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A Monte Carlo simulation is employed to investigate the performance of five estimation 
methods of nonlinear mixed effects models in terms of parameter recovery and efficiency 
of both regression coefficients and variance/covariance parameters under varying levels 
of data sparseness and model misspecification. 
 
Keywords: Random coefficient models, linearization, quadrature, Bayesian, 

nonlinear models, non-normality 

  

Introduction 

A common challenge for substantive researchers across numerous research 

domains is to make inferences on features underlying profiles of continuous 

repeated measures data for a sample of individuals from a population of interest. 

Nonlinear mixed effects (NLME) models (Davidian & Giltinian, 1995; Pinheiro 

& Bates, 2000; Vonesh & Chinchilli, 1997) have become the tools of choice for 

analyses in which the primary interest of researchers focuses on understanding the 

nature of systematic and random variation between and within individuals. The 

biomedical literature, for example, is replete with studies from areas like 

pharmacokinetics, which have developed NLME models to examine drug 

concentration and dispersion in patients (see e.g., Beal & Sheiner, 1985) or 

modeling markers of disease progression (Morrell, Pearson, Carter, & Bryant, 

1995). In the social sciences, Burke, Shrout, and Bolger (2007) used NLME 

models to examine individual differences in adjustment to spousal loss; while 

Grimm and Ram (2009) investigated the effects of preschool instruction on 

mailto:harring@umd.edu
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academic gain using an individual-specific logistic growth model. There are many 

more examples across diverse research domains.  

These applications share several common features. First, mean response for 

a particular individual is thought to follow a scientifically-relevant nonlinear 

function which characterizes intra-individual behavior in terms of meaningful 

parameters directly related to the underlying change process. Second, individuals’ 

regression coefficients, in turn, are often formulated to be functions of fixed 

effects (parameters common to all individuals in the population), covariates (often 

treatment condition or other individual-level attributes), and individual-specific 

random effects (parameters representing individual variation). The distribution of 

random effects captures random variation of the parameters in the population of 

individuals and is frequently assumed to be multivariate normal. 

Although the benefits of incorporating random effects into this framework 

are undeniable, for a NLME model there is one major drawback. Unlike its linear 

counterpart (the linear mixed effects model, Laird & Ware, 1982), one liability is 

that estimation of model parameters is no longer straightforward. The conditional 

(on the random effects) mean of the response for an individual depends on the 

random effects in a nonlinear fashion. This nonlinear dependence requires 

multidimensional integration over the random effects distribution to derive the 

needed marginal distribution of the data from which inferences can be made. This 

integral is almost always intractable having no closed form solution.  

Several methods were proposed to overcome this problem. Davidian and 

Giltinan (1993) summarized these methods and classified them into four main 

categories: (1) methods based on individual estimates, (2) methods based on 

approximating the likelihood through linearizing the nonlinear function, (3) 

methods based on the exact likelihood which tackle the multidimensional 

integration directly, and (4) a Bayesian approach which uses both the likelihood 

based on the data and prior information about model parameters. 

The methodological literature has suggested that these methods may not 

perform equally well under non-ideal data-analytic situations often encountered in 

practice, including, but not limited to, violation of distributional assumptions, 

existence of missing data, and small sample sizes. Although a few modest 

simulation studies were conducted wherein a small subset of these methods were 

compared for estimating parameters in NLME models, the primary objective of 

this study was to do a more comprehensive investigation of a broader set of 

methods across data analytic conditions found in practice presumed to directly 

impact the estimation methods themselves. 
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The Nonlinear Mixed-Effects Model 

The basic version of the model is considered, although elaborations are possible 

(see, e.g., Davidian & Giltinan, 2003; Vonesh & Chinchilli, 1997). Following 

Davidian and Giltinan (1995), the formulation of the nonlinear mixed-effects 

model for a typical individual selected from the population can be specified in the 

general form as, 

 

 yi = fi(xi,βi) + ei, ei | βi : [0, Λi (λ)] (1) 

 

 βi = g(zi,β,bi), bi : [0, Φ], (2) 

 

where  1, ,
ii i iny y y  is a ni × 1 vector of responses, yij, for the ith individual, 

i = 1,K,N, at times tij, j = 1,K,ni. Note that the subscript, ni, on the response 

implies that the number of measurements and/or the occasions of measurement 

could vary by individual. Unbalanced data-gathering designs, planned 

missingness, or data that are missing at random can all be handled by the NLME 

model in a straightforward fashion. fi(xi,βi) is an ni × 1 vector of nonlinear 

functions with jth element f (xij,βi), where f is a nonlinear function governing 

within-individual behavior and is dependent on individual-specific regression 

parameters βi (p × 1), and xij contains tij and other covariates specific to individual 

i. The ni × 1 vector of regression residuals, ei, reflects uncertainty in the response 

of the ith individual and is assumed to satisfy E(ei | βi) = 0 for all i. Given the 

individual coefficients, yi has covariance structure Λi (λ) which is of dimension 

ni × ni with q × 1 parameters, λ, common to all subjects. While many different 

structures for Λi (λ) are possible that reflect various data nuances, when coupled 

with the random effects covariance structure typically takes on a simple structure 

such as Λi (λ) = σ2
inI . This structure will be used in the forthcoming Monte Carlo 

simulation. 

In the model in Equation 1, variation occurring between individuals is 

captured through individual-specific parameters, βi. Dependence of βi on 

individual-level covariates zi is modeled through g(zi,β,bi), a p – dimensional 

function depending on a r × 1 vector of population parameters β and a k × 1 

vector of unobservable random effects bi, associated with individual i. Here, 

function g(·) characterizes how elements of βi vary among subjects, due in part to 

the systematic association with individual attributes, zi, and unexplained variation 

in the population captured through bi. Specifications of g(·) can be complicated 
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(see, e.g., Cudeck & Harring, 2007), but at least initially, g(·) is typically 

specified as the sum of fixed and random effects such that, g(zi,β,bi) = β + bi. The 

variability of the random effects is captured through the k × k symmetric 

covariance matrix, Φ. The conventional assumption of normality of the random 

effects is routinely adopted, but as Hartford and Davidian (2000) state, “simply 

may be inappropriate.” Numerous scenarios are possible. It may be, for example, 

that the distribution of the random effects bi is skewed or not unimodal. In the 

latter case, this situation might arise if an important covariate is left out of the 

model with the resulting systematic variation that would have been attributed to 

the covariate relegated to the variation in bi. Consequently, a bimodal or 

multimodal distribution may be evident, which would not be well-approximated 

by a normal distribution. In other settings, the distribution of any of the k random 

effects (bki) may be symmetric but may be influenced by more cases in the tails of 

the distribution than would be expected under normality. This might occur 

because the sample does not accurately reflect the target population and too many 

individuals in the sample are on the fringe of the distribution resulting in a 

heavier-tailed distribution with greater dispersion than would be expected 

otherwise. 

