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Microarrays allow the study of the expression profile of hundreds to thousands of genes 
simultaneously. These expressions could be from treated samples and the healthy controls. 
The Esscher transformed Laplace distribution is used to fit microarray expression data as 
compared to Normal and Laplace distributions. The Maximum Likelihood Estimation 
procedure is used to estimate the parameters of the distribution. R codes are developed to 
implement the estimation procedure. A simulation study is carried out to test the 
performance of the algorithm. AIC and BIC criterion are used to compare the distributions. 

It is shown that the fit of the Esscher transformed Laplace distribution is better as compared 
to Normal and standard Laplace distributions. 
 
Keywords: Esscher transformed Laplace distribution, Normal distribution, Laplace 
distribution, Microarray gene expression, Maximum Likelihood estimation 

 

Introduction 

Microarrays allow the researcher to investigate the expressions of thousands of 

genes simultaneously under various condition of the biological process. These 

conditions could be samples from cancer tumor and healthy controls. This method 

measures the intensity of the fluorescence after hybridization and then expression 

profiles are compared between two different samples of Complementary DNA 

(cDNA) colored with different dyes, Red (for diseased) and Green (for healthy 

control). Hence this method allows us to study the relative gene expression in two 

different samples. The statistical methods that have been developed to analyze the 

gene expression data over the decades depend heavily on the distribution of the 

gene expression data. 
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The gene expression data, after normalization, usually has a heavier tail as 

compared to normal distribution. That is, most of the mass at the center with a sharp 

peak with varying asymmetry. Researchers have used several densities to model 

gene expression data. Densities of Poisson, exponential, and logarithmic series 

were used (Kuznetsov, 2001). An error distribution of gene expression datasets was 

approximated by two distributions by taking log-normal in the bulk of microarray 

spot intensities and a power law in the tails (Hoyle, Rattray, Jupp, & Brass, 2002). 

The gene expression was also fitted by using an asymmetric Laplace distribution 

(Purdom & Holmes, 2005). However, in order to take outliers into account, the 

Cauchy distribution has been used for estimating gene expressions using data from 

multiple-laser scans (Khondoker, Glasbey, & Worton, 2006), and the Laplace 

mixture model was introduced as a long tailed alternative to the normal distribution 

(Bhowmick, Davison, Goldstein, & Ruffieux, 2006). 

Recently, asymmetric type II compound Laplace density 

(Punathumparambath, Kulathinal, & George, 2012) was introduced for the analysis 

of gene expression data which was asymmetric version of type II compound 

Laplace distribution and a generalization of asymmetric Laplace distribution. The 

four parameter probability distribution provided an additional degree of freedom to 

capture the characteristic feature of the microarray data. Based on the above review, 

the microarray data with thousands of genes show asymmetry and most of the mass 

at the middle as large proportion of genes are not differently expressed. Therefore 

the log ratio of the intensities have a tendency to cluster around a single point and 

with the presence of outliers. Hence it may not be appropriate to summarize such 

pattern with mean, variance, etc. 

In the current study, new class of asymmetric Laplace distribution is proposed 

for the analysis of log ratios of measured gene expression data across genes through 

Esscher transformation, namely Esscher transformed Laplace (ETL) distribution 

proposed in George and George (2012). It is a sub-class of one parameter 

exponential family and an alternative to various types of asymmetric Laplace 

distributions given in Kotz, Kozubowski, and Podgórski (2001). If all the genes on 

one array are considered as separate independent observations, the distribution of 

the log-ratio of the expression values is well approximated by the asymmetric 

nature of the ETL distribution. Moreover modeling distribution with single 

parameter would be a feasible approach as compared to distribution such as 

asymmetric type II compound Laplace distribution with four parameters. This 

paper presents the analysis of microarray gene expression data using the ETL 

distribution. The paper is organized as follows: First we describe the overview of 

ETL distribution, followed by a simulation study. Next Normal, Laplace, and ETL 
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distributions were fitted to gene expression data and compared. Finally the paper 

ends with conclusion. 

