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Generalized Singular Value Decomposition 
With Additive Components

Stan Lipovetsky 
GfK North America 

Minneapolis, MN 

 

 

The singular value decomposition (SVD) technique is extended to incorporate the additive 
components for approximation of a rectangular matrix by the outer products of vectors. 
While dual vectors of the regular SVD can be expressed one via linear transformation of 
the other, the modified SVD corresponds to the general linear transformation with the 
additive part. The method obtained can be related to the family of principal component and 
correspondence analyses, and can be reduced to an eigenproblem of a specific 
transformation of a data matrix. This technique is applied to constructing dual eigenvectors 
for data visualizing in a two dimensional space. 

 
Keywords: singular value decomposition, general linear transformation, principal 
components, dual eigenvectors, perceptual mapping 

 

Introduction 

Data visualization, also known as perceptual mapping, is a representation of 

multivariate observations in two dimensional plots. It can be performed with 

various techniques, particularly principal component analysis (PCA) and factor 

analysis (Dillon and Goldstein, 1984; Seber, 1984; Falissard, 1999), 

multidimensional scaling (Chambers et al., 1983; Cleveland, 1985), and singular 

value decomposition (SVD) techniques (Golub and van Loan, 1983). These 

methods are applied for bi-plotting when both observations and variables are 

represented in the same graph (Gabriel 1971; Gabriel and Odoroff, 1990). 

Perceptual mapping includes methods of correspondence analysis or dual scaling 

for categorical data (Nishisato, 1980; Greenacre, 1984; Carroll et al., 1986; 

Benzecri, 1992), canonical correlation analysis and MANOVA (Novak, 1995; 

Tishler and Lipovetsky, 1996), and many-way eigenvector analysis (Cooper, 1988; 

Carlier and Kroonenberg, 1996; Lipovetsky, 1994). Various additional techniques 

are also used for specific problems in PCA, SVD, and perceptual mapping (Kaciak 
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and Louviere, 1990; Sinha and DeSarbo, 1998; Steenkamp et al., 1994; Shugan, 

1987; Lipovetsky and Conklin, 2001, 2003, 2004, 2005; Lipovetsky, 2009). 

Projection of multivariate observation in a two dimensional space is usually 

performed by PCA or SVD techniques. In a PCA approach, the variables are 

centered by their means (and often normalized by their standard deviations), and in 

an SVD approach the original matrices of data are processed. Both PCA and SVD 

solve some eigenproblems and, from the several main eigenvectors (those 

correspond to maximum eigenvalues), a couple of vectors are picked for use as plot 

axes. In PCA, those are usually the 1st and 2nd or 2nd and 3rd main eigenvectors. In 

SVD, especially when it is used for correspondence analysis, the 1st eigenvector 

represents the mean values or their proportions among the variables, so the 2nd and 

the 3rd eigenvectors are applied. 

A general linear transformation, including additive part, to construct the dual 

vectors for approximation of a data matrix. It can be called the Generalized SVD, 

or GSVD. This technique can be seen as another member of the family of SVD and 

PCA methods. GSVD corresponds to the general linear transformation of the axes 

of a plot, including shift of the beginning of coordinates and change of scales’ units. 

Despite problems in interpretation of the perceptual maps, the visualization of 

data is needed and widely used in applied statistical analysis. As it is noted in Jones 

and Pearce (2000), "In America visually-oriented, quantitatively illiterate culture, 

images have a great deal of power, so if a picture is today worth a thousand words, 

it must be worth at least a billion numbers". It could be particularly true for 

multivariate data and its statistical consideration (see also Lipovetsky and Mandel, 

2009). 