A variant of an exponential function will be used in the Monte Carlo 

simulation. In the social and behavioral sciences, variants of exponential functions 

are regularly used to summarize the change processes for many phenomena 

including the learning of a task (see, e.g., Blozis, 2004; Browne, 1993; Meredith 

& Tisak, 1990), development of language acquisition (Burchinal & Appelbaum, 

1991), and growth characteristics (Browne, 1993). Let the individual-specific 

function, f, characterize the development on a learning task, for example, be an 

exponential function of the form 

 

 f (xij,βi) = β2i – (β2i – β1i) exp (−β3i tij), (3) 

 

which at time tij for individual i, may provide a suitable summary for intra-

individual task performance. The parameters of the model correspond to 

interesting features of the change process. In Equation 3, β1i represents initial 

performance when tij = 0, β2i denotes the potential performance at later trials (i.e., 

f (tij) → β2i as tij → ∞ ), and β3i governs the rate of change from initial to potential 

performance. 
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Estimation Methods 

Much methodological work has been done in recent years for fitting NLME 

models. The need to derive different approaches may be appreciated by inspection 

of the form of the marginal distribution of yi implied by Equations 1 and 2. 

Denote the conditional density of yi given bi as p(yi | bi) and the density of bi be 

denoted as p(bi), then the marginal distribution of yi is given by 

 

      | .i i i i ip p p d y y b b b  (4) 

 

Define the vector of unique elements in Φ as 

 

 φ = vech(Φ) 

 = (φ11, φ21, …, φrr)' 

 

where the vech(·) operator creates a column vector of a symmetric matrix by 

stacking the diagonal and lower diagonal elements below one another. Putting all 

relevant model parameters into vector, θ : θ' = (β',λ',φ'), the maximum likelihood 

estimates for θ can be found by maximizing in θ 

 

      
1

| .
N

i i i i

i

L p p d


 y b b b  (5) 

 

Note that, even if both p(yi | bi) and p(bi) are ni – and k − dimensional normal 

densities, respectively, p(yi) need not be normal. Furthermore, except in a few 

special cases, the integral will be analytically intractable. Finding a closed form 

solution is thwarted because bi enters function f in a nonlinear manner. In short, 

inference based on the likelihood of the observed data will be complicated by an 

inability to express the likelihood in closed form. Therefore, it is crucial to find 

alternate ways to handle the integration. 

Estimation approaches can be categorized into four main categories: (a) 

methods based on individual estimates, (b) methods based on approximating the 

likelihood through linearizing the nonlinear function, (c) methods based on the 

exact likelihood which tackle the multi-dimensional integration directly, and (d) a 

Bayesian approach which uses both the likelihood based on the data and prior 

information about model parameters. A thorough description of the 

aforementioned methods, including complete derivations, may be found in 
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Wolfinger and Lin (1997), Pinheiro and Bates (1995), Demidenko (2004), and 

Skrondal and Rabe-Hesketh (2004). A synopsis of each of the methods can also 

be found on the first author’s website (http://www.education.umd.edu/EDMS/ 

fac/Harring/webpage.html).  

Software Considerations 

A self-generated program written in SAS Interactive Matrix Language (IML) was 

used in the simulation for parameter estimation using the two-stage method based 

on individuals’ estimates with calls to SAS MIXED procedure as warranted. 

Methods based on linearization use algorithms that are numerically simpler then 

integration methods. They can be found in popular software packages accessible 

to practitioners. SAS NLMIXED procedure was used, based on the First Order 

(FIRO) option (Wolfinger, 1999) for the first-order linearization method. The 

algorithm of Lindstrom and Bates (1990) conditional first-order method can be 

obtained by using the EBLUP option in the SAS macro NLINMIX (Littell et al., 

1996). SAS NLMIXED was used to implement and execute the Gaussian-

Hermite quadrature method using the NOAD argument to facilitate the non-

adaptive quadrature. Lastly, the R2WinBUGS package (Sturtz, Ligges, & 

Gelman, 2005) in R was used to make calls to WinBUGS (Spiegelhalter, Thomas, 

Best, & Lunn, 2002) to facilitate the Bayesian estimation approach. Sample 

software code for each of these methods can be found in the Appendix. 

Review of Previous Simulation Results 

Previous simulation studies come from the statistical literature. A non-exhaustive 

list includes Davidian and Giltinan (1993); Pinheiro and Bates (1995); Roe et al. 

(1997); Wolfinger and Lin (1997), Hartford and Davidian (2000); Ge, Bickel, and 

Rice (2004), and Wu (2004).  

Davidian and Giltinan (1993) examined the performance of a 

semiparametric method based on individual estimates and linearization when data 

had different structures for both inter- and intra-individual variability. They 

concluded that performance of both methods depended on the relative magnitude 

of the inter- and intra-individual variability. Misspecification of the intra-

individual covariance structure may lead to deterioration in performance for both 

methods in terms of parameter bias. These methods performed equally well in 

estimating fixed effects, however, methods based on individual estimates had 

better estimation of variance and covariance components. 

http://www.education.umd.edu/EDMS/fac/Harring/webpage.html
http://www.education.umd.edu/EDMS/fac/Harring/webpage.html
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Pinheiro and Bates (1995) examined the performance of the conditional 

linearization method (Lindstrom & Bates, 1990), Laplace approximation, 

Gaussian-Hermite and Adaptive Gaussian-Hermite quadrature methods. Their 

results suggested that the conditional linearization method had the highest 

computational efficiency but did not provide the most accurate estimation of 

parameters in terms of bias. Gaussian-Hermite quadrature only provided accurate 

estimates for large number of quadrature points which made it, in their opinion, 

computationally inefficient. They concluded that Laplace approximation and 

Adaptive Gaussian-Hermite quadrature had the best combination of efficiency 

and accuracy. Pinheiro and Bates’ study assumed all assumptions of nonlinear 

mixed models were met under intensively sampled data. They did not investigate 

how these methods would perform under distributional misspecification and data 

sparseness. 

Wolfinger and Lin (1997) examined the first-order linearization method and 

Laplace’s approximation method as they are implemented in the SAS macro 

NLINMIX and concluded that both methods produced reliable estimates, with 

Laplace’s method slightly outperforming the former at the expense of longer 

computing times and greater instability of the algorithm. 

Hartford and Davidian (2000) investigated the consequences for population 

inference using first-order linearization and Laplace’s method when the 

distribution for the random effects was misspecified – not following a normal 

distribution. They encountered serious convergence difficulty using Laplace’s 

method when distributions of random effects were far from normal or the 

population model was not correctly specified. Nevertheless, Laplace’s 

approximation method was still superior to the first-order expansion in parameter 

accuracy and relative efficiency of estimation except when the random effects 

distribution was bimodal. 