Methods 

Overview of Esscher Transformed Laplace Distribution 

The ETL distribution was proposed in George and George (2012) and George 

(2011). A random variable X is said to follow Esscher transformed Laplace 

distribution with parameter (θ) if its probability distribution function (pdf) is given 

by 
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where θ is called the Esscher parameter and θ ϵ (-1, 1). This pdf can also be 

expressed as 
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Thus the ETL distribution is a regular one parameter exponential family and a 

subclass of the family of asymmetric Laplace (AL) distributions proposed in Kotz 

et al. (2001). These kinds of distribution are more appropriate for modeling 

financial datasets as this allows for asymmetry, peakedness and tailed heaviness 

than normal distribution (George & George, 2013). 

The cumulative distribution function (cdf) of the ETL distribution is given by 
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for θ ϵ (-1, 1). When θ = 0, we get the classical Standard Laplace (0, 1) distribution. 

Figure 1 represents the densities of the ETL distribution. When θ ϵ (-1, 0) the 

distribution is left skewed and θ ϵ (0, 1) the distribution is right skewed. From 
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Figure 1 we can see that the ETL distribution has heavier tails than the normal 

distribution, meaning that there is more probability of extreme values than under a 

normal distribution. In addition, the ETL distribution concentrates more probability 

in the center than a normal distribution. It is also clear from Figure 1 that the shape 

of the ETL distribution is nearly similar to the AL distribution but the later does not 

belong to one parametric exponential family whereas the former does. 

The characteristic function of the AL (µ, σ) with parameters µ ϵ  and σ ≥ 0 

and ETL (θ) distributions are given by 
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Figure 1. Densities of the Esscher transformed Laplace distribution for various choices of 

parameter θ. 
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Hence ETL (θ) is a special case of the AL (µ, σ) distribution with µ = 2θ/(1 – θ2) 

and σ2 = 1/(1 – θ2). The mean E(x) and variance Var(x) of the ETL distribution are 

given by 
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The αth quantile of the ETL (θ) distribution for simulation purpose in the later 

section is given by 
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The parameter of the ETL distribution can be obtained either by the method 

of maximum likelihood (MLE) or by the method of moments. Let x1, x2, …, xn be 

an independent identically distributed (i.i.d) random variable from the ETL (θ) 

distribution with density from equations (1) or (2). The likelihood function is then 

written as 
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and the first derivative with respect to the parameter θ is 
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The MLE of parameter θ is obtained by solving the score function 
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provided that θ ϵ (-1, 1). 

By introducing the location parameter (µ) and scale parameter (σ) in the ETL 

distribution, the pdf and cdf of the ETL (θ, µ, σ) distribution is given as follows: 
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and 
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where θ ϵ (-1, 1), µ ϵ , and σ > 0. 

The mean E(x) and variance Var(x) of the ETL with location µ and scale parameter 

σ are given by 
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The αth quantile of the ETL (θ, µ, σ) distribution is 
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The parameters θ, µ, and σ of the ETL distribution were obtained by 

maximization of the likelihood function in R software (R Development Core Team, 

2014) using optim function with BFGS (Broyden, Fletcher, Goldfarb, and Shanno) 

algorithm. The standard error (SE) of the respective parameters were obtained by 

inverting the Fisher information matrix at the maximum likelihood estimates. As 

this was a methodological study which used open source data, IRB clearance was 

not necessary. 

Data Simulation 

A simulation experiment is executed to study the functioning of the estimation 

algorithm for various arbitrary values of the parameters of the ETL (θ, µ, σ) 

distribution. We created 1000 datasets each with sample of size n = 2000 from the 

ETL distribution by fixing the Esscher parameter θ = (-0.5, 0, 0.5), location 

parameter µ = (-0.5, -0.2, 0.3, 0.9), and scale parameter σ = (0.5, 0.75, 1, 1.5) by 

using an inverse transform sampling procedure. Then the maximum likelihood 

estimates of the parameters are obtained as mentioned above by using R statistical 

software. Table 1 represents the results of the simulation study performed by using 

1000 different data sets. It is apparent that the estimation procedure works well for 

different choices of parameters and the sample standard deviation are in accordance 

with the asymptotic standard error obtained using maximum likelihood estimate. 

However the difference increases with increase in the σ values. We also checked 

the convergence of the estimation procedure for various choices of parameter 

values with different initials and the algorithm works satisfactorily well for several 

alternatives. 

Results 

Analysis of Microarray gene expression data 

The ETL distribution was applied to three different microarray datasets (Swirl, 

E. coli, and Tumor) from published microarray experiments. The first data set Swirl 
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zebrafish experiment is included as part of the marray package in R software 

(Dudoit & Yang, 2002). This data is provided by Katrin Wuennenberg-Stapleton 

from the Ngai Lab at UC Berkeley (2001). Swirl is a point mutant in the vertebrates. 

