) is given by 
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 1 1 11

1 1
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 . (36) 

 

This is the inverted gamma distribution. Similarly, the pdf of 
2

ˆZ   as defined in 

(32) is given by 
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 . (37) 
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Find the pdf of 
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 
 . 

 

Consider Z2/Z1. By the properties of the inverted gamma distribution and its relation 

with the gamma distribution, nα/Z1 ∼ Gamma(n, 1) and mβ/Z2 ∼ Gamma(m, 1). 

Hence 2

1 22 nn Z   and 2

2 22 mm Z  . By the independence of two random 

quantities, 
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and thus 2
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
 , a scaled F distribution. It follows that the distribution of 

R̂  is that of 
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, then 
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The 100(1 – γ)% confidence interval of R can be obtained as 
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 . (38) 

Bayes Estimation of R 

Obtain the Bayes estimation of R under assumption that the shape parameters α and 

β are random variables. It is assumed that α and β have independent gamma priors 

(22) and (23), respectively, with the parameters α ∼ Gamma(a2, b2) and 
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β ∼ Gamma(a3, b3). The posterior pdfs of α and β are given by (26) and (27), 

respectively, because priors α and β are independent. Using standard transformation 

techniques, and after some manipulations, the posterior pdf of R      is 

found to be 
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  (39) 

 

if 0 < r < 1, and 0 otherwise, where 
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 . (40) 

 

There is no explicit expression for the posterior mean or median of (39). However, 

the posterior mode can be easily obtained as 
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, A1 = n+a2 – 1, and 

A2 = m + a3 – 1. Note r ∈ (0, 1), (d/dr)fR(r) = 0 has only two roots. Using the fact 

that    
0

lim f 0Rr
d dr r

  and    
1

lim f 0Rr
d dr r

 , it follows that the 

density function fR(r) has a unique mode. The posterior mode can be obtained as 

the unique root of which lies between 0 and 1 of the following quadratic equation: 

 

    2

2 1 1 2 2 1 1 2 1 22 2 2 0r B B r B B A B A B A B        . (41) 

 

Consider the following loss function: 
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  
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a b
a b

a b





  
 

 
  (42) 

 

It is known that the Bayes estimate with respect to the above loss function (42) is 

the midpoint of the ‘modal interval’ of length 2ε of the posterior distribution. 

Therefore, the posterior mode is an approximate Bayes estimator of R with respect 

to the above loss function when the constant ε is small. 

The Bayes estimate of R under squared error loss cannot be computed 

analytically. Alternatively, using the approximate method of Lindley (1980), it can 

be easily seen that the approximate Bayes estimate of R, say BayesR , relative to 

squared error loss function is 
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where 
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 . (44) 

 

For comparison purposes, a highest posterior density (HPD) interval of R was 

computed (Soliman & Al-Aboud, 2008). Due to the unimodality of the posterior 

distribution (39), the 100(1 – γ)% HPD interval [ωL, ωU] for R is given by the 

simultaneous solution of the nonlinear equations 

 

      f | dat 1 , f | dat f | dat
U

L
R R L R Ur dr




       (45) 

 

A Newton-Raphson iteration can be invoked to solve the equations in (45) and 

thereby the HPD interval is obtained. 

Illustrative Example Using Simulated Data 

Six upper record values were simulated from Lomax(1, 2.1) and six upper record 

values from Lomax(1, 2.5), with RExact = 0.4565. The data were truncated after four 
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decimal places: the x upper record values are {1.0638, 1.4488, 7.2166, 7.8652, 

11.6919, 34.5528} and the corresponding y upper record values are {0.2355, 

1.0058, 1.5503, 2.0698, 12.8867, 13.0820}. 

Case (1) 

λ is unknown: Based on the above data, plot the profile log-likelihood function of 

λ in Figure 2. It is an upside down function and it has a unique maximum. Obtain 

the MLE of λ using the iterative procedure (16). Using the stopping criterion that 

the iteration stops whenever two consecutive values are less than 10-6, the iteration 

stops after 14 steps and it provides the MLE of ˆ 1.5232  . Using (13) and (14), 

obtain the MLEs of ˆ 1.8958   and 2. 42ˆ 65  , and hence 0. 67ˆ 41R  , from (18). 

The 95% confidence, credible intervals, and corresponding length are reported in 

Table 1 using exact confidence interval, parametric percentile bootstrap methods, 

and MCMC technique. 

Case (2) 

Estimate the parameters assuming λ is known to be 1. Obtain the MLEs of α and β 

as 1.7079 and 2.4080, respectively. Therefore, the MLE of R becomes 0. 50ˆ 41R  . 

The corresponding 95% confidence credible intervals and corresponding length are 

also reported in Table 1 using MLE, parametric percentile bootstrap methods, and 

MCMC technique. The posterior probability density function (39) of R for the given 

data set is plotted in Figure 2. The simulation number of R and Histogram of 

Rgenerated by MCMC method are plotted in Figure 1. 
 