Very little in the NLME model methodological literature has been devoted 

to how these different estimation methods react to the existence of missing 

responses or covariates. Wu (2004) suggested that missing values for some of 

model covariates may have a deleterious effect on parameter recovery. Wu 

concluded that when the missing data mechanism is nonignorable, serious bias in 

the parameter estimates may occur.  

There has been no simulation work done on the performance of the 

Bayesian approach. Table 1 provides a summary of the past simulation studies, 

the estimation methods that were used, the simulation factors that were 

manipulated, statistical software that was employed if known, and the major 

findings and limitations. 
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Research Questions 

Specific research questions we address in this simulation study are: 

 

1. Do differences exist between the five estimation methods in terms of 

parameter bias of fixed effects, variances of the random effects and 

residual variance? If so, which manipulated study conditions 

influence the accuracy of parameter recovery? 

2. Do differences exist between the five estimation methods in terms of 

variability of parameter estimates as measured by parameter estimate 

variance? If so, which manipulated study conditions influence 

variability of the parameter estimates? 

Simulation Design Overview 

There are often numerous decision points in analyses involving NLME models. 

The choice of which method to use often depends on the analytic situation, 

hypothesis about covariance structures, software availability, sample size, and so 

on. In order to study the robustness of the five methods of estimating NLME 

models to the assumptions of normal random effects, conditional normality of the 

residuals, ei, data sparseness, and sample size, we carried out a Monte Carlo 

simulation in which several factors were varied. The data generation model 

follows Equations 1 and 2, with the exponential model in Equation 3 as the intra-

individual function. Although other nonlinear functions could have fewer 

parameters, we chose this particular function, in part, because it has three 

coefficients which make the integration feasible, yet is complex enough to 

examine time to convergence for methods which tackle the integration directly as 

well as convergence rates for all methods. 

Assume that inter-individual function g, is the sum of fixed and random 

effects 

 

 βpi = βp + bpi p = 1,2,3 

 

This simple model specification was chosen so that, hopefully, model 

identification and convergence issues would be less likely to confound 

interpretation of performance. Population values for the regression coefficients 

are β1 = 100, β2 = 10, and β3 = 1. The covariance matrices describing within- and 

inter-individual variability in Equations 1 and 2, respectively are given as 
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Table 1. Summary of past simulation and empirical studies on NLME models 

 

Author(s) 
Estimation 
Method 

Study Conditions Summary of Key Findings 

Davidian & Giltinan 

(2003) 

• GTS 

• Other pooled and 
un-pooled 
procedures 

Intra-individual variability • Pooling information about intra-individual variability to 

obtain correct weighting results in improved efficiency 
• Pooling had little impact on estimation of parameters in 
β and Φ 

Pinheiro & Bates 
(1995) 

• CFO 
• Laplace 
• GHQ 

• Importance 
Sampling 

• AGHQ 

• Computational efficiency 
• Parameter estimate 
comparison 

• No simulation study 

• CFO provides good approximation and is 
computationally efficient 
• GHQ is accurate as number of quadrature points 

increases resulting in computational inefficiency 
• AGHQ was as accurate as other methods requiring 

fewer quadrature points and increased computational 
efficiency 

Wolfinger & Lin 
(1997) 

• FO 
• Laplace 

• Normal random effects 
distribution and no missing 
data 

• Laplace provided less biased estimates but at greater 
computational cost and instability in the estimation 
algorithm 

Hartford & 

Davidian (2000) 

• FO 

• Laplace 

• Sampling mechanism 

• Random effects 
distribution 
• Population model 

misspecification 

• Laplace converged to a suitable solution with less 

frequency when model or random effects distribution was 
misspecified  
• Estimates under Laplace were generally less biased 

than FO 
• No convergence problems under FO method  

Ge, Bickel, & Rice 

(2004) 

• CFO 

• Spline 
Approximation 

• Model followed that of 

empirical example regularly 
found in Pharmacokinetics 
• Random effects 

distribution 

• Inter-individual variability is small, CFO method is 

efficient and accurate in terms of parameter bias 

Wu (2004) • Exact method of 

integration 
• Approximate 
method of 

integration 

• Response and covariate 

missingness 
• Random effects 
distribution 

• Sampling mechanism 
• Error distributions  

• Missing data mechanism is non-ignorable, serious bias 

in the parameter estimates may occur 

 
 

 

2

11

21 22

31 32 33

 where 2

25

3 4

0.05 0.05 0.075

ii n 



 

  

  

   
   

     
   
   

I

  

 

The empirical performance of each estimation method is evaluated with 

respect to bias, precision of estimation, and standard error ratios of the fixed 

parameters β, Φ, and σ2. On the basis of ( ˆ
b : b = 1,…,500) obtained from 500 

replications, bias is calculated as the differences between the true population 

values and the means of the estimates obtained from the 500 replications. The 

variance of the estimates will be used to get some idea as to the precision with 

which parameters are estimated across study conditions. The variance is 

computed for the mth element of parameter vector θ as 
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      
2500

1

1

ˆ ˆ ˆvar 500 b

b

m m m



    
         

 

where for a particular cell,  ˆ m  is the mean of the estimates across the 500 

replications, and  ˆ m  is the estimate obtained by the approach under 

consideration. 

Sample Size and Sampling Scheme 

In many applications using NLME models, the sample size is quite small. In a 

small simulation study, Pinheiro & Bates (1995) used N = 10 as the number. In 

practice, the sample sizes can of course be larger. The total number of subjects 

will be manipulated to be either: 50, 100, or 250 representing small, medium and 

large sample sizes, respectively. These correspond to sample sizes found in 

previous simulation studies (Hartford & Davidian, 2000) as well as empirical 

studies (see e.g., Cudeck, 1996).  

Generated data had a maximum of ni = 8 time points tij = 0,…,7. For all 

cases, the intra-individual sampling scheme had five total conditions. Data 

contained either (i) no missingness (ni = 8), (ii) 10% missing, or (iii) 20% missing. 

Because attrition and drop out seem to occur with some frequency in empirical 

studies, the missingness was implemented in two ways: (a) deleting the 

percentage of data for the corresponding time points at the end of the study, and 

(b) randomly selecting which times would be deleted using the sample function in 

R. R (R Core Team, 2014) was used as the data generation software. The sample 

function in R allows elements from a larger set of elements to be chosen at 

random. 

Data were prohibited at the first time point to be deleted as we felt this was 

unrealistic in terms of practical data collection protocol – although each of the 

estimation methods could handle this nuance in a straightforward fashion.  

Violation of Normality on Random Effects and Error Distributions 

Several different distributions for bi were used to generate random effects, 

 

N. A normal distribution, bi : N(0,Φ) 
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NN. A non-normal distribution with skew = 2 and kurtosis = 7. The non-

normal condition was implemented using the procedure outlined in 

Headrick and Sawilowsky (1999). 