SVD and PCA 

Consider a matrix approximation by an outer product of two dual vectors. Let x 

denote a data matrix of m by n order, with elements xij of ith observations 

 1, ,i m  by jth variables (1, , )j n . A model of matrix approximation by 

two vectors is 

 

 ij i j ijx b a    , (1) 

 

where bi and aj are elements of vectors b and a of mth and nth order, respectively, 

λ is a normalizing parameter, and [εij] is a matrix of residuals. This equation in 

matrix form is 

 

  x ba' ε  , (2) 



GENERALIZED SINGULAR VALUE DECOMPOSITION 

586 

with b as a column-vector and a' as a row-vector (prime denotes transposition). The 

least squares (LS) procedure for determining the vectors a and b by minimizing 

deviations ε, also known as Eckart-Young approximation (Eckart and Young, 1936; 

Lipovetsky and Tishler, 1994), is defined by the objective: 

 

  
22 2

1 1

min
m n

ij i j

i j

S x b a 
 

     ε x ba  . (3) 

 

From the first-order conditions 

 

 / 0, S/ 0i jS b a       , (4) 

 

a system of equations yields 

 

 

2

1 1

2

1 1

, 1, , ,

, 1, , .

n n

ij j i j

j j

m m

ij i j i

i i

x a b a i m

x b a b j n





 

 


 



  


 

 

  (5) 

 

Normalizing vectors by their scalar norm equal one, 

 

 
2 2

1 1

1, 1
n m

j i

j i

a b
 

    , (6) 

 

we represent (5) in a matrix form as follows: 

 

 ,  xa b x'b a  . (7) 

 

Substituting one of the equations in (7) into the other, we get two problems: 

 

 
2( ) x'x a a  , (8) 

 

that is the eigenproblem for variables aggregate, and 

 

 
2( ) xx' b b  , (9) 
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that is the dual eigenproblem for the observations aggregate. First eigenvectors a 

and b for maximum eigenvalue λ2 in (7)-(8) solve the problem (1)-(2) for 

approximation of a matrix by dual vectors’ outer product. 

If x is a matrix of the standardized (centered and normalized) variables, then 

x'x coincides with the correlation matrix, and the problem (8) coincides with PCA. 

Indeed, in PCA we construct a linear combination of variables 

 

 y xa  , (10) 

 

and maximize its variance 

 

 var( ) max  y y'y ax'xa  . (11) 

 

With normalizing restriction (6) for vector a, we represent (11) as a conditional 

objective 

 

 ( ) ( 1) max  a x'x a a'a  , (12) 

 

with a Lagrange term µ. Maximizing (11) due to (4), we obtain the same SVD 

eigenproblem (8) with µ = λ2. Comparison of (7) and (10) shows that y = λb, so the 

aggregator y of PCA is equal to the dual SVD vector b normalized by λ2. Similarly, 

in a dual PCA approach, we can consider a linear combination of observations 

 

 z x'b  , (13) 

 

and maximize its variance; that yields the SVD eigenproblem (9) and the relation 

z = λa between PCA aggregator z and SVD dual vector a. 

The SVD (7) and PCA relations (10) and (13) show that every element of an 

eigenvector is a linear combination of the elements of the dual eigenvector. In some 

analogies, it corresponds to a linear model without intercept. Let us consider now a 

model with intercept, meaning more general linear relations between dual 

eigenvectors. 

Generalized SVD 

In place of the model of matrix approximation by outer product of two vectors (1), 

let us take a general model with linear and mixed effects: 
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 ij i j i j ijx b a b a        . (14) 

 

As it is known in the fitting of two-way tables in the analysis of variance (Tukey, 

1977; Emerson & Wong, 1985), such a model can be re-arranged to the 

multiplicative fit model with the additive constant 

 

 ij i j ijx       , (15) 

 

where the relations between the parameters used in (14) and in (15) are as follows: 

 

 
1 1 1, ,i i j jb a               . (16) 

 

The model (15) is the extension of the regular SVD model (1) by the constant item 

ν. If the values of parameters ν, λ, β, and α in the model (15) are estimated, then by 

(16) we obtain all the parameters µ, λ, b, and a of the model (14) as well. 

