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Scalar invariance in factor models is important for comparing latent means. Little work has 
focused on invariance testing for other model parameters under various conditions. This 
simulation study assesses how partial factorial invariance influences invariance testing for 
model parameters. Type I error inflation and parameter bias were observed. 
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Introduction 

Confirmatory factor analysis (CFA) is generally considered the preferred factor 

analytic approach for assessing scale dimensionality when both theory and 

empirical evidence support a particular latent structure. CFA is a model-based 

approach to examining whether there is empirical support for a theoretical latent 

structure and if the factor structure is equivalent across groups. Questions related 

to model equivalency across groups falls under the category of measurement 

invariance (MI; Bollen, 1989; Byrne, Shavelson, & Muthén, 1989; Millsap, 2011). 

A lack of MI is present when an assessment is used to measure a psychological 

(e.g., motivation) or educational (e.g., mathematical) ability and that assessment 

produces different results (i.e., scores) for persons from different groups (e.g., boys 

vs. girls) when those persons are of equal status on the ability assessed (Bollen, 

1989; Drasgow & Kanfer, 1985; Millsap, 2011). Stated another way, the 

measurement properties of the instrument in relation to the ability assessed are the 
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same across pre-identified groups. Methods for identifying a lack of measurement 

invariance are well-studied. However, the influence of partial invariance, explained 

below, is not well-documented and becomes difficult to show analytically with 

many variables (Millsap, 2011). Thus, the goal of the current simulation study is to 

examine the impact of partial invariance on the invariance testing of factor model 

parameters (i.e., testing for factorial invariance), including factor intercepts, error 

variances, factor variances, factor covariances, and factor means under a variety of 

conditions, including differences in sample size, number of factors, and number of 

indicators per factor. 

Factorial Invariance 

Within the measurement invariance area, we focus our emphasis on factorial 

invariance (FI) examined through the use of multigroup CFA. FI has received 

increased attention in the past few years with sections of books devoted to the topic 

(e.g., Millsap, 2011; Schriesheim & Neider, 2001) as well as software being 

automated (e.g., MPLUS 7.2) to make the assessment of invariance accessible to a 

wide audience. This emphasis is a direct reflection of the essential role that 

assessment scores play in society (e.g., high-stakes decisions) ranging from 

education (e.g., teacher evaluations; international student achievement 

comparisons) to business (e.g., job applicant decisions). In fact, there is an 

increasing body of evidence that suggests that many observed differences that are 

cross-cultural may be contaminated by artifacts of measurement or a lack of 

factorial invariance (Baumgartner & Steenkamp, 2001; Church et al., 2011; Javaras 

& Ripley, 2007; Poortinga, 1989). These differences may be related to content 

meaning issues, translation problems, or even response style differences, and in 

turn, can result in incorrect decisions regarding individuals from different groups 

as well as group comparisons (French & Finch, 2008b; Millsap & Kwok, 2004; 

Steinmetz, 2013). 

The examination of the internal structure of the instrument for FI is an 

important step in providing psychometric evidence supporting the validity 

argument for score use (American Educational Research Association et al., 2014; 

Wu, Li, & Zumbo, 2007). FI refers to the situation in which the latent factor 

structure underlying a scale is equivalent across predefined groups (Meredith & 

Millsap, 1992; Millsap, 2011; Millsap & Kwok, 2004). FI can be further described 

in terms of the factor model parameters being equivalent across groups. The 

investigation of invariance is dependent on a specific variable of interest that 

separates the groups (e.g., biological sex). This latter definition implies that several 
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parameters (e.g., factor loadings, intercepts, error variances) are equal across 

groups. We define the different levels of invariance in the factor model below to 

make explicit how levels of FI relate to one another. 

Given that FI refers to a set of assumptions regarding the invariance of various 

parameters associated with the factor structure of an instrument, it is important to 

understand each aspect of FI. Millsap (2011) provides an excellent discussion of 

the levels of FI from weak, pattern, or metric invariance, which refers to pattern 

matrix invariance (Horn & McArdle, 1992; Millsap, 2011; Widaman & Reise, 

1997) to strong or scalar factorial invariance (SI) referring to factor model 

intercepts being equal across groups (e.g. Steenkamp & Baumgartner, 1998). The 

method for assessing the invariance assumptions is based upon multiple groups 

confirmatory factor analysis (MGCFA) which begins by ensuring the general or 

configural form (CI) of the factor model is present across groups, where only the 

number of latent variables present, and the correspondence of observed indicators 

to factors is the same for all groups in the population. The weak and strong forms 

of invariance place corresponding constraints on the model. The presence of FI 

implies that the latent variables are being measured in the same way for the 

population subgroups under consideration (Wicherts & Dolan, 2010). Said another 

way, “the question of factorial invariance concerns the extent to which the factor 

structure underlying the measured variables is the same across multiple populations”  

(Millsap, 2011, p. 73). This implies that scores on the observed manifestation of 

the latent variable (i.e. expected score on the scale) are the same for members of 

different groups who have the same level of the latent trait being measured 

(Wicherts & Dolan, 2010). 

When scalar variance does not hold, it is difficult, if not impossible, to know 

the extent to which group differences on a mean scale score are due to group 

differences on the latent trait of interest, or due to group differences on the 

intercepts (Steinmetz, 2013). The dependency of the differences in scale score 

means on a lack of invariance exists in applied studies (e.g., French & 

Mantzicopoulos, 2007). In addition to the three forms of invariance mentioned, it 

is also possible to assess whether there is group invariance with respect to the 

unique indicator variance (δ). This strict factorial invariance (SFI; Millsap, 2011) 

occurs when the factor loadings, intercepts, and unique variances are invariant. In 

addition, SFI is necessary in order to attribute group differences in the mean and 

covariance structure of the observed indicators to corresponding differences at the 

latent variable level (Millsap, 2011). 
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Multiple Group Confirmatory Factor Analysis (MGCFA) 

FI can be assessed using MGCFA, where the standard CFA model is expressed as 

(Bollen, 1989): 

 

 
g g g g gx         (1) 

 

It is possible to have indicators (xg), intercepts (τg), loadings (Λg), and unique 

variances (δg) that are specific to each group within the population. Likewise, the 

indicator covariance matrix and associated latent means can be expressed 

respectively as: 

 

 ,g g g g g g g g g    Σ Λ Ψ Λ Θ Λ Κ   (2) 

 

such that groups are allowed unique observed covariance matrices (Σg), factor 

loadings (Λg), factor covariance matrices (Ψg), and unique error matrices (Θg). In 

addition, the observed mean for group g is also a function of the intercept for that 

group (τg), the loadings, and the factor mean (Kg). This implies the factor model 

holds in each population (Millsap, 2011).  