 

M1. A mildly contaminated normal distribution, 

bi : (1 − π)N(0,Φ) + πN(0,Φ*), with contamination fraction π = 0.05 

and Φ* chosen as described below. 

 

M2. A moderately contaminated normal distribution, 

bi : (1 − π)N(0,Φ) + πN(0,Φ*), with contamination fraction π = 0.10 

and Φ* chosen as described below. 

 

Distribution N denotes the case where the usual assumption of normality on the 

random effects is applicable. Distribution NN represents a situation where the true 

distribution of the random effects is positively skewed and heavy-tailed than 

expected from a normal distribution but with the same variability in the 

population. Distributions M1 and M2 are meant to characterize the 

 

 

40

4.5 5.5

0.07 0.07 0.095



 
 

  
 
 

   

 

chosen so that variability is larger but the correlation between effects in 

approximately the same as those in Φ. Conceptually, this represents the situation 

where the apparent inter-individual variation is greater than that in the target 

population of interest attributable to errors in sampling.  

Two distributions for the intra-individual errors, ei were used to generate the 

regression errors 

 

NE. A normal distribution,  2: ,
ii nN e 0 I  

 

NNE. A non-normal condition with skew = 3 and kurtosis = 21, 

respectively. Similarly to the random effects generation, the non-

normal condition was implemented using the procedure outlined in 

Headrick and Sawilowsky (1999). 
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Distribution NE represents the typical specification of a normal distribution with a 

simple independence structure. Distribution NNE represents a situation where the 

true distribution of the regression errors is positively skewed and heavy-tailed 

than expected from a normal distribution but with the same variability in the 

population. 

A simulation scenario thus consisted of a particular choice of random effects 

distribution, choice of intra-individual error distribution, sampling scheme, and 

sample size. The full factorial of 4×2×5×3 = 120 possible combinations was 

investigated, where for each scenario, 500 Monte Carlo data sets were generated. 

For each data set in each scenario, fitting was carried out using each of the five 

estimation methods as described above. A summary of the manipulated conditions 

can be found in Table 2. 
 
 
Table 2. Simulation conditions and levels 

 
Manipulated Condition # Levels Levels 

Sample Size 3 50, 100, 250 

Random Effects Distribution 4 N, NN, M1, M2 

Error Distribution 2 NE, NNE 

Missingness 5 C, E-10, E-20, R-10, R-20 
 

Note: Levels of the random effects distribution (N = normal, NN = non-normal, M1 = Contaminated 5%, 

M2 = Contaminated 10%). Levels of the error distribution (NE = normal, NNE = non-normal). Levels of 

missingness (C = complete cases, E-10 = 10% missing at the end, E-20 = 20% missing at the end, R-10 = 10% 

randomly missing, R-20 = 20% randomly missing) 

 

Results 

The simulations were conducted on several different platforms. The majority of 

the simulations were completed in a Windows environment on Dell Latitude and 

Dell Vostro workstations with duo-core processors. Consistency of results was 

examined across platforms to ensure that conclusions were the results of 

properties of the methods rather than numerical irregularities. Considering the 

simulation design, there were 120 fully-crossed conditions for each estimation 

method, and 500 data sets per scenario. As is often the case in fitting nonlinear 

mixed effects models by any estimation method, there were some convergence 

issues and other numerical problems. When numerical problems were 

encountered, the replicate was repeated with efforts to identify and correct the 

problem. Despite these efforts several nonconvergent data sets were still present. 

These trials were categorized as nonconvergent. 
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In all of the simulation trials, starting values were taken as the true values 

generating the data to allow the greatest possibility of automation of this large 

number of simulations. Of course, even in the most optimal condition 

combinations it may happen that universal convergence can never be achieved. 

This may be due to poor starting values, practical lack of identifiability with the 

specific available data, or other unknown factors. Several sets of starting values 

can be tried to address the first of these issues. However, because of the large 

number of replications, only limited attempts were made to emulate this “real” 

practice for initially nonconvergent data sets, which unfortunately did not 

improve the rate of convergence. The number of data sets (out of 500) for which 

satisfactory convergence was not achieved for each condition combination and 

estimation method are shown in Table 3. 

There was no convergence problems encountered with the FO (First-order 

linearization), GHQ (Gaussian-Hermite quadrature), and BAY (Bayesian) 

methods, although a substantial amount of time was spent preliminarily to 

examine these methods under worst-case scenario conditions that were thought to 

influence the successful estimation of the model (i.e., number of quadrature points 

for the GHQ method, sensitivity of results and convergence to different prior 

distribution of the parameters for the Bayesian analysis, etc.). The FO method 

which linearizes the nonlinear function, making it the least computationally 

intensive method, exhibited no convergence problems what so ever. This is not to 

say that problems did not occur with these other methods.  

The GHQ and FO methods, for example, did not demonstrate lack of 

convergence based on the default convergence criteria and settings in SAS PROC 

NLMIXED. Some strange behavior was noticed for several replicate data sets in 

the Bayesian analysis for the variance components of the model. The reasons 

behind the odd estimates appears to be that the Bayesian approach is quite 

sensitive to departures from the assumptions dictated by the prior and data 

distributions. That is, sensible estimates are not guaranteed for variance-

covariance parameters using Bayesian estimation when the underlying 

distribution is far from the distributions that are presumed in the model set up. 

Both the CFO (Conditional first-order) and GTS (Global two-stage) 

methods showed varying amounts of convergence issues although the number 

overall was not that significant. It should be noted that unlike the nlme( ) 

procedure in R, which uses the profiled loglikelihood to stabilize the optimization 
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Table 3. Rate of nonconvergence out of 500 trials for each distribution, sample size, 

missingness across estimation method. 
 

   
N 

 
NN 

 
M1 

 
M2 

SS ED Meth C F-5 F-10 R-5 R-10   C F-5 F-10 R-5 R-10   C F-5 F-10 R-5 R-10   C F-5 F-10 R-5 R-10 

50 

NE 

FO 0 0 0 0 0   0 0 0 0 0   0 0 0 0 0   0 0 0 0 0 

GHQ 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

CFO 0 0 1 0 1 
 

2 0 0 0 1 
 

1 0 1 0 1 
 

1 0 0 0 0 

GTS 0 0 0 2 2 
 

0 0 2 4 4 
 

0 0 2 3 2 
 

0 0 0 3 2 

BAY 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

NNE 

FO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GHQ 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

CFO 0 0 0 1 1 
 

2 1 0 0 0 
 

0 5 0 2 0 
 

2 2 3 0 0 

GTS 3 0 0 4 7 
 

0 0 0 3 3 
 

0 2 0 2 3 
 

2 0 0 3 3 

BAY 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

100 

NE 

FO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GHQ 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