Take the model (15) and use it in the objective (3); that becomes 

 

  
22 2

1 1

min
m n

ij i j

i j

S x   
 

       ε x βα'  . (17) 

 

From the condition / 0S    , we get the expression for the constant 

 

 
1 1 1 1

1 1 1m n m n

ij i j

i j i j

x
mn m n

    
   

  
     

  
   x βα  , (18) 

 

so it equals the mean value by all the data in matrix x minus the interaction part of 

the mean values of the β and α dual vectors. Substituting (18) into (15), we represent 

this model as 

 

 ij i j ijx     βα   (19) 

 

with the matrix of deviation from the total mean defined as 

 

 ij ijx x  x  . (20) 
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To reduce the model (19) to the regular SVD model (1), we impose the constraint 

that both mean values of β and α equal zero: 

 

 
1 1

0, 0
n m

j i

j i

 
 

    . (21) 

 

Such restrictions are used in the analysis of variance with non-additive fits (Mandel, 

1969, 1971) and in factor analysis (Gollob, 1968). 

With help of the relations (18)-(21), we represent (17) as a conditional 

objective 

 

 

 
2 2

1 1 1 1

2 2 ( )

( )2 2 2 min

m n

m n m n

ij i j i j

i j i j

S

x

  

    
   

    

      

ε x βα' β'e α'e

  (22) 

 

where ρ and τ are Lagrange multipliers for incorporating conditions (21) into the 

objective (17), and em and en denote the uniform vector-columns of order m and n, 

respectively. From the first order conditions (4) applied to the vectors β and α in 

(22), a system of equations yields: 

 

 

2

1 1

2

1 1

/ , 1, , ,

/ , 1, , n .

n n

ij j i j

j j

m m

ij j j i

i i

x i m

x j

    

    

 

 


  



   


 

 

  (23) 

 

Comparison with (5) shows that equation (23) corresponds to the general linear 

transformation of one vector to another with additive constants. 

Multiplying the first group of equations (23) by βi and summing over the 

index i, or the second group of equations (23) by αj and summing over j, and taking 

into account conditions (21), we get expression for the term λ: 

 

 
2 2

m n

ij i ji j

m n

i ji j

x 


 

 

 
 . (24) 
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Summing the first group of equations (23) by index i, the second group of equations 

(23) by index j, and using conditions (21), we obtain expressions for the terms ρ 

and τ: 

 

 
1 1 1 1

1 1
,

n m m n

ij j ij i

j i i j

x x
m n

     
   

  
    

   
     . (25) 

 

Substituting (25) into (23) yields the following system of equations: 

 

 

2

1 1 1

2

1 1 1

1
, 1, , ,

1
, 1, , n .

n m n

ij ij j i j

j i j

m n m

ij ij j j i

i j i

x x i m
m

x x j
n

  

  

  

  

  
    

 


     
 

  

  

  (26) 

 

Using definition (20) we can re-write expressions in the parentheses in (26) via the 

original data matrix: 

 

 

 

 

1 1

1 1

1 1
,

1 1
,

m m

ij ij ij ij ij j

i i

n n

ij ij ij ij ij i

j j

x x x x x c
m m

x x x x x r
n n

 

 


      



       


 

 

x x

x x

  (27) 

 

where cj and ri denote, respectively, the column mean (average by rows) and row 

mean (average by columns) values of the matrix [xij]: 

 

 
1 1

1 1
,

m n

j ij i ij

i j

c x r x
m n 

    . (28) 

 

In a matrix x, rows often correspond to observations and columns to attributes. 

Then in (27), the first matrix [xij − cj] consists of observations centered and the 

second matrix [xij − ri] consists of attributes centered. Denote these two matrices 

as Y and Z, so in matrix form the expressions in (27) are 

 

 ,m n   Y x e c' Z x re'  , (29) 
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where uniform vectors e are as in (22), c and r are vector-columns of the order n 

and m, respectively, with the elements of (28), and the prime denoting transposition. 

Using (27)-(29) we represent the system (26) in matrix notation: 

 

 ( ) , ( )  Yα α'α β Z'β β'β α  . (30) 

 

Normalizing vectors α and β by scalar norm (6), we simplify (30) to the system 

 

 ,  Yα β Z'β α  . (31) 

 

Substituting one of the equations in (31) into the other yields the problems 

 

    2 2,  Z'Y α α YZ' β β  . (32) 

 

Relations (31) and (32) define the generalized SVD method. The eigenproblems 

(32) yield the attributes’ and observations’ aggregates corresponded to 

generalizations of the regular SVD solutions (8)-(9). First eigenvectors α and β for 

maximum eigenvalue λ2 in (32) solve the problem (17) or (22) for approximation 

of a matrix by outer product of vectors with additive component. 