MGCFA can be used to test each level or constraint on the factor model to 

evaluate FI that was described previously, using a series of nested models. For 

example, to assess CI, a model is fit such that the number of factors is the same 

across groups, as are the indicators associated with each of these factors. The model 

specification allows intercepts, loadings, and unique variances to vary across 

groups. Good model fit, based on appropriate indices (e.g., chi-square, CFI; Hu & 

Bentler, 1999), would indicate the presence of CI, and is necessary before the 

investigation of other types of invariance and placing additional constraints on the 

model. Often model comparison is made using a difference in chi-square (χ2) 

statistic values between the less and more restrictive values. The use of the χ2 

statistic is somewhat problematic as a measure of absolute model fit (Bollen, 1989). 

However, there is evidence that the 2

difference  statistic is an accurate tool for 

comparing the fit of two nested models (e.g., French & Finch, 2006). Other fit 

indices have been suggested (e.g., change in CFI, RMSEA) to asses FI. Given the 

lack of clear guidelines on the accuracy of the amount of change needed to indicate 

differences, the chi-square statistic remains the focus of this study. 
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Partial Factorial Invariance 

Although FI is desirable for educational and psychological scales to possess, in 

practice it may be a rare commodity (Millsap & Meredith, 2007). For example, it 

seems with various types of scales it is unusual for complete FI to exist (Church et 

al., 2011; French & Gotch, 2013; French & Mantzicopoulos, 2007). Group equality 

on some but not all factor parameters is known as partial factorial invariance (PI) 

and does exist on major instruments such as intelligence measures (Maller & 

French, 2004). In one of the first studies to describe PI, Byrne et al. (1989) explored 

how researchers identify specific factor parameters (e.g. loadings) that are not 

group invariant after an initial rejection of the complete invariance hypothesis. 

Using this sensitivity analysis approach, it is possible to identify and release 

specific model parameters that differ across groups, leading to a PI model (Millsap, 

2011). If PI is indeed found, the next question for researchers is to determine 

whether these differences in measurement structure are meaningful in practice. 

While the question of whether or not invariance holds can be addressed in a more 

or less straightforward manner using the MGCFA methodology described above, 

the issue of what to do about PI is not so clearly addressed, nor is the impact of PI 

at one level on assessing invariance at another level well understood. 

Goals of the Current Study 

The use of MGCFA for testing FI and latent mean differences has experienced 

growth (Vandenberg & Lance, 2000), with a focus on appropriate practices for 

testing invariance with attention on accuracy (French & Finch, 2006; Meade & 

Lautenschlager, 2004; Yoon & Millsap, 2007). Much of this work has stemmed 

from recommendations for researchers and practitioners not to assume the universal 

accuracy of MGCFA across many data conditions. While this recommendation has 

been followed with the implementation of Monte Carlo studies (French & Finch, 

2006; Meade & Lautenschlager, 2004; Yoon & Millsap, 2007), gaps remain in the 

research on several issues related to FI and MGCFA. In particular, MGCFA 

procedures for identification of a lack of FI require further examination to evaluate 

accuracy under various conditions where no solution may be fully known with 

analytic work. There remains uncertainty as to the influence of PI on the assessment 

of invariance of factor model parameters, including intercepts, error variances, 

factor variances, and factor means. 

There is evidence in the latent variable modeling literature that of the presence 

of non-invariance for one model parameter can lead to inflated Type I error rates 

for detection of non-invariance for another model parameter. In the context of IRT, 
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for example, group differences in item difficulty parameters are associated with 

inflated Type I error rates for the detection of group differences on the item 

discrimination parameter (French & Finch, 2008b), even in the presence of no 

population differences in discrimination parameters across groups. Similarly, when 

item discrimination values differ across groups, the Type I error rate for detecting 

group differences in item difficulty values are inflated. These findings have been 

documented in simulation work, by reviewers of such work, and in applied analysis 

(Finch & French, 2008a). Given the close link between IRT and CFA models (e.g. 

McDonald, 1999), the same confound may be present for MGCFA analysis. That 

is, group difference in factor loadings could lead to inflation of the Type I error rate 

for testing group differences on factor intercepts, error variances, factor variances, 

factor covariances, and factor means. Such inflated Type I error rates may in turn 

be especially problematic for specification searches (Millsap, 2011) to identify true 

group differences on CFA model parameters. Ideally, an analytic solution to 

address this issue could be employed. However, as noted by Millsap and Kwok 

(2004) deriving such an analytic solution becomes exceedingly difficult for models 

that consist of more than one latent variable and a small number of indicators, 

leading to the necessity of simulation research. 

Given that most real world applications of CFA involve models with multiple 

factors and multiple indicators, an analytic solution to investigate the impact of 

non-invariant factor loadings on testing invariance for other model parameters will 

likely be too limited in scope to be informative for most applications. Thus, we turn 

to simulations to observe whether the presence of non-invariant loading parameters 

in a CFA model impacts the testing of invariance for other model parameters as has 

been reported for a similar situation in the context of IRT (Finch & French, 2008a). 

Moreover, the examination of bias of parameter estimates in such situations is 

difficult to derive analytically, whereas through simulation we can determine how 

PI influences bias (Boomsma, 2013). 