CFO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GTS 0 0 0 3 0 
 

0 0 0 3 2 
 

0 0 0 4 2 
 

0 0 0 2 3 

BAY 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

NNE 

FO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GHQ 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

CFO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GTS 0 0 0 2 3 
 

0 0 0 1 0 
 

0 0 0 1 4 
 

0 0 0 0 0 

BAY 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

250 

NE 

FO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GHQ 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

CFO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GTS 0 0 0 2 4 
 

0 0 0 0 3 
 

0 0 0 1 5 
 

0 0 0 0 4 

BAY 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

NNE 

FO 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GHQ 0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

CFO 0 0 0 0 1 
 

0 0 0 0 0 
 

0 0 0 0 0 
 

0 0 0 0 0 

GTS 0 0 0 0 2 
 

0 2 0 4 3 
 

0 0 0 1 1 
 

0 0 0 2 3 

BAY 0 0 0 0 0   0 0 0 0 0   0 0 0 0 0   0 0 0 0 0 
 

Note: Estimation methods: FO = First-Order, GHQ = Gaussian Hermite Quadrature, CFO = Conditional First-
Order, GTS = Global Two-Stage, BAY = Bayesian. Random effects distribution levels : N = Normal, 

NN = Nonnormal, M1 = Contamination 5%, M2 = Contamination 10%. Error distribution levels : NE = Normal, 
NNE = Nonnormal. Sample size levels: 50, 100, and 250. Missingness levels: C = Complete, E-10 = 10% 

missing at the end, E-20 = 20% missing at the end, R-10 = 10% randomly missing, R-20 = 20% randomly 
missing. 

 
 

algorithm, the nlinmix macro in SAS, which was used to estimate the CFO 

method, does not use profiling. This appears to have some bearing on the stability 

of the algorithm to estimate parameters under non-ideal conditions. The GTS 

method uses both nonlinear least squares estimation (which is not affected by 

distributional assumptions) and PROC MIXED in SAS, which assumes normality 

in the random effects as well as the data distribution, and therefore could be 
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susceptible to convergence issues. Surprisingly, this method showed the greatest 

number of nonconvergent cases among the competitors. 

Time to convergence was not an issue for either linearization method (i.e., 

FO or CFO) as both converged quickly for each replicate with average 

convergence time of 1.02 and 6.24 seconds, respectfully across all study 

conditions. Computational speed notwithstanding, time to convergence for these 

two methods increased as the sample size increased and with random effects 

distributions that departed from normality. The GTS method was slower to 

convergence than expected with an average replicate time to convergence of 55 

seconds (range of 12.7 seconds under sample size of 50, no missing data, and 

normal distributions compared with 150.4 seconds per replicate under the most 

severe study conditions). This may be due to the stage 2 computation using PROC 

MIXED which utilizes the individual estimates in stage 1 iteratively to compute 

the variance components of the model. Surprisingly, the GHQ method was faster 

than expected overall (average time to convergence of 2 minutes per replicate), 

but suffered a lack of computational speed as the sample size increased and 

random effects distributions departed from normality. Under these severe 

conditions, the GHQ method took over 5 minutes to converge. Due to the 

preliminary investigative analyses, time to convergence for the BAY method was 

as expected with an average time to convergence of 75 seconds. 

ANOVA and Classification Trees 

Because of the large number of cells in the design coupled with the numerous 

parameters and outcomes to evaluate, it is instructive, if not necessary, to use 

quantitative procedures like analysis of variance (ANOVA) or classification trees 

as an initial filter of the results – to inform where real effects and “interesting” 

results occur. Factorial ANOVA was performed on each outcome variable (i.e., 

bias and parameter estimate variance) for each of the model parameters in –β, Φ, 

and σ2 modeling only main effects as well as two- and three-way interactions. 

Partial eta-squared, defined as the proportion of total variation attributable to the 

factor, excluding other factors from the total non-error variation (Pierce, Block & 

Aguinis, 2004), was used as the arbitrator in deciding which effects to examine 

more closely, using Cohen’s (1988) heuristic value of (0.14 – large effect) as the 

cut point. 

In conjunction with the ANOVA results, classification trees (Breiman, 

Friedman, Olshen, & Stone, 1984) were used to aid in determining which factors 

were most related to each of the outcomes while at the same time establishing 
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which levels were different from one another. The Chi-squared Automatic 

Interaction Detection (CHAID) method of constructing each tree (as implemented 

in SPSS version 20) is an exploratory tool that chooses the independent variable 

(factor) that has the strongest relation with the dependent variable. Categories of 

each factor are subsequently merged if they are not significantly different with 

respect to the dependent variable and the procedure stops when factors 

(independent variables) no longer affect the outcome. For illustrative purposes, 

the classification tree for the bias of the estimate of β2 is shown in Figure 1 below. 
 
 

 
 
Figure 1. Classification tree for bias in β2. 

 

 
 

The first set of boxes below the initial node represents the method factor as 

being most related to differences in bias; and the procedure has determined that 

each method has mean bias that is statistically different from one another with the 

BAY method showing the least average parameter bias (0.005); the GTS, CFO, 

and GHQ methods showing comparable values (−0.037, −0.041, and −0.050, 

respectfully); and the FO clearly exhibiting larger average bias than its 

competitors (0.808). For the FO method it appears that the random effects 
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distributions which were non-normal and more severely contaminated as a 

mixture did not seem to have impacted the bias as much as the other distributional 

conditions. Evidently, no other factors contributed to delineating bias of β2 further. 

Nodes representing factors that appear at subsequent levels in this hierarchical 

structure can be thought of as a type of interaction between itself and the node (or 

factor) above it. This interaction, however, is specific to particular levels of the 

factors involved. The entire set of ANOVA and classification tree results as well 

as tabulated mean bias and variance estimates can be found at the first author’s 

website (http://www.education.umd.edu/EDMS/fac/Harring/webpage.html). 

Table 4 and Table 5 summarize the results from the ANOVA and 

classification tree procedures. The ANOVA results for bias in the fixed regression 

coefficients are displayed in Table 4, which includes the variance components of 

the random effects associated with these fixed effects, and residual variance. The 

classification tree results corresponding to the parameters in Table 4 are compiled 

in Table 5. 
 
 
Table 4. Main effects, two- and three-way interaction results from a factorial ANOVA for 

bias of parameters in β, Φ, and σ2. 
 

 

Bias β1 Bias β2 Bias β3 Bias φ11 Bias φ22 Bias φ33 Bias σ2 

Factor 
Combi-
nations 

M 
R 
M*R 

M 
R 
MI 
S 
M*MI 
M*R 
M*S 
M*MI*S 
R*MI*S 

M 
M*R 

  M 
R 
MI 
S 
M*MI 
M*R 
M*S 
M*R*MI 
M*MI*S 
M*R*S 

R 
M*R*MI 
M*MI*S 

  

 

Note: M = Method, R = Random Effects Distribution, E = Error Distribution, MI = Missingness, S = Sample Size. 
The symbol ‘*’ represents the interaction between effects present. To be included, the partial eta-squared for 

each effect was larger than 0.14 and the effect was significant at the 0.05 level. 