 
Table 1. Two-sided 95 % confidence and credible intervals of R when λ = 1, α = 2.1, and 

β = 2.5 with prior 0 
 

 λ is unknown  λ is known 

Methods R̂  95% CI Length   R̂  95% CI Length 

MLE 0.4167 [0.1789, 0.7007] 0.5217  0.4150 [0.1779, 0.6992] 0.5213 

Boot-p 0.4131 [0.2150, 0.6246] 0.4096  0.4189 [0.1796, 0.6921] 0.5125 

Boot-t 0.4008 [0.0634, 0.6553] 0.5920  0.4036 [0.0271, 0.7306] 0.7035 

Bayes 0.4111 [0.1673, 0.6902] 0.5229   0.4192 [0.1883, 0.7135] 0.5252 
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Figure 1. Simulation number (left) and histogram (right) of R generated by MCMC 
method 

 

 
 

 
 
Figure 2. Profile likelihood of λ (left) and posterior pdf of R (right) for given data set 

presented above 

 

Simulation Results 

Some numerical experiments were performed to evaluate the behavior of the 

proposed methods for different samples, different parameter values, and different 

hyper parameters. Consider two cases separately to draw inference on R, namely 

when (i) common scale parameter λ is unknown and (ii) the common scale 

parameter λ is known. Consider the different sample sizes (n and m) and different 

hyper parameters (a1, b1, a2, b2, a3, b3). In first case, take λ = 2, α = 1.5, and β = 3. 

In the second case, take λ = 2, α = 3.2, and β = 2.1. Without loss of generality, take 

λ = 2 in both cases. All the results are based on 1000 replications. 

(i) λ is unknown. Compute the estimate of λ using the iterative algorithm (16) 

with the initial estimate 2. The iterative process stops when the difference between 

the two consecutive iterates are less than 10-7. Once λ is obtained, then estimate α 
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and β using (13) and (14), respectively. Finally, obtain the MLE of R using (18). 

To find the Bayes MCMC estimates, use the non-informative gamma priors for the 

three parameters (we call it prior 0). Non-informative prior 

(a1 = b1 = a2 = b2 = a3 = b3 = 0) provides prior distributions which are not proper. 

Also use informative priors, including prior 1, a1 = 2, b1 = 1, a2 = 3, b2 = 2, a3 = 3, 

and b3 = 1, with the values of previous parameters and compute the Bayes estimates 

and 95% probability intervals based on 10,000 MCMC samples (discard the first 

1,000 values as ‘burn-in’). The average Bayes estimates, means squared errors 

(MSEs), coverage percentages, and average probability interval lengths based on 

1000 replications are reported in Table 2. 

(ii) λ is known. Obtain the estimates of R by using the ML method and 

Lindley's approximation approach. Calculate the exact confidence intervals and 

HPD interval of R, using the same non-informative prior (prior 0) and an 

informative prior, including (prior 1) to compute the average estimates of R, MSEs, 

coverage percentages, and average probability interval lengths based on 1,000 

replications. The results are reported in Table 3. 
 
 
Table 2. Simulation results and estimation of the parameters 
 

  MLE  Bayes using MCMC 
(n, m) RExact Mean MSE   Mean MSE Length Coverage 

λ = 2, α = 1.5, β = 3 using prior 0 

(5, 5) 0.3333 0.3184 0.0205  0.3757 0.0115 0.5311 0.9900 

(6, 6)  0.3206 0.0203  0.3742 0.0113 0.4863 0.9810 

(7, 6)  0.3227 0.0182  0.3696 0.0111 0.4807 0.9750 

(7, 7)  0.3459 0.0169  0.3881 0.0110 0.4617 0.9900 

(8, 7)  0.3133 0.0154  0.3735 0.0107 0.4431 0.9850 

(8, 8)  0.3286 0.0146  0.3775 0.0106 0.4323 0.9950 

(9, 8)  0.3326 0.0141  0.3809 0.0104 0.4211 0.9750 

(9, 9)  0.3184 0.0140  0.3624 0.0089 0.4004 0.9550 

(10, 9)  0.3172 0.0131  0.3682 0.0087 0.3944 0.9550 

(10, 10)  0.3224 0.0126  0.3622 0.0082 0.3819 0.9650 
         

λ = 2, α = 1.5, β = 3 using prior 1 

(5, 5) 0.3333 0.3269 0.0202  0.3766 0.0055 0.4399 0.9930 

(6, 6)  0.3203 0.0201  0.3698 0.0053 0.4104 0.9950 

(7, 6)  0.3246 0.0184  0.3812 0.0052 0.4076 0.9950 

(7, 7)  0.3242 0.0151  0.3651 0.0048 0.3895 0.9760 

(8, 7)  0.3330 0.0149  0.3780 0.0047 0.3867 0.9950 

(8, 8)  0.3378 0.0148  0.3727 0.0045 0.3744 0.9770 

(9, 8)  0.3262 0.0146  0.3689 0.0042 0.3653 0.9900 

(9, 9)  0.3352 0.0131  0.3663 0.0041 0.3578 0.9660 

(10, 9)  0.3335 0.0127  0.3712 0.0039 0.3525 0.9850 

(10, 10)   0.3495 0.0124   0.3714 0.0037 0.3443 0.9950 
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Table 3. Simulation results and estimation of the parameters 