The GSVD problems (32) can be represented, using (29), more explicitly: 

 

 
   

   

2

2

,

.

n m

m n





  

  

x' e r' x e c' α α

x e c' x' e r' β β
 , (33) 

 

It then becomes clear that problems in (33) belong to the family of SVD and PCA 

techniques while differing from both of them. The regular SVD (7)-(9) operates 

with a matrix x and the same matrix transposed x', while in the GSVD (31)-(33) 

there actually are two matrices corresponded to data centering in different 

directions (29). Suppose matrix x consists of centered and normalized variables and 

x'x coincides with the correlation matrix. In this case, due to (29), Y = x but Z ≠ Y, 

and the problems (32)-(33) cannot be reduced to PCA. 

For numerical evaluations it could be convenient to express vector-columns c 

and r (28) in matrix notation: 

 

 
1 1

,m n
m n

 c x'e r xe  . (34) 
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Using (34), we represent the problems in (33) directly via the data matrix: 

 

 

2

2

1 1
,

1 1
,

n n n m m m

m m m n n n

n m

m n





    
      

    

    
      

    

I e e' x' I e e' x α α

I e e' x I e e' x' β β

  (35) 

 

where In and Im are identity matrices of the order n and m, respectively. We see that 

numerical estimations for GSVD problems (35) are not much more difficult than 

for the regular SVD (8)-(9). It is sufficient to solve just one eigenproblem of the 

smaller dimension – usually the number of variables n is less than the number of 

observations m, so we can solve the first problem of (35). The dual solution can 

then be found by the linear transformation (31). 

Although an eigenvector in a separated eigenproblem is defined up to an 

arbitrary sign, the vectors of dual solutions have directions defined by their dual 

transformation (formula (7) for SVD, (10) and (13) for PCA, or (31) for GSVD). It 

means that sign could be changed to the opposite simultaneously in each pair of 

dual vectors. 

Numerical Examples 

Consider a matrix of proportions from an actual marketing research project for six 

brands, X1, X2,…, X6 and nine attributes, A, B, …, I, presented in Table 1. 
 
 
Table 1. Example I: Matrix of proportions. 

 

  X1 X2 X3 X4 X5 X6 

A 0.249 0.166 0.317 0.119 0.059 0.077 

B 0.266 0.283 0.345 0.293 0.154 0.228 

C 0.217 0.203 0.279 0.249 0.148 0.214 

D 0.127 0.051 0.129 0.231 0.054 0.206 

E 0.211 0.222 0.335 0.211 0.153 0.235 

F 0.278 0.246 0.31 0.285 0.181 0.26 

G 0.266 0.289 0.438 0.378 0.257 0.426 

H 0.259 0.263 0.349 0.257 0.164 0.265 

I 0.246 0.302 0.444 0.167 0.222 0.232 
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Table 2. Example I: Pairs of dual vectors for SVD, PCA, and GSVD. 

 

 SVD-vectors  PCA-vectors  GSVD-vectors 

  a2 a3   a2 a3   1 2

X1 0.22 -0.61  0.22 -0.59  0.21 -0.70 

X2 0.30 0.16  0.31 -0.30  0.34 -0.01 

X3 0.47 0.10  0.48 0.26  0.51 0.36 

X4 -0.58 -0.42  -0.58 -0.53  -0.57 -0.34 

X5 -0.02 0.53  -0.01 0.27  0.01 0.22 

X6 -0.55 0.35  -0.54 0.38  -0.50 0.47 

         

  b2 b3   b2 b3   1 2

A 0.54 -0.56  0.53 -0.14  0.48 -0.46 

B 0.04 -0.27  0.04 -0.56  0.04 -0.25 

C -0.09 -0.13  -0.09 -0.08  -0.10 -0.13 

D -0.54 -0.35  -0.56 0.28  -0.61 -0.19 

E 0.07 0.12  0.07 0.30  0.07 0.20 

F -0.11 -0.19  -0.11 -0.39  -0.10 -0.24 

G -0.39 0.40  -0.38 0.19  -0.32 0.57 

H 0.01 -0.04  0.02 -0.13  0.03 0.01 

I 0.48 0.51   0.49 0.53   0.51 0.49 

 
 