 

Parameter Bias  

No main effect or interaction effect was found for the bias in intercept or residual 

variance, φ11 and σ2, respectively. Clearly, there were differences in bias across 

the five methods (M) for each of the regression coefficients; however, method of 

estimation only influenced the variance of β2i among the variance parameters. 

This result coincides with the first column (node 1) in Table 5 from the 

classification tree analysis. Overall, the mean bias values for β1, β2, and β3 were 

http://www.education.umd.edu/EDMS/fac/Harring/webpage.html
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negligible (−0.038, 0.137, −0.016), yet there were differences between the 

methods. For all regression parameters the FO method showed the greatest bias 

with the GHQ, CFO, and GTS methods producing less bias estimates. The BAY 

method constantly generated the least biased estimates (by a factor of 10) 

compared to the other methods excluding FO. From Table 5, it is clear that for β1 

and β2, the random effects distribution significantly impacted the FO method with 
 
 
Table 5. Results from a classification tree analysis for bias of parameters in β, Φ, and σ2. 

 

  
Nodes 

 

 
Level 1 Level 2 Level 3 

Bias β1 

FO 
N/M1 
NN/M2 

  

GHQ     

CFO     

GTS/ BAY 
100 
50/250 

 
  

Bias β2 

FO 
N/M1 
NN/M2 

  

GHQ     

CFO     

GTS     

BAY     

Bias β3 

FO     

GHQ     

CFO     

GTS     

BAY     

Bias φ11 - - - 

Bias φ22 

FO 
N/M1 
NN/M2 

  

GHQ 
N/NN 
M1/M2 

  

CFO/ GTS 

M2 
M1 

N 
NN 

 

 

BAY     

Bias φ33 

N/M1/M2 
CFO 

FO/GHQ/GTS/BAY 
  

NN 
FO/GTS 
GHQ/CFO/BAY 

  

Bias σ2 - - - 

 

Note: Estimation methods: FO = First-Order, GHQ = Gaussian Hermite Quadrature, CFO = Conditional First-
Order, GTS = Global Two-Stage, BAY = Bayesian. Random effects distribution levels : N = Normal, NN = 

Nonnormal, M1 = Contamination 5%, M2 = Contamination 10%. Error distribution levels : NE = Normal, NNE = 
Nonnormal. Sample size levels: N = 50, N = 100, and N = 250. The symbol ‘/’ represents levels that are 

considered the same while levels on different lines are different. Levels are listed from top to bottom in order of 
magnitude of the bias (greatest to least). 
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the non-normal and more contaminated mixture distribution producing less bias 

estimates than the other distributions. 

As for the parameters in Φ and σ2, in terms of bias, the estimation method, 

random effects distribution, and combinations of missingness and sample size 

were consequential. Also, as can be seem in Table 4, the error distribution factor 

did not influence bias of any parameter in the model including σ2. Interestingly, 

no condition had an effect on the bias of φ11 (the variance for β1), but many 

conditions, including the amount of missingness, impacted parameter bias for φ22 

(1. 095 overall) with the GHQ method producing less biased estimates on average 

than the other methods (−0.015). Bias in φ33 was negligible (−0.003 overall) even 

though there were statistical differences across combinations of random effects 

distributions and methods.  

Parameter Variance 

In addition to evaluating the accuracy in terms of bias with which these methods 

produce parameter estimates, precision of estimation is also an important 

consideration. Table 6 and Table 7 display the summary of results of the factorial 

ANOVA and classification tree analyses for the variability outcome measure. 

Expectedly, sample size was a primary factor in explaining differences in 

estimate variance with parameter variance decreasing as sample size increased 

from N = 50 to N = 250 (0.656 to 0.167). This pattern was evident for all the 

parameters in which factors impacted variance magnitude. For regression 

parameters, β2 and β3, precision was also impacted by method and random effects 

distribution with the GTS and BAY methods producing slightly smaller variance 

than GHQ with larger discrepancies found in the CFO and FO methods. The 

ANOVA results coincide with the classification tree results remarkably well, 

although with slightly different interaction effects. The only variance parameter 

that showed difference in precision across study conditions was φ22. For this 

parameter, method seemed to have the most impact with the GHQ and BAY 

methods producing estimates with the greatest precision (1.43) followed by the 

CFO and GTS methods (7.72), and lastly the FO method (97.34). When the 

random effects distribution factor influenced precision, the non-normal 

distribution frequently produced more precise estimates (less variability) than 

either of the mixture distributions or normal distribution condition. 
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Table 6. Main effects, two- and three-way interaction results from a factorial ANOVA for 

variance of parameter estimates in β, Φ, and σ2. 
 

 

Var β1 Var β2 Var β3 Var φ11 Var φ22 Var φ33 Var σ2 

Factor Combi-

nations 

S M 

R 
S 

M*R 
M*S 
R*S 

M*R*S 

M 

R 
S 

M*R 
M*S 
R*S 

M*R*S 

  M 

R 
S 

M*R 
M*S 
R*S 

M*R*S 

    

 

Note: M = Method, R = Random Effects Distribution, E = Error Distribution, MI = Missingness, S = Sample Size. 

The symbol ‘*’ represents the interaction between effects present. To be included, the partial eta-squared for 

each effect was larger than 0.14 and the effect was significant at the 0.05 level.  

 
 
Table 7.  

 

  
Nodes 

 

 
Level 1 Level 2 Level 3 

Var β1 

50 

M2 

NN/M1 
N 

  

100 
M2 
NN/M1 
N 

  

250     

Var β2 

50 
FO/GHQ/CFO 

GTS/BAY 
  

100 
FO/CFO 
GHQ/GTS/BAY 

  

250 
N/M1/M2 

FO/BAY 
GHQ/CFO/GTS 

NN   

Var β3 

50 
N/M1/M2 

FO/GHQ 

CFO/GTS/BAY 

NN   

100 
N/M1/M2 

FO/GHQ 

CFO/GTS/BAY 

NN   

250 
FO/GHQ/GTS 
CFO/BAY 

  

Var φ11 - - - 

Var φ22 

FO 
GHQ/BAY 

50 
100 

250 

  

CFO/GTS 
N/M1/M2 

50/250 
100 

NN   

Var φ33 - - - 

Var σ2 - - - 
 

Note: Estimation methods: FO = First-Order, GHQ = Gaussian Hermite Quadrature, CFO = Conditional First-
Order, GTS = Global Two-Stage, BAY = Bayesian. Random effects distribution levels : N = Normal, 

NN = Nonnormal, M1 = Contamination 5%, M2 = Contamination 10%. Error distribution levels : NE = Normal, 

NNE = Nonnormal. Sample size levels: 50, 100, and 250. The symbol ‘/’ represents levels that are considered 
the same while levels on different lines are different. 
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Results from large simulation studies are often hard to digest simply by 

examining tables of values and trying to extract important trends and patterns. 