 

  MLE  Bayes using Lindely 

(n, m) RExact Mean MSE Length Coverage   Mean MSE Length Coverage 

λ = 2, α = 3.2, β = 2.1 using prior 0 

(5, 5) 0.6038 0.6407 0.0462 0.4535 0.9550  0.6276 0.0393 0.5851 0.9900 

(6, 6)  0.6334 0.0373 0.4361 0.9310  0.6298 0.0286 0.5787 0.9950 

(7, 6)  0.5954 0.0369 0.4356 0.9450  0.6356 0.0266 0.5308 0.9700 

(7, 7)  0.6288 0.0264 0.4259 0.9600  0.6194 0.0224 0.5294 0.9750 

(8, 7)  0.6176 0.0235 0.4162 0.9450  0.6211 0.0219 0.5122 0.9650 

(8, 8)  0.6129 0.0213 0.4146 0.9280  0.6241 0.0215 0.4941 0.9800 

(9, 8)  0.6099 0.1869 0.4100 0.9330  0.6197 0.0162 0.4677 0.9550 

(9, 9)  0.6245 0.0176 0.3930 0.9010  0.6407 0.0149 0.4512 0.9390 

(10, 9)  0.6021 0.0170 0.3922 0.8990  0.6378 0.0078 0.4189 0.9400 

(10, 10)  0.6059 0.0165 0.3820 0.9090  0.6395 0.0052 0.3972 0.9600 

           

λ = 2, α = 3.2, β = 2.1 using prior 0 

(5, 5) 0.6038 0.5997 0.0454 0.4732 0.9610  0.6084 0.0251 0.5933 0.9450 

(6, 6)  0.5964 0.0397 0.4469 0.9800  0.5832 0.0245 0.5532 0.9230 

(7, 6)  0.6156 0.0332 0.4348 0.9120  0.5985 0.0214 0.5159 0.9200 

(7, 7)  0.6001 0.0327 0.4221 0.9330  0.5979 0.0207 0.5144 0.9450 

(8, 7)  0.6077 0.0260 0.4201 0.9350  0.6193 0.0168 0.5083 0.9450 

(8, 8)  0.6065 0.0232 0.4131 0.9050  0.6115 0.0162 0.4899 0.9600 

(9, 8)  0.6236 0.0191 0.4022 0.9010  0.6261 0.0136 0.4570 0.9850 

(9, 9)  0.6201 0.0157 0.3986 0.9200  0.6283 0.0130 0.4047 0.9640 

(10, 9)  0.6029 0.0111 0.3930 0.9050  0.6296 0.0089 0.3995 0.9540 

(10, 10)   0.6016 0.0093 0.3822 0.9150   0.6194 0.0051 0.3755 0.9600 

Conclusion 

The problem of estimating R = P[Y < X] for the Lomax distributions was addressed, 

and classical and MCMC Bayesian analysis for R were developed when both 

samples on X and Y are in the form of upper record values, observed from the 

Lomax distribution with different one shape parameter. The general case when all 

the parameters are unknown was considered, and when the common scale 

parameter was known. In the first case, the MCMC method provided an alternative 

method for parameters estimation of the Lomax distribution and, also, for obtaining 

both point and interval estimators of the stress-strength reliability model R. It is 

more flexible when compared with the traditional methods, such as MLE, based on 

the set of upper record values. It is hoped this investigation will be useful for 

researchers dealing with the kind of data considered. 

Observe the following from the results: 
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 When the common scale parameter λ is unknown, it is observed that the 

Bayes estimator using MCMC technique works quite well. The MCMC 

sample were used to construct confidence intervals and that also works quite 

well. When the common scale parameter λ is known, the maximum 

likelihood estimator and Bayes estimators were proposed based on the 

approximate method of Lindley. The confidence interval based on the exact 

distribution of the MLE works quite very well. Also, a HPD interval was 

recommended 

 Tables 2 and 3 show that, when m = n and m, n increase, then MSEs and 

average confidence interval lengths, credible interval lengths of the MLEs, 

and Bayes estimators decrease, and that the coverage percentages are 

reached to the nominal level in most cases 

 From Tables 2 and 3, it is clear that the Bayes estimators based on 

informative priors (prior 1) perform much better than the Bayes estimators 

based on non-informative priors (prior 0) or MLEs in terms of biases, MSEs, 

and lengths of credible intervals. 
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