Thus, the goal of this study was to begin providing insight to the impact of PI 

on FI assessment by addressing two research questions: 

 

1. What is the influence of partial factor loading invariance on Type I 

error and power rates for invariance testing of other model parameters 

beyond the factor loadings? Specifically, what is the influence of 

incorrectly modeling such partial invariance? We hypothesize that 

incorrectly modeling or ignoring factor loading differences across 

groups will result in inflated Type I error rates when testing the 

invariance of other model parameters. 
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2. What influence does partial factor loading invariance have on 

estimation of other factor model parameters, including intercepts, 

error variances, factor variances, factor covariances, and factor 

means? We hypothesize that the estimates of other model parameters 

will be attenuated for the group with the larger values when groups’ 

factor loading differences are ignored. 
 
 

 
 
Figure 1. Example model used to simulate the data 

 

Methods 

To test our hypotheses, a Monte Carlo Simulation study (1000 replications per 

combination of conditions) was conducted. All simulations were conducted using 

Mplus 7.1 (Muthén & Muthén, 2013). An example of the model used to simulate 

the data appears in Figure 1. This example is the simplest model used, with 2 factors 

and 3 indicators per factor. Two groups were simulated across all conditions. The 

manipulated variables are described below. These conditions were completely 

crossed with one another, yielding a total of 240 different simulated conditions, or 
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design cells. In essence, each model parameter for which invariance was assessed 

can be viewed as representing a unique simulation study. The parameters that were 

tested for differences in the population were the factor intercepts, error variances, 

factor variances, factor covariances, and factor means. For each of these parameters 

group differences were simulated at varying levels, which are described below. In 

addition, when assessing group invariance for each of these parameters, factor 

loading values were allowed to vary at different levels. The experimental factors 

are described below. We also include sample Mplus code for the models in the 

appendix. 

Experimental Factors Manipulated in the Simulation 

Percent of factor loading PI  To assess the influence of factor 

loading PI on assessment of other model parameters, loadings were simulated to 

differ between the groups. Specifically, in one condition loadings were simulated 

to be equal across groups, while in a second case, they were simulated to differ by 

0.25, 0.50, and 1.00. The latter two conditions were included in order to assess the 

performance of the MGCFA model for invariance testing in more extreme cases of 

factor noninvariance. For each noninvariant condition, 34% of loadings lacked 

invariance. This allowed for the conditions where these differences could be 

ignored to examine what occurs in the case of incorrect modeling of PI or correct 

modeling of PI. Such conditions can occur with software with automatic testing 

routines with certain models (e.g., Mplus Analysis = Configural, Metric, Scalar 

with cross-loadings). Finally, in order to assess the performance of the MGCFA in 

extreme cases of noninvariance, 68% of the factor loadings were allowed to differ 

between groups. 

 

Modeling of factor loading noninvariance  The modeling of 

factor loading noninvariance was either correctly specified or incorrectly specified. 

Correct modeling meant that when the loadings were invariant, they were modeled 

to be so, whereas when they were not invariant they were correctly modeled to be 

noninvariant. Finally, incorrect modeling meant that when the factor loadings were 

simulated to be noninvariant, they were incorrectly modeled as being invariant. 

Again, this could be a result of Type II errors, automatic software routines, or 

direction of invariance testing. 

 

Model parameter group differences  For each model parameter 

tested for invariance, several conditions were used for group differences. The 
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intercept and error variances were simulated to be different across groups on the 

same indicator variables for which the factor loadings were simulated to be 

different. All differences were unidirectional (e.g., favoring one group). The 

intercept values and factor means differed by 0, .2, .5 or .8, representing no 

difference to a large difference (Cohen, 1988). These were standardized value 

differences. That is, intercept and latent mean differences are absolute differences 

whereby one group had a value of 0 for the intercept or factor mean, and the other 

group had a value of 0.0, 0.2, 0.5, or 0.8. The covariances between factors had 

standardized values (i.e., correlations) of either 0.0, 0.1, 0.3, or 0.5, representing 

differences. The factor variance for one group was set to 1 across conditions. The 

variance of the second group was then varied from 1 (factor variance invariance), 

1.33, 1.66, and 2.00, in order to reflect different levels of factor variance 

noninvariance. In the simulated models, the assumption was made that there was 

no specific variance (i.e. all error variance) and the value of the theta-deltas was 1.0 

minus the square of the respective factor loading, as we set the loading values. This 

minimized potential confounding factors in examining the results. The differences 

simulated reflect a range of values that represent typical small to large differences. 

These were not tied to any content area as Cohen (1988) suggests but were broad 

strokes to capture situations that could be applied to many areas of work. In other 

words, the goal was to study a range of potential group parameter differences from 

none through moderate and large. 

 

Sample size  The total sample was simulated to be 300, 1000, and 2000 

with equal group sizes. These values are designed to represent cases from the 

smallest samples generally seen in practice (French & Mantzicopoulos, 2007), to 

what would be considered a large sample in most social science applications and 

common conditions in simulation work (French & Finch, 2006; 2008b; Meade & 

Lautenschlager, 2004; Steinmetz, 2013) while maintaining adequate statistical 

power (Hancock & French, 2013). The smallest total sample size used here was 

300, meaning that each group contained 150 individuals. Samples smaller than that 

were not used as it could lead to unstable parameter estimates, particularly for the 

more complex models (Kline, 2011), and confound the results. 

 

Number of factors and indicators per factor   The number of 

indicators per factor simulated was 3 or 6 which were completely crossed with the 

number of factors of either 2 or 4. This range of values is designed to reflect both 

extensively measured and less extensively measured constructs, and was in accord 

with prior research in this area (e.g. Millsap & Kwok, 2004; Steinmetz, 2013) to 
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facilitate generalizability. In addition, the models used in this simulation study are 

similar to models published in actual practice (e.g. Bavarian et al., 2014; Hesse & 

Klingberg, 2014; Tam, 2014). 

 

Percent of invariance in factor intercepts, error variances, factor 

variances, factor covariances, and factor means   Three levels of 

the amount of non-invariance across groups were simulated. To assess Type I error 

(i.e., false identification of a lack of invariance) of the MGCFA methods employed, 

the case of complete invariance (i.e. no differences in model parameters across 

groups) was simulated. In addition, to assess power (i.e., correct identification of a 

lack of invariance) 34% of target model parameters lacked invariance. 