The results obtained in SVD, PCA, and GSVD solutions are presented in 

Table 2, where all of the vectors are normalized by the totals of the squared 

elements equal one. For the SVD (7)-(9) and PCA (10)-(13) solutions, we take the 

second (a2, b2) and the third (a3, b3) pairs of dual vectors (because the first 

dimension of means is related to intensity rather than to structure). For the 

generalized solution (35) we take its first (α1, β1) and second (α2, β2) pairs of dual 

vectors (because due to the construction of this method we have already reduced 

the data to just the structure among the items in both directions). 

Comparison among the vectors a2 for SVD, a2 for PCA, and α1 for GSVD 

shows that they are very close to one another. Their dual vectors are also similar 

among themselves, although β1 for GSVD solutions differs from the two other very 

close solutions b2 for SVD and b2 for PCA. The next solutions, a3 for SVD, a3 for 

PCA, and β2 for GSVD, are already not so similar among themselves; they can 

differ by value and by sign, too. The same concerns their dual vectors b3 for SVD, 



GENERALIZED SINGULAR VALUE DECOMPOSITION 

594 

b3 for PCA, and β2 for GSVD. However, the biggest coefficients are always of the 

same sign within each group of the vectors compared. 

Another example presents real data for ten brands and fifteen attributes (those 

are: good value, natural, variety of flavors, I would pay more, good to serve to 

guests, reenergizes, innovative, brand I trust, cares for environment, socially 

responsible, served in selected restaurants, authentic, symbol of conviviality, high 

quality, my brand). The proportions by choices are given in Table 3. 

The results of SVD, PCA, and GSVD solutions are presented in Table 4 and 

are constructed similarly to those described above in Table 2, with the second 

(a2, b2) and third (a3, b3) pairs of dual vectors for SVD and PCA and the first 

(α1, β1) and second (α2, β2) pairs of dual vectors for GSVD. Again, the vectors a2 

for SVD and PCA and α1 for GSVD are very similar. The corresponding dual 

vectors are less similar among themselves. The next solutions, a3 for SVD and PCA 

and α2 for GSVD, differ more; the same concerns their dual vectors, b3 for SVD 

and PCA and β2 for GSVD. The reason for the differences is easy to explain by 

recalling that the total of the elements in any SVD vector does not equal zero while 

b-vectors in PCA have zero totals because of the centering of data in columns. In 
 
 
Table 3. Example II: Matrix of proportions. 

 

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

A 0.166 0.194 0.198 0.085 0.108 0.036 0.099 0.086 0.119 0.093 

B 0.250 0.282 0.259 0.071 0.085 0.068 0.102 0.085 0.083 0.068 

C 0.143 0.168 0.281 0.078 0.131 0.040 0.072 0.108 0.077 0.075 

D 0.196 0.214 0.241 0.052 0.063 0.037 0.049 0.044 0.045 0.044 

E 0.281 0.332 0.319 0.082 0.110 0.055 0.097 0.099 0.078 0.063 

F 0.213 0.260 0.265 0.090 0.110 0.056 0.086 0.088 0.081 0.065 

G 0.164 0.213 0.239 0.069 0.094 0.058 0.067 0.086 0.047 0.051 

H 0.285 0.335 0.326 0.094 0.123 0.055 0.111 0.112 0.095 0.078 

I 0.145 0.191 0.209 0.058 0.071 0.048 0.081 0.079 0.060 0.048 

J 0.166 0.222 0.218 0.056 0.077 0.049 0.073 0.072 0.059 0.045 

K 0.256 0.304 0.260 0.049 0.046 0.033 0.056 0.058 0.040 0.037 

L 0.270 0.166 0.163 0.045 0.047 0.035 0.033 0.032 0.026 0.029 

M 0.171 0.187 0.193 0.055 0.063 0.043 0.050 0.054 0.043 0.041 

N 0.282 0.349 0.332 0.091 0.107 0.057 0.088 0.100 0.080 0.067 

O 0.170 0.213 0.205 0.058 0.083 0.034 0.061 0.074 0.057 0.058 
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GSVD, the solution for each vector equals zero due to the data centering in both 