In order to access the mutational status, zebrafish was taken as a model organism. 

The aim of the experiment was to find genes which were differentially expressed 

between mutant and wild type zebrafish. The cDNA from wild type mutant was 

labelled using Cy3 dyes and the swirl mutant with Cy5. There were totally four 

replicates (Swirl.1,...., Swirl.4) and the target cDNA was hybridized to microarrays 

containing 8,448 probes, including 768 control spots. The raw dataset was first log 

transformed to base 2 and normalized using a print tip group Lowess smoothing 

technique (locally weighted linear regression method) (Cleveland & Devlin, 1988) 

and with quantile normalization procedure. This method is widely used in 

microarray experiments as this removes the intensity dependence in log2(Ri/Gi) 

values, where Ri is the red dye intensity (Cy3) and Gi (Cy5) is the green dye 

intensity for the ith gene (Yang et al., 2002). The same dataset was used to fit 

asymmetry Laplace distribution in Purdom and Holmes (2005). 

The next dataset, E. coli, was a two channel microarray experiment conducted 

to compare gene expression profiles of wild strain with mutant strain and was 

provided by Bernstein, Lin, Cohen, and Lin-Chao (2004). The dataset contained 

information on 5128 genes with six arrays. mRNA extracted from wild strain was 

labeled with Cy5 (Green) and the mutant strain with Cy3 (Red). The E. coli data 

was also normalized using Lowess technique and the quantile normalization 

procedure and then the log differences was taken as gene expression measurement. 

The third dataset Tumor microarray experiment was carried on to compare the 

functioning of gene expression of ovarian tumor cells as compared to normal cells. 

This study involved six samples from normal cells and six from ovarian tumor cells 

on 34,742 genes. We transformed the data using log function with base 2 and then 

we used Lowess and quantile normalization procedure as earlier. 

Gaussian, Laplace, and ETL distributions were fitted to log transformed 

normalized gene expression measurements log2(Ri/Gi) for the three datasets. The 

parameters of the Gaussian (µ, σ2), Laplace (µ, σ), and ETL (θ, µ, σ) distributions 

were estimated using maximum likelihood estimation method and their 

corresponding standard errors. In Table 2, results for two arrays from each dataset 

are presented, and the rest are given in the supplementary Table 4. 
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Table 1. Simulation study – maximum likelihood estimates of θ, µ, and σ for various 

choices of parameters 
 

θ σ µ θ̂  σ̂  μ̂  SE( θ̂ ) SD( θ̂ ) SE( σ̂ ) SD( σ̂ ) SE( μ̂ ) SD( μ̂ ) 

-0.5 0.50 -0.5 -0.4999 0.5001 -0.5001 0.0177 0.0199 0.0163 0.0171 0.0147 0.0190 

 0.75 -0.2 -0.4999 0.7500 -0.2000 0.0173 0.0199 0.0241 0.0257 0.0204 0.0286 

 1.00 0.3 -0.4999 1.0001 0.3000 0.0170 0.0199 0.0319 0.0342 0.0259 0.0382 

 1.50 0.9 -0.5000 1.5000 0.9000 0.0166 0.0199 0.0472 0.0514 0.0358 0.0572 

            

0.0 0.50 -0.5 0.0003 0.5000 -0.5002 0.0210 0.0227 0.0112 0.0110 0.0135 0.0168 

 0.75 -0.2 0.0003 0.7500 -0.2004 0.0203 0.0227 0.0168 0.0165 0.0187 0.0252 

 1.00 0.3 0.0003 1.0000 0.2995 0.0199 0.0228 0.0224 0.0220 0.0235 0.0337 

 1.50 0.9 0.0003 1.5001 0.8992 0.0197 0.0228 0.0336 0.0329 0.0337 0.0505 

            

0.5 0.50 -0.5 0.5015 0.4987 -0.5017 0.0180 0.0199 0.0165 0.0174 0.0150 0.0199 

 0.75 -0.2 0.5015 0.7481 -0.2025 0.0172 0.0200 0.0241 0.0261 0.0203 0.0300 

 1.00 0.3 0.5015 0.9974 0.2966 0.0171 0.0199 0.0320 0.0347 0.0261 0.0399 

  1.50 0.9 0.5016 1.4961 0.8949 0.0166 0.0200 0.0472 0.0521 0.0362 0.0599 

 
 