 

Response variables   Several outcome variables were examined 

including Type I error rates and power for the chi-square difference test 2
 at 

α = 0.05, parameter estimation bias (sample parameter estimate – population 

parameter value), standard deviation of the parameter estimates, mean square error 

(MSE) for parameter estimates, and parameter coverage rates for 95% confidence 

intervals. To determine which of the manipulated variables or their interactions 

significantly impacted the Type I error and power rates, analysis of variance 

(ANOVA) was used (Paxton, Curran, Bollen, Kirby, & Chen, 2001), in addition to 

the effect size measure (η2) to assist with identifying effects worth noting. The 

outcome variable for the ANOVA model was the total number of the 1000 

replications for each combination of conditions in which the null hypothesis of 

invariance was rejected. With regard to criteria for acceptable performance, Type I 

error rates were considered acceptable if they were at the nominal 0.05 level, just 

as coverage rates for parameter estimates were acceptable when the actual coverage 

was at the nominal 0.95 value. For power, we considered the typical value of 0.80 

to be the criterion. 

Results 

Model Parameter Invariance: Type I Error and Power when Factor 

Loadings Differed by 0.5 or 1.0 

Following are the results for Type I error and power rates for assessing the 

invariance assumption for the various model parameters. As noted above, 

simulations were conducted for factor loading differences between groups of 0.25, 

0.50, and 1.00. Results showed that the Type I error rates for assessing invariance 
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of other model parameters when factor loadings differed between the groups by 

0.50 and 1.00 were highly inflated when the lack of loading invariance was not 

properly modeled. When group loading differences were not properly modeled and 

the loadings differed by 0.50 or 1.00, the Type I error rates for incorrectly 

identifying noninvariance for factor intercepts, error variances, factor variances, 

factor covariances, and factor means were at or above 0.80 in the 34% noninvariant 

case, and at or above 0.95 in the 68% noninvariant case. These inflated rates were 

present regardless of the other manipulated conditions, including sample size, 

number of indicators, and number of factors. On the other hand, when the lack of 

factor loading invariance was correctly modeled, the Type I error rates for assessing 

invariance of the other model parameters were between 0.045 and 0.058 for all 

model parameters, across sample size, number of factors, and number of indicators. 

Given the uniformly inflated Type I error rates for the incorrectly modeled factor 

loading noninvariance condition, power for this case was not investigated for any 

of the model parameters, as these rates cannot be interpreted with any confidence. 

When the factor loadings were correctly modeled, power rates in the 0.50 and 

1.00 factor loading difference cases were very similar to power rates in the 0.25 

factor loading difference condition. Therefore, in order to save space, we report 

only the power values for the 0.25 factor loading difference condition in the 

following section of the paper. In addition, given that the Type I error rates were 

extremely inflated when the factor loadings were simulated to differ between 

groups by 0.50 and 1.00, and that they were essentially identical to those obtained 

when the loadings differed by 0.25 and this lack of invariance was correctly 

modeled, it was felt that reporting results for the two larger noninvariant conditions 

would be redundant. Therefore, the results that appear below reflect only the cases 

where the loadings were truly invariant, or where they differed between the groups 

by 0.25. 

Intercept Invariance: Type I Error and Power 

The ANOVA for the Type I error rate reveal no significant interactions or main 

effects (p = 0.05). The Type I error rate, parameter bias for the indicators on which 

intercepts were simulated to differ, parameter standard deviation (SD), mean 

squared error (MSE), and coverage rates appear in Table 1. Across conditions, the 

Type I error rate for 2
 was at the nominal 0.05 rate. Parameter estimates were 

somewhat negatively biased, and coverage rates were close to the nominal 0.95 

both when the intercepts were constrained to be equal and when they were not. In 

addition, the SD and MSE of the parameter estimates were very comparable under 
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both unconstrained and constrained conditions. Notably given the goals of this 

study, the Type I error rate was not influenced by factor loading PI, nor by whether 

that PI was correctly or incorrectly modeled. 

The ANOVA identified sample size (N) as being significantly related to 

power rates (F2,88 = 8.4, p < 0.001, η2 = 0.16), as well as degree of intercept 

difference (F2,88 = 41.8, p < 0.001, η2 = 0.59). Power rates increased from 0.69 for 

a total sample size of 300, to nearly 1.00 for samples of 1000 and 2000. Table 1 

includes the power, bias, SD, MSE, and coverage rates for the unconstrained and 

constrained modeling conditions, by the degree of intercept difference. 
 
 
Table 1. Intercept invariance testing Type I error rate and power, parameter bias, 

parameter estimate standard deviation, MSE, and coverage rates for intercept across 
simulated conditions: Unconstrained parameters/Constrained parameters 
 

Difference Type I error Bias SD MSE Coverage 

0.0 0.051 -0.01 / -0.01 0.06 / 0.05 0.005 / 0.004 0.93 / 0.93 

 Power     

0.2 0.780 0.03 / -0.08 0.06 / 0.05 0.010 / 0.020 0.93 / 0.92 

0.5 0.990 0.05 / -0.15 0.06 / 0.05 0.030 / 0.050 0.92 / 0.66 

0.8 1.000 0.05 / -0.25 0.06 / 0.06 0.030 / 0.110 0.93 / 0.54 

 
 

Power for detecting intercept differences increased concomitantly with 

increases in the population difference between the groups’ intercept values, which 

would be expected. In addition, for the group with the larger intercept when the 

intercept estimates were simulated to differ, the parameter estimate displayed 

greater bias than when no group differences were simulated (Table 1). For the 

unconstrained condition, there was a positive bias in the intercept estimate for the 

group with the larger intercept, while for the constrained condition there was 

negative bias that increased with greater group differences in the population 

intercept value. This result was expected for the constrained condition because the 

groups’ intercepts were forced to be equal, thus driving down the value for the 

group with the larger intercept. In addition, whereas the SD of the estimates was 

comparable for both conditions across the size of intercept difference, the MSE 

increased and coverage decreased with greater such differences in the constrained 

condition but remained largely unchanged in the unconstrained case. Additionally, 

as was true with the Type I error, the loading PI condition, along with how it was 

modeled, had no impact on the assessment of intercept differences. 
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Table 2. Error variance invariance testing Type I error rate, parameter bias, parameter 

estimate standard deviation, MSE, and coverage rates for error variance by partial 
loading invariance and modeling conditions, and by number of factors and indicators per 
factor: Unconstrained parameters/Constrained parameters 
 