The following are the main conclusions from this simulation: 

 

1. Data missingness and error variance distributions seemed to have 

little if any effect on parameter recovery or estimation precision 

across the five estimation methods – at least at the levels we 

investigated. 

2. Although the quickest method to converge to a solution and the 

method least sensitive to starting values, the first-order (FO) 

linearization method showed the greatest bias across both fixed 

effects and variance/covariance parameters compared to its 

competitors. 

3. For the other four methods, the GHQ and BAY methods produced 

the least biased fixed effects although four were comparable for the 

linear effects. 

4. Although slowest time to convergence, the GHQ and BAY methods 

produced the least biased estimates of the parameters in Φ, while the 

CFO and GTS methods produced the least biased residual variance. 

Bias was greatest in these estimates when the sample size was small 

and/or the random effects distribution was non-normal. 

5. Fixed effects were estimated more precisely by the GHQ and BAY 

methods. For these parameters, precision was affected most by small 

sample size and non-normal and mixture random effects 

distributions. 

6. Again, the GHQ and BAY methods produced more precise estimates 

of the variance components of Φ. Expectedly, sample size was also a 

significant factor variability of the estimates decreasing as the 

sample size increases. 

7. Fixed parameters estimates based on the CFO, BAY, and GTS are 

fairly robust to mild deviations from normality of both the random 

effects and error distributions even though these methods sometimes 

had convergence problems. 
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These results point to the following recommendations: 

 

1. The FO approach is not recommended for nonlinear mixed effects 

models as it is the least accurate method for fixed parameter and 

variance components estimates. 

2. The GHQ and BAY methods appear to produce the least biased 

parameter estimates with the GTS and CFO methods showing 

comparable results. The GTS, CFO, and BAY methods were more 

robust to modest departures from normality of the random effects 

distribution. Thus when the random effects distribution is 

approximately normal and the sample sizes small to modest, then the 

GHQ or BAY estimation methods are recommended. For larger 

sample sizes and deviations from normality, the CFO or the BAY 

methods are recommended. 

The efficacy of the Bayesian approach should be investigated on its own 

merits and not necessarily compared to likelihood-based methods for estimating 

nonlinear mixed effects models. This stems from having set up the simulation 

somewhat unfairly. Apart from the philosophical differences that exist between 

frequentist and Bayesian approaches, the obvious advantages that the Bayesian 

framework offers was not exploited. For example, as was previously mentioned, 

in a Bayesian approach prior knowledge about model parameters including their 

distributional assumptions can be incorporated into the model formulation. In this 

simulation, non-informative conjugate priors were used, which put the 

preponderance of weight in estimating the posterior distribution on the data (or 

the likelihood). It would be expected that the Bayesian method under this scenario 

to behave very similarly to the marginal maximum likelihood method, which in 

this set of simulations it did so unsurprisingly. Further exploration into the 

methodological underpinnings and extensions of the Bayesian approach that were 

not investigated here are warranted. 

The results of a Monte Carlo simulation study undertaken to gain insight 

into the consequences of violation of distributional assumptions, sample size, and 

data sparseness underlying five popular approximations used in fitting nonlinear 

mixed effects models. Although it is not appropriate to draw general conclusions 

from a single simulation study, the findings are suggestive and highlight several 

interesting features that may be worthy of future investigation. It appears that 

estimation of fixed regression parameters based on the CFO, BAY, and GTS – 

and to a lesser extent the GHQ approximation – methods is fairly robust to mild 
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deviations from normality of both the random effects and error distributions, 

although the GTS method did show difficulty in achieving convergence in a small 

number of replications. Overall, the FO method showed greater bias than the other 

methods for the fixed parameters and even more so for the variance components 

of the model. While it has the least computational burden of any of the methods, it 

is least accurate and therefore its usefulness in practice is questionable. 

Of course, a single simulation cannot possibly examine all of the interesting 

facets of a model – even if the facility to carry out the computations was limitless. 

The same could be said of the levels within the manipulated factors that were 

investigated. Some rationale was provided for the choices knowing that there are 

infinitely many levels that ultimately could have been chosen. For example, 

Hartford and Davidian (2000) examined misspecification of the inter-individual 

model in Equation 2 looking at the performance of both the likelihood ratio test as 

well as the Wald test to test a single additive component. The current focus was 

on the estimation of fixed parameters, most of which (β,Φ) characterize the 

population. Individual regression coefficients, predicted random effects, were not 

addressed, even though the NLME model is individual-specific. It is not 

unreasonable to expect that distributional assumptions or other model 

misspecifications would have more profound effects. Interestingly, methods of 

carrying out this prediction are markedly different for each of the estimation 

methods inspected in this study. 

Through methodological advances in estimation algorithms and by the sheer 

speed of today’s computing environments, the number of applications using the 

NLME model has steadily increased – particularly in the social and behavioral 

sciences. NLME models are important tools for practitioners interested modeling 

nonlinear change with functions that have at least one regression parameter that 

enters the function in a nonlinear manner. Much of the methodological and 

computational techniques for these models were developed in late 1980s through 

the early 2000s, although some work in the area still exists (Lai & Shih, 2003; 

Kuhn & Lavielle, 2005; Wu, 2008). As such, many of the estimation methods and 

optimization schemes for these models have been implemented in popular 

commercial software. Still a choice for a particular method is required, and often, 

that choice is made predicated on the research situation and on the specific 

software being used not necessarily on the merits of the method’s performance 

under sub-optimal, but realistic, data analytic conditions. Overall the results 

highlight the inherent difficulty in specifying any type of complex model with 

latent unobservable components; a problem that suggests that caution is in order 
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in interpreting both the nature of computational issues and results in the event 

convergence is achieved. 
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Appendix A 

Data for the simulation was generated in R (V 3.0.1). The following input 

statements were used to run each of the methods in the various statistical software 

programs. 