Figures 2-3 represent the box plots of intensities of Swirl, E. coli, and Tumor 

datasets before and after normalization. It is clear from Figures 2-3 that, after 

normalization, each distribution of the gene expression has a similar shape and 

exhibits heavier tails with a certain degree of asymmetry as compared to a Gaussian 

distribution. The left side of Figures 4-9 and supplementary Figures 10-19 shows 

the histogram super imposed with ETL (θ, µ, σ), Laplace (µ, σ) and Gaussian 

(µ, σ2) distributions, where the parameters of these distributions were obtained by 

the maximum likelihood estimation procedure. By comparing these densities, ETL 

(θ, µ, σ) captures the asymmetric nature of the data with peaked concentration in 

the middle and heavy tail. 

It can be seen from Table 2 that the Esscher parameter (θ) for arrays Swirl.1 

and Swirl.3 are greater than 0 (right skewed) and for all the other arrays the 

parameter (θ) is smaller than 0 (left skewed). Though the level of skewness in all 

the arrays of the datasets is not very large, they are different from 0. It is also noted 

that the maximum likelihood estimate of parameter σ of the ETL and Laplace 

distributions are approximately equal. 
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Figure 2. Boxplot of intensities from Swirl zebrafish microarray experiment, before and 

after normalization. 

 

 
 

 
 
Figure 3. Boxplot of intensities of Red and Green arrays of Ecoli and Tumor microarray 

experiments, before and after normalization. 
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Table 2. Microarray data analysis – maximum likelihood estimates and the asymptotic 

standard error for Esscher transformed Laplace, Laplace, and Normal distributions. 
 

  Swirl.1 Swirl.3 Ecoli.1 Ecoli.2 Tumor.3 Tumor.5 

Esscher       

θ 0.24(0.0128) 0.23(0.0111) -0.090(0.0188) -0.160(0.0159) -0.080(0.0063) -0.080(0.0064) 

σ 0.26(0.0034) 0.30(0.0036) 0.330(0.0047) 0.430(0.0065) 0.710(0.0039) 0.660(0.0036) 

µ -0.09(0.0058) -0.10(0.0052) 0.060(0.0106) 0.140(0.0112) 0.110(0.0072) 0.110(0.0069) 

       

Laplace       

µ -0.01(0.0035) -0.01(0.0038) 0.020(0.0060) 0.050(0.0082) 0.040(0.0047) 0.040(0.0043) 

σ 0.29(0.0031) 0.32(0.0035) 0.330(0.0046) 0.450(0.0063) 0.710(0.0038) 0.660(0.0036) 

       

Gaussian       

µ 0.05(0.0052) 0.04(0.0047) 0.002(0.0068) 0.002(0.0092) 0.005(0.0054) 0.005(0.0051) 

σ 0.23(0.0035) 0.19(0.0029) 0.240(0.0047) 0.430(0.0085) 1.030(0.0078) 0.890(0.0068) 

 
 

One of the graphical procedures to compare the probability distribution 

Quantile-Quantile plot (Q-Q plot) is shown in the right side of Figures 4-9 and 

supplementary Figures 10-19. This is obtained by plotting the theoretical quantiles 

against sample quantiles. This plot is more useful as this better emphasizes the fit 

of the distributions in the tail region. It is indicated in Figures 4-9 that the ETL 

(θ, µ, σ) distribution fits to the data well as compared to other two distributions, 

especially when (θ) is significantly greater than 0 (right skewed) for Swirl.1 and 3 

and smaller than 0 (left skewed) for all the other arrays. The supplementary Figures 

10-19 indicate that, when θ ≈ 0, the performance of both the Laplace and ETL 

distributions are almost similar but still better than Gaussian distribution. Other 

than with few outliers, the fit of the ETL distribution is greatly improved as 

compared to the other distributions considered, though all the three seem to describe 

the middle region of the data rather similarly. 