Loading invariance Type I error Bias SD MSE Coverage 

Full  0.05 0.002 / 0.002 0.01 / 0.01 0.001 / 0.001 0.94 / 0.94 

Partial correct  0.05 -0.002 / 0.002 0.01 / 0.01 0.001 / 0.001 0.96 / 0.94 

Partial incorrect 0.44 -0.010 / -0.020 0.01 / 0.01 0.010 / 0.010 0.62 / 0.57 

      

Correct modeling of partial loading invariance or Full loading invariance 

Factors / indicators per factor Type I error Bias SD MSE Coverage 

2 / 3 0.05 0.002 / 0.002 0.01 / 0.01 0.0020 / 0.0010 0.94 / 0.95 

2 / 6 0.05 0.002 / 0.002 0.01 / 0.01 0.0010 / 0.0010 0.95 / 0.95 

4 / 3 0.05 -0.010 / 0.002 0.01 / 0.01 0.0050 / 0.0010 0.78 / 0.94 

4 / 6 0.05 0.002 / 0.002 0.01 / 0.01 0.0003 / 0.0003 0.94 / 0.94 

      

Incorrect modeling of partial loading invariance 

Factors / indicators per factor Type I error Bias SD MSE Coverage 

2 / 3 0.34 0.005 / -0.001 0.01 / 0.01 0.003 / 0.002 0.93 / 0.94 

2 / 6 0.18 0.000 / -0.002 0.01 / 0.01 0.001 / 0.001 0.95 / 0.92 

4 / 3 0.98 -0.040 / -0.060 0.01 / 0.01 0.020 / 0.040 0.08 / 0.02 

4 / 6 0.27 -0.010 / -0.010 0.01 / 0.01 0.002 / 0.002 0.53 / 0.41 

Error Variances: Type I Error and Power 

The ANOVA identified the interaction between factor loading difference and 

modeling of that difference (F1,88 = 16.8, p < 0.001, η2 = 0.51), and the interaction 

of the number of factors by number of indicators per factor (F1,88 = 6.2, p = 0.024, 

η2 = 0.28) as significantly related to the Type I error rate for detecting differences 

in group error variances. Table 2 contains Type I error rates, parameter bias, SD, 

MSE, and coverage rates by loading PI and modeling conditions. These results 

show that when the loadings are fully invariant, or PI with the invariance being 

correctly modeled, the Type I error rates are at the nominal 0.05 level. However, 

when the loadings are PI but modeled as fully invariant, the Type I error rate for 

testing error variance was inflated to 0.44. A further examination of the results in 

Table 2 reveals that under the fully invariant or partial correct conditions, parameter 

bias, SD, MSE are all relatively low, and the coverage rates are at the nominal level 

for both the unconstrained and constrained models. However, parameter bias was 

5 times larger for the unconstrained model and 10 times larger for the constrained 

model in the partial incorrect condition, while the coverage rates for both modeling 

conditions was well below the nominal 0.95 level. 
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In addition, these results in Table 2 are divided into those in which full factor 

loading held, or loading PI was correctly modeled, and those in which loading PI 

was not correctly modeled. The Type I error rate was found to be at the nominal 

(0.05) level when loadings were fully invariant or PI was correctly modeled. 

However, when loadings were PI but not correctly modeled the error rates were 

inflated, with greater inflation occurring for 3 indicators per factor. In addition, the 

greatest inflation occurred when there were 4 factors each with 3 indicators. A 

condition for which parameter estimate bias was also greatest, and coverage was 

lowest. 

Error Variances: Power 

The ANOVA indicated that none of the manipulated factors were significantly 

related to the power to detect error noninvariance. Across conditions, power for 

detecting error noninvariance was extremely high (0.99). There was a much larger 

negative bias for the constrained parameter model than in the unconstrained case 

(-0.060 vs -0.003). In addition, the MSE was more than 10 times larger for the 

constrained model, and displayed coverage rates of just 0.10, well below the 

nominal 0.95 level. For the unconstrained model, the parameter coverage rate was 

also below the nominal level, at 0.83, but much higher than for the constrained 

model. Of particular interest in this study, power rates were not significantly 

influenced by PI of the factor loadings, unlike in the Type I error case. This result 

would appear to be in large part due to the extremely high power for detecting error 

noninvariance across conditions. 

Factor Covariance: Type I Error and Power 

With respect to the Type I error rate when testing the invariance hypothesis of factor 

covariances, the ANOVA results showed that the interaction of factor loading 

difference and the modeling of that difference (F2,35 = 8.8, p = 0.001, η2 = 0.35) 

was statistically significant. Table 3 includes the outcome variables of interest by 

the factor loading difference and modeling of the difference, and by the number of 

factors. The Type I error rate showed some inflation when there was loading PI that 

was not properly modeled. Accompanying this Type I error inflation was greater 

negative bias of parameter estimates, particularly for the constrained parameter 

model, which in turn was associated with inflation of the MSE, again particularly 

in the case of incorrect modeling of the factor loading PI. Finally, coverage rates 

were lower in the PI incorrect condition for both the constrained and unconstrained 

model, with coverage higher for the unconstrained model. 
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The ANOVA for power in testing covariance parameter invariance identified 

sample size as the only statistically significant variable (F2,35 = 5.7, p = 0.004, 

η2 = 0.12). Power rates, bias, SD, MSE, and coverage rates appear in Table 4. 

Power increased from 0.61 for N = 300 to 0.88 for N = 2000. Parameter bias, MSE, 

and coverage rates were largely unaffected by sample size, though SD for both the 

constrained and unconstrained models was lower for the two larger sample sizes 

than for N = 300. In addition, bias was lower for the unconstrained model as 

compared to the constrained model, and MSE and coverage rates were higher. 

Power for detecting noninvariant factor covariances was not found to be influenced 

by loading PI or how it was modeled. 