directions. Which of the solutions is more interpretable and preferable depends on 

a nature of data in the project. If a decision maker is not satisfied with the results 

of classical SVD or PCA, it is possible to try the new approach of the GSVD. 
 
Table 4. Example II: Pairs of dual vectors for SVD, PCA, and GSVD 

 

 SVD-vectors  PCA-vectors  GSVD-vectors 

  a2 a3   a2 a3   a1 a2 

X1 -0.594 0.590  -0.572 0.523  -0.518 0.667 

X2 -0.240 -0.420  -0.157 -0.217  -0.607 -0.252 

X3 0.213 -0.414  0.254 -0.514  -0.274 -0.603 

X4 0.196 0.174  0.204 0.175  0.170 0.085 

X5 0.412 0.191  0.420 0.153  0.241 -0.158 

X6 0.051 0.022  0.050 0.004  0.166 0.251 

X7 0.238 0.170  0.256 0.268  0.152 0.020 

X8 0.326 -0.015  0.342 -0.001  0.188 -0.147 

X9 0.323 0.368  0.336 0.459  0.233 0.035 

X10 0.259 0.269  0.260 0.281  0.248 0.102 

         

  b2 b3   b2 b3   b1 b2 

A 0.380 0.556  0.350 0.611  0.384 0.086 

B -0.062 0.167  -0.041 0.246  -0.129 0.115 

C 0.525 -0.044  0.498 -0.204  0.366 -0.408 

D -0.136 -0.164  -0.167 -0.264  -0.011 0.026 

E -0.090 -0.082  -0.030 -0.006  -0.355 -0.148 

F 0.129 0.059  0.141 0.082  0.009 -0.088 

G 0.152 -0.197  0.127 -0.265  0.162 -0.139 

H 0.028 0.066  0.098 0.173  -0.310 -0.172 

I 0.168 -0.094  0.125 -0.125  0.263 -0.053 

J 0.058 -0.151  0.031 -0.155  0.128 -0.047 

K -0.434 -0.338  -0.418 -0.305  -0.386 0.055 

L -0.521 0.630  -0.589 0.442  -0.035 0.807 

M -0.064 -0.003  -0.118 -0.090  0.165 0.164 

N -0.099 -0.195  -0.028 -0.104  -0.407 -0.218 

O 0.056 -0.015   0.022 -0.037   0.157 0.018 
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Summary 

A modified singular value decomposition technique is described as a general linear 

model with an additive part in the mutual representation of the dual vectors one via 

another. The dual transformation with additional parameters is more flexible to 

adjusting one direction of the data matrix to another, so the generalized SVD can 

better express the structure of the simultaneous positioning of a matrix’s two 

directions in the two-dimensional plot. The GSVD technique is reduced to an 

eigenproblem of a specific structure of the product of two matrices, each centered 

in one of the directions of the data (35). This eigenproblem does not produce the 

eigenvectors of intensity that correspond to the first dual vectors in singular value 

decomposition or in principal component analysis. The GSVD eigenvectors, 

beginning from the first one, describe the structure of the relations among the 

directions in the data matrix. The generalized SVD yields a possibility to obtain an 

additional structure of items’ locations on the perceptual map. Comparing maps of 

different techniques, a researcher can find the more interpretable perceptual map. 

The GSVD technique enriches the family of SVD and PCA methods for obtaining 

dual vectors, and can be useful for theoretical investigation and practical 

applications in numerous problems that use eigenvector or SVD analysis. 
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