First-Order Linearization (FIRO) Using SAS PROC NLMIXED 

proc nlmixed data=aera  method=firo tech=quanew lis=2 lsp=.005 maxfu=5000 
maxit=2000; 
parms  au=100 bu=10 cu=1 sa=25 sb=1, sc=0.075 sab=3 sac=0.05 sbc=0.05 se=4; 
a=au+ai; 
b=bu+bi; 
c=cu+ci; 
mod= b-(b-a)*exp(-c*(time-1)); 
model aera ~ normal(mod,se); 
random ai bi ci ~ normal([0,0,0],[sa,sab,sb,sac,sbc,sc]) subject=id;  
run; 

Global Two-Stage (GTS) Using SAS Macro 

%macro GTS(size); 
proc iml;  
print &size; 
 
*first stage estimate of individual person parameter; 
%do k=1 %to 100; 
proc iml; 
use aera.aera; 
read all; 
dat=time||y||id; 
uid=t(unique(id)); 
m=nrow(uid);  
n=nrow(id); 
p=3; 
dati=J(8,3,0); 
create indivdat from dati [colname={'time' 'y' 'subj'}] ; 
do i=1 to 8; 
dati[i,]=dat[i+(&k-1)*8,]; 
end; 
 
append from dati; 
quit; 
 
proc nlin data=indivdat noprint save outest=test ; 
  parms  b1=100, b2=10, b3=1; 
  model y=b2-(b2-b1)*exp(-b3*(time-1)); 
  output out=nlinout predicted=pred residual=res ; 
  run;  
data par; set test; if _type_ ne "FINAL" then delete; subj=&k; keep subj 
_status_ b1 b2 b3; run; 
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proc append base=stage1par data=par force; 
proc append base=stage1pred data=nlinout force; 
%end; 
proc iml; 
* read in nlin estimated results; 
use stage1par; 
read all into bols [colname=name]; 
use stage1pred;  
read all; 
n=nrow(pred); 
m=nrow(bols); 
p=3; 
 
*pooled ols estimate of sigma; 
sigma=sum(res#res)/(n-m*p); 
create var_e from sigma [colname={'error variance'}]; 
append from sigma; 
 
*get covariance matrix for each bols; 
*prepare data for proc mixed analysis; 
thisdati=J(3,8,0); 
create mixdat from thisdati [colname={'id' 'y' 'x1' 'x2' 'x3' 'z1' 'z2' 'z3'}]; 
prednew=J(m,8,0);  
grd1=J(1,8,0);  
grd2=J(1,8,0); 
grd3=J(1,8,0);  
x={1,2,3,4,5,6,7,8}; 
do l=1 to 100; 
  do j=1 to 8; 
prednew[l,j]=bols[l,2] -(bols[l,2]-bols[l,1])*exp(-bols[l,3]*(x[j]-1)); 
grd1[j]=exp(-bols[l,3]*(x[j]-1)); 
grd2[j]=1-exp(-bols[l,3]*(x[j]-1)); 
grd3[j]=(bols[l,2]-bols[l,1])*(x[j]-1)*(exp(-bols[l,3]*(x[j]-1))); 
grd=t(grd1)||t(grd2)||t(grd3); 
  end; 
thisid=J(p,1,l); 
bi=I(3); 
A=sigma*solve(t(grd)* grd,bi); 
chalf=root(solve(A,bi)); 
respi=chalf*t(bols [l,1:3]) ; 
thisxi=chalf; 
thisdati=thisid||respi||thisxi||thisxi; 
append from thisdati; 
end; 
quit; 
 
*final population parameter estimate; 
proc mixed data=mixdat method=ml covtest; 
  class id; 
  model y = x1 x2 x3  / noint solution chisq; 
  random z1 z2 z3/ subject=id type=un  g gcorr gc; 
  parms (25) (3) (1) (0.06) (0.06) (0.075) (1) / eqcons=7; 
  ods output solutionf=fixedparms; 
  ods output CovParms=covparms; 
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run; 
%mend GTS; 

Conditional First-Order Linearization (CFO) Using SAS Macro 

NLINMIX 

%nlinmix(data=dat,    
     model=%str( 
 a=au+ai; 
 b=bu+bi; 
 c=cu+ci; 
 predv= b-(b-a)*exp(-c*(time-1)); 
   ),  
   parms=%str(au=100 bu=10 cu=.75), 
   stmts=%str( 
      class id;  
      model pseudo_y = d_au d_bu d_cu  / noint notest solution cl; 
      random d_ai d_bi d_ci / type=un subject=id solution;  
   ), 
   expand=eblup 
   ), 
run; 

Gaussian-Hermite Quadrature (GHQ) Using SAS PROC NLMIXED 

proc nlmixed data=aera method=gauss noad tech=quanew lis=2 lsp=.005 maxfu=5000 
maxit=2000 qpoints=20; 
parms  au=100 bu=10 cu=1 sa=25 sb=1, sc=0.075 sab=3 sac=0.05 sbc=0.05 se=4; 
a=au+ai; 
b=bu+bi; 
c=cu+ci; 
mod= b-(b-a)*exp(-c*(time-1)); 
model aera ~ normal(mod,se); 
random ai bi ci ~ normal([0,0,0],[sa,sab,sb,sac,sbc,sc]) subject=id;  
run; 

Bayesian (BAY) Using R and WinBUGS 

The Bayesian approach used the R2WinBUGS library and bugs function in R. R 

was utilized as the platform to call WinBUGS and collate results upon 

convergence of the program. There is a debugging option in the bugs function that 

allows monitoring of the iteration history and mixing. We used this extensively in 

the beginning to identify problematic code. The bugs function requires three files 

to call the WinBUGS program: 

 
nlme.sim <- bugs(data, inits, parameters, "C:/ /programs/ 
   quadwin.txt",  
   n.chains=3, n.iter=9000, n.burnin=7000, 
   bugs.directory="C:/Program Files/WinBUGS14", 
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   n.thin = 1, debug=T) 

File 1: Initial Values (init) 

inits = function(){ 
    list(mub=c(100,10,1), 
        tau=matrix(c(.05,0,0,0,.25,0,0,0,20),nrow=3,byrow=F), 
    tauC=.5) 
} 

File 2: Parameters to Monitor (parameters) 

parameters = c("mub", "sig", "sige") 

File 3: Model Statement (quadwin.txt) 

model { 
 
for (i in 1:K) { 
 for (j in 1:n) { 
z[i, j] ~ dnorm(mnb[i, j], tauC) 
mnb[i, j] <- b[i, 2] - ((b[i,2] - b[i,1])*exp(-b[i,3] * x[j])) 
      } 
 b[i, 1:3] ~ dmnorm(mub[1:3], tau[1:3,1:3]) 
} 
 
 mub[1:3] ~ dmnorm(mean[1:3], S2[1:3,1:3]) 
 tau[1:3, 1:3] ~ dwish(S3[1:3,1:3], 3) 
 sigma2[1:3, 1:3] <- inverse(tau[1:3,1:3])  
 sig[1,1] <- sigma2[1,1] 
 sig[1,2] <- sigma2[2,1] 
 sig[2,2] <- sigma2[2,2] 
 sig[1,3] <- sigma2[3,1] 
 sig[2,3] <- sigma2[3,2] 
 sig[3,3] <- sigma2[3,3] 
 tauC ~ dgamma(1.0E-3, 1.0E-3) 
 sige <- 1 / tauC 
} 
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