ANOVA did not identify any significant effects for the Type I error rate in 

the detection of factor mean differences between groups. In this case, bias, SD, 

MSE, and coverage rates appear only for the unconstrained model because in the 

constrained case, both groups’ means were set equal to 0. The Type I error rate for 

testing group mean invariance was at the nominal 0.05 rate, with low bias for the 

mean that was allowed to vary, and a coverage rate at the nominal 0.95 level. Of 

particular interest was the fact that the loading PI condition and the way that this 

was modeled, were not significantly related to the Type I error rate when testing 

for factor mean differences between groups. 
 
 
Table 3. Factor covariance invariance testing Type I error rate, parameter bias, 
parameter estimate standard deviation, MSE, and coverage rates for testing covariance 
invariance by partial loading invariance and modeling conditions: Unconstrained 
parameters/Constrained parameters 
 

Loading invariance Type I error Bias SD MSE Coverage 

Full 0.05 -0.0001 / -0.0900 0.07 / 0.05 0.12 / 0.19 0.96 / 0.82 

Partial correct 0.05 0.0002 / -0.1000 0.07 / 0.05 0.19 / 0.25 0.93 / 0.80 

Partial incorrect 0.07 -0.0003 / -0.2100 0.07 / 0.07 0.19 / 0.37 0.91 / 0.71 

 
 
Table 4. Factor covariance invariance testing power, parameter bias, parameter estimate 

standard deviation, MSE, and coverage rates for intercept by sample size (N): 
Unconstrained parameters/Constrained parameters 
 

N Power Bias SD MSE Coverage 

150 / 150 0.61 -0.002 / -0.130 0.10 / 0.09 0.20 / 0.24 0.94 / 0.83 

500 / 500 0.76 -0.004 / -0.140 0.06 / 0.05 0.19 / 0.24 0.94 / 0.80 

1000 / 1000 0.88 0.007 / -0.140 0.04 / 0.04 0.19 / 0.24 0.95 / 0.82 
 

Factor means: Type I error and Power 
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Table 5. Factor mean invariance testing power, parameter bias, parameter estimate 

standard deviation, MSE, and coverage rates for intercept by sample size (N): 
Unconstrained parameters 
 

N Power Bias SD MSE Coverage 

150 / 150 0.78 -0.015 0.14 0.35 0.93 

500 / 500 0.95 -0.013 0.07 0.33 0.94 

1000 / 1000 0.99 -0.013 0.05 0.30 0.93 

      

Difference Power Bias SD MSE Coverage 

0.2 0.73 -0.006 0.09 0.05 0.96 

0.5 0.99 -0.014 0.09 0.27 0.94 

0.8 1.00 -0.038 0.09 0.71 0.90 

 
 

The ANOVA results showed that the sample size (F2,91 = 22.3, p < 0.001, 

η2 = 0.33) and the degree of factor mean difference (F2,91 = 46.4, p < 0.001, 

η2 = 0.50) were significantly related to power rates. Table 5 includes power, bias, 

SD, MSE, and coverage rates by sample size, and group factor mean difference, for 

the unconstrained model only. Power increased concomitantly with sample size, as 

would be expected. Furthermore, power was above 0.75 in the worst case, and at 

0.95 or above for samples of 1000 or more. Parameter bias appears to not have been 

influenced by sample size, though the SD and MSE declined somewhat with 

increasing sample sizes. Coverage rates were near the nominal 0.95 level across 

sample sizes. 

With respect to the difference between group factor means, power rates 

exceeded 0.7 even for the smallest difference of 0.2. There was an increase in the 

amount of negative bias as the group mean difference increased, indicating that, for 

the group whose mean was larger, the unconstrained model provided a slight 

underestimate. It should be noted, however, that the largest bias value was -0.038, 

indicating that the factor mean estimate was approximately 0.76 when in the 

population the value was 0.80. This increase in bias with a greater group mean 

difference was also associated with an increase of MSE and a decrease in the 

coverage rate to 0.90, below the nominal 0.95 rate. The power for testing group 

factor mean differences was not significantly influenced by loading PI or whether 

it was modeled correctly. 

Factor Variances: Type I Error and Power 

ANOVA results showed that the interaction between loading PI and its modeling 

was the only term significantly related to the Type I error rate for testing factor 

variance invariance (F2,36 = 22.7, p < 0.001, η2 = 0.59). Table 6 includes the Type 
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I error rates, bias, SD, MSE, and coverage rates for the unconstrained and 

constrained models when testing factor variance invariance. The Type I error rate 

for testing group variance invariance was at the nominal rate when full factor 

loading invariance held, or when there was loading PI and it was modeled correctly. 

However, when the loadings were PI but modeled as fully invariant, the Type I 

error rate was inflated to 0.30. In addition, bias in the factor variances for both the 

unconstrained and constrained models was much lower in the fully invariant or 

partial correct conditions, than in the partial incorrect. This increase in bias was 

associated with inflated MSE and lower coverage rates for both the constrained and 

unconstrained models, though SD was not impacted by the loading invariance 

condition. 

The ANOVA results showed that the 3-way interaction of N by loading PI by 

modeling of PI (F2,86 = 53.4, p < 0.001, η2 = 0.55), and the main effect of factor 

variance difference (F4,86 = 4.7, p = 0.012, η2 = 0.10) were the only statistically 

significantly related terms to the power for detecting noninvariant group variances. 

Power, bias, SD, MSE, and coverage rates by N, loading invariance, and modeling 

conditions appear in Table 7. Power increased with sample size and was slightly 

higher (approximately 0.04) in the full versus partial invariance conditions for the 

two smaller sample sizes. Power for the PI condition modeled incorrectly should 

not be interpreted given the observed inflated Type I error rate. With regard to the 

estimated factor variances, larger positive bias was observed in the unconstrained 

group in the incorrect PI condition than either when full invariance held, or in the 

correctly modeled PI condition. This positive bias indicates that the variance for the 

group simulated to have the larger value was overestimated when the factor 

loadings were noninvariant but constrained to be equal across groups. 

On the other hand, for the constrained model (where variances for the two 

groups were held equal), the variance estimate for the group with the larger 

population value was negatively biased. The MSE for the constrained group was  
 
 
Table 6. Factor variance invariance testing Type I error rate, parameter bias, parameter 
estimate standard deviation, MSE, and coverage rates for testing covariance invariance 
by partial loading invariance and modeling conditions: Unconstrained 
parameters/Constrained parameters 
 

Loading invariance Type I error Bias SD MSE Coverage 

Full  0.05 -0.002 / 0.004 0.14 / 0.14 0.15 / 0.16 0.94 / 0.92 

Partial correct  0.05 -0.001 / 0.002 0.15 / 0.14 0.15 / 0.16 0.94 / 0.93 

Partial incorrect 0.30 0.080 / -0.069 0.14 / 0.13 0.21 / 0.20 0.77 / 0.72 
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Table 7. Factor variance invariance testing power, parameter bias, parameter estimate 

standard deviation, MSE, and coverage rates for testing covariance invariance by sample 
size (N), partial loading invariance and modeling conditions: Unconstrained 
parameters/Constrained parameters 
 

N Loading Invariance Power Bias SD MSE Coverage 

150 / 150 Full 0.63 0.001 / -0.308 0.21 / 0.21 0.25 / 0.46 0.95 / 0.53 

 Partial correct 0.59 -0.033 / -0.337 0.22 / 0.21 0.26 / 0.46 0.93 / 0.50 

 Partial incorrect 0.83* 0.103 / -0.359 0.20 / 0.21 0.36 / 0.47 0.86 / 0.55 

       

500 / 500 Full 0.91 0.003 / -0.328 0.11 / 0.12 0.25 / 0.47 0.94 / 0.51 

 Partial correct 0.87 -0.002 / -0.340 0.11 / 0.12 0.24 / 0.46 0.94 / 0.52 

 Partial incorrect 0.98* 0.097 / -0.361 0.12 / 0.11 0.36 / 0.47 0.87 / 0.54 

       

1000 / 1000 Full 0.97 0.003 / -0.325 0.08 / 0.08 0.24 / 0.46 0.93 / 0.55 

 Partial correct 0.96 0.003 / -0.338 0.08 / 0.08 0.24 / 0.47 0.95 / 0.54 

 Partial incorrect 0.99* 0.105 / -0.362 0.07 / 0.08 0.35 / 0.48 0.86 / 0.54 

 

* Power rates in bold are associated with conditions in which the Type I error rate was inflated 

 
 
Table 8. Factor variance invariance testing power, parameter bias, parameter estimate 

standard deviation, MSE, and coverage rates for intercept by intercept difference: 
Unconstrained parameters/Constrained parameters 
 

Difference Power Bias SD MSE Coverage 

0.33 0.70 0.03 / -0.17 0.14 / 0.13 0.28 / 0.39 0.92 / 0.49 

0.66 0.91 0.03 / -0.34 0.13 / 0.14 0.28 / 0.45 0.92 / 0.53 

1.00 0.98 0.04 / -0.51 0.13 / 0.14 0.29 / 0.53 0.91 / 0.59 

 
 

greater in the incorrect PI condition than for either full loading invariance or correct 

modeling of loading PI. However, for the constrained model, there was no notable 

difference in MSE across these conditions. Parameter coverage was also well below 

the nominal 0.95 rate for the constrained model, while in the unconstrained case 

coverage was at or near the nominal rate except when factor loadings were PI but 

not modeled as such. 

Table 8 includes the power, bias, SD, MSE, and coverage rates by level of 

variance difference. Power for detecting unequal group variances increased as the 

degree of that difference increased, which would be expected. For the 

unconstrained model, the amount of bias, the SD, MSE, and coverage rates were 

essentially the same across differences in group variances. In contrast, for the 

constrained model, the amount of bias increased concomitantly with differences in 

the magnitude of the group factor variances. Again, this result is expected when 

one considers that for the constrained model, one variance is simulated to be 1.00, 
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while the other is simulated to be 1.33, 1.66, or 2.00 in the simplest two factor case. 

Thus, when the variances are constrained to be equal, the magnitude of bias should 

increase along with increases in the difference between group variances. 

Discussion 

The use of MGCFA for testing FI and latent mean differences will continue to grow 

as modeling of outcomes over time and across diverse groups takes greater  

advantage of the rapid methodological changes in latent variable modeling. This 

increased use leads to a need for focusing on appropriate practices when assessing 

invariance, especially in the presence of PI, be it for the traditional MGCFA or 

other models with grouping variables and measurement models (e.g., latent profile 

analysis). Accurate invariance testing rests upon the assumption that MGCFA 

works well across many data conditions. Yet, heretofore, empirical research in this 

area has focused primarily on the performance of tests for factor loading invariance. 

In particular, there is a pressing need to provide researchers with useful information 

on how PI affects observed composite scores on assessments. Perhaps more 

importantly, researchers and practitioners need to be provided assistance in 

understanding how decisions made about groups and individuals using such scales 

are impacted by PI. Our current work attempts to address these issues in the FI and 

MGCFA research domains by examining the accuracy for assessing invariance at 

all levels of the CFA model across groups under various levels of factor loading 

invariance. The results allowed us to draw a few main conclusions. 

First, when factor loading PI is correctly modeled, invariance testing on the 

other model parameters was not adversely influenced regardless of how large the 

group differences in factor loadings were. However, and second, if modeling of 

such differences is done incorrectly and the degree of group loading difference is 

0.50 or 1.00, then invariance testing for other model parameters will suffer from 

Type I error inflation of 0.8 or higher. When the degree of loading difference is 

0.25, and this lack of invariance is not modeled correctly, there will also likely be 

Type I error inflation for testing the invariance of error variances and factor 

variances and, to a much smaller extent, factor covariances. Thus, careful attention 

must be paid to the correct modeling of partial factor loading invariance when 

researchers are interested in assessing invariance of the latent model variance and 

covariance structures. Third, PI of the factor loadings with group differences of 

0.25 had no impact on testing the invariance of intercepts or factor means, whether 

the factor loading differences were correctly modeled or not. This result was 

surprising given the distortion of Type I error in other measurement invariance 
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studies where one level of non-invariance influenced another (French & Finch, 

2008b) and the distortion of mean differences under a lack of factorial 

invariance(Millsap, 2011; Steinmetz, 2013). However, considered in light of the 

Type I error inflation for mean and intercept differences associated with factor 

loading differences of 0.50 and 1.00, it would appear that the impact of PI is simply 

not felt until group differences on the loadings reaches a critical juncture. Fourth, 

model complexity, defined as the number of factors and indicators, only influenced 

invariance testing for error variances. Additionally, this was only a concern when 

the PI of factor loadings was model incorrectly. Under such conditions, more 

factors were associated with greater Type I error rates and bias, and lower coverage. 

Taken together, these results demonstrate the importance of assessing and 

correctly modeling the invariance of factor loadings prior to testing for invariance 

in other model parameters. However, if this is done and if PI in loadings is modeled 

correctly, the researcher can be confident that it will not impact assessment of other 

model parameters, even when one group has a majority of loadings that are twice 

the size of the other groups’ loadings. This is likely the best outcome that can be 

achieved, and yet one that is the most challenging to achieve as it is difficult to be 

certain that all such group differences in loadings have been correctly modeled. 

Thus, the applied researcher must be keenly aware of both the steps that they take 

in testing parameter invariance and how they account for loading PI. This requires 

an awareness of the correct sequence of steps used in invariance testing, and a 

knowledge of what software programs with automated functions are doing to 

account for different levels of invariance as the program systematically tests for full 

invariance. This latter issue becomes ever more challenging as new versions of 

software are released on a yearly basis with increasingly automated functions for 

conducting invariance testing (e.g., Mplus, IRTPRO). This is not to say such 

automation is entirely negative. Rather, it is a call for clearer documentation of the 

steps that are being taken and the underlying assumptions and model constraints 

that are imposed and, perhaps most importantly, users taking the responsibility to 

understand what they are modeling. 

The purpose of this investigation was to provide evidence of MGCFA 

performance for FI testing under a variety of practical and applied conditions, 

specifically focused on models where loading PI is present. However, although we 

estimated many models under various conditions, simulation of exhaustive 

conditions is not practically possible. Therefore, additional simulation work is 

encouraged to continue examining MGCFA analyses under an even greater array 

of conditions (e.g., percent of misspecification, mixed invariant conditions) as there 

are several problems which remain to be solved in invariance testing (Millsap, 
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2011). We note that analytic solutions should be sought first or in conjunction with 

simulation work to aid the understanding of the underlying models and reasons for 

differences in outcomes (Boomsma, 2013). That said, hopefully this research will 

inform practice for those engaged in FI analyses to better understand phenomena 

in their disciplines. The results described here should allow practitioners to make 

informed decisions in the presence of loading PI. Furthermore, they should inform 

practice by highlighting the strengths and limitations of MGCFA given certain 

conditions. We also think these results can stimulate new research surrounding the 

implementation of the MGCFA and other latent group models. For example, the 

development of an effect size to capture the magnitude of the difference in 

parameters and the influence it has on latent mean difference testing would be 

helpful in allowing power results to be more meaningfully examined (Millsap, 

2011). This line of work should lead to accurate decisions about individuals and 

groups in the presence of partial invariance through MGCFA analysis. 
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Appendix 

Sample Mplus Code 

Model lack of invariance 

 
title:      Model lack of invariance 
data:       file is replist.dat; 
            type=montecarlo; 
variable:   names are y1-y6 group; 
            grouping is group (1=g1 2=g2); 
 
model: 
            f1 by y1; 
            f1 by y2; 
            f1 by y3; 
            f2 by y4-y6; 
            f1@1 f2@1; 
            f1 with f2; 
            y1-y6; 
 
model g1:   f1 by y2* ; 
            [y1*0] (1); 
            [y2*0] (2); 
            [y3*] ; 
            [y4*0] (4); 
            [y5*0] (5); 
            [y6*0] (6); 
 
model g2: 
            f1 by y2* ; 
            [y1*0] (1); 
            [y2*0] (2); 
            [y3*] ; 
            [y4*0] (4); 
            [y5*0] (5); 
            [y6*0] (6); 
savedata:   results are diffresults.out; 

 

Model total invariance 
 
title:      Model total invariance 
data:       file is replist.dat; 
            type=montecarlo; 
variable:   names are y1-y6 group; 
            grouping is group (1=g1 2=g2); 
model: 
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            f1 by y1; 
            f1 by y2; 
            f1 by y3; 
            f2 by y4-y6; 
            f1@1 f2@1; 
            f1 with f2; 
            y1-y6; 
 
model g1:   f1 by y2* ; 
            [y1*0] (1); 
            [y2*0] (2); 
            [y3*0] (3); 
            [y4*0] (4); 
            [y5*0] (5); 
            [y6*0] (6); 
 
model g2: 
            f1 by y2* ; 
            [y1*0] (1); 
            [y2*0] (2); 
            [y3*0] (3); 
            [y4*0] (4); 
            [y5*0] (5); 
            [y6*0] (6); 
 
savedata:   results are nodiffresults.out; 

 

Test run 
 
title:      test run 
montecarlo: names are y1-y6; 
            nobservations=1000 1000; 
            nreps=1000; 
            seed=94756; 
            ngroups=2; 
            repsave=all; 
            save=rep*.dat; 
 
model population: 
            [y1-y6@0]; 
            y1-y6@1; 
            f1 by y1@1 y2-y3*.6; 
            f2 by y4@1 y5-y6*.6; 
            f1@1 f2@1; 
            f1 with f2@.5; 
model population-g2: 
f1 by y2*.85; 
[y3*0.2]; 
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model: 
            f1 by y1; 
            f1 by y2; 
            f1 by y3; 
            f2 by y4; 
            f2 by y5;  
            f2 by y6; 
            f1@1 f2@1 (1); 
            f1 with f2 (2); 
            y1-y6 (3); 
 
model g2:   [y3*0.2]; 
f1 by y2*.85; 
output:     tech9; 
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