A numerical evaluation of model comparison was done by using Akaike’s 

Information Criterion (AIC) (Akaike, 1998) and Bayesian Information Criterion 

(BIC) (Schwarz, 1978) as the later take into account of the sample size. The formula 

for AIC and BIC are given by 

 

   1
ˆAIC 2log L | , , 2g nx x K     

 

and 
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     1 n
ˆBIC 2log L | , , x logg x K n     

 

where K is the number of parameters being estimated, L is the likelihood function 

of the model g, ̂  is the maximum likelihood estimate of the parameters of model 

g, and n is the sample size. Given the different models, the one with smaller 

AIC/BIC fits the data better than the one with the larger AIC/BIC, where the 

conclusion from AIC and BIC goes hand in hand in most of the cases. AIC and BIC 

values of the three distributions, ETL (θ, µ, σ), Laplace (µ, σ), and Gaussian (µ, σ2) 

are given in Table 3 and supplementary Table 5. The ETL (θ, µ, σ) distribution had 

a lower AIC/BIC values for all the sample arrays shown in Table 3. Hence the ETL 

distribution shows an improvement in the model fit as compared to other 

distributions. However, when there is an absence of asymmetry (θ ≈ 0) the values 

of AIC/BIC for the ETL distribution are nearly equal to the Laplace distribution. 

This feature has been seen in the arrays of Swirl.2, Ecoli.4, Ecoli.5, Ecoli.6 and 

Tumor.2 in supplementary Table 5, which shows a similar performance of ETL and 

Laplace distributions. 
 
 

 
 
Figure 4. Left: Histogram of Swirl.1 superimposed with Esscher transformed Laplace (red 

line), Laplace (blue dotted), and Normal (green dashed) distributions. Right: Q-Q plot of 
Esscher transformed Laplace (red), Laplace (blue), and Normal (green) distributions. 
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Figure 5. Left: Histogram of Swirl.3 superimposed with Esscher transformed Laplace (red 

line), Laplace (blue dotted), and Normal (green dashed) distributions. Right: Q-Q plot of 
Esscher transformed Laplace (red), Laplace (blue), and Normal (green) distributions. 

 

 
 

 
 
Figure 6. Left: Histogram of Ecoli.1 superimposed with Esscher transformed Laplace (red 

line), Laplace (blue dotted), and Normal (green dashed) distributions. Right: Q-Q plot of 
Esscher transformed Laplace (red), Laplace (blue), and Normal (green) distributions. 
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Figure 7. Left: Histogram of Ecoli.2 superimposed with Esscher transformed Laplace (red 

line), Laplace (blue dotted), and Normal (green dashed) distributions. Right: Q-Q plot of 
Esscher transformed Laplace (red), Laplace (blue), and Normal (green) distributions. 

 

 
 

 
Figure 8. Left: Histogram of Tumor.3 superimposed with Esscher transformed Laplace 

(red line), Laplace (blue dotted), and Normal (green dashed) distributions. Right: Q-Q plot 
of Esscher transformed Laplace (red), Laplace (blue), and Normal (green) distributions. 
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Figure 9. Left: Histogram of Tumor.5 superimposed with Esscher transformed Laplace 

(red line), Laplace (blue dotted), and Normal (green dashed) distributions. Right: Q-Q plot 
of Esscher transformed Laplace (red), Laplace (blue), and Normal (green) distributions. 

 

 
 
Table 3. Comparison of AIC and BIC of Esscher transformed Laplace, Laplace, and 

Normal distributions. 
 

 Swirl.1 Swirl.3 Ecoli.1 Ecoli.2 Tumor.3 Tumor.5 

 AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

Esscher 7125 7146 8942 8963 6023 6043 9084 9104 94157 94183 89044 89069 

Laplace 7549 7563 9245 9259 6045 6058 9167 9180 94301 94318 89200 89217 

Gaussian 11406 11420 9855 9869 7234 7247 10248 10261 99634 99651 94568 94585 

Conclusion 

In the two channel microarray experiments, for which the ETL distribution was 

fitted, gave a reasonable fit to the gene expression data and greatly improved upon 

the normal distribution and as an alternative to Laplace distribution. The ETL 

(θ, µ, σ) can be a better model for gene expression data as they are asymmetric, 

heavy tailed, and with bulk mass in the middle of the distribution and which does 

not follow any of the classical symmetric distributions such as Normal, Laplace etc., 

Esscher transformed Laplace distribution is simple to use distribution which 

belongs to regular exponential family captures all the features as mentioned above 
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of the gene expression measurement. In this distribution, the asymmetry is 

determined by using Esscher parameter (θ) along with the location (µ) and scale (σ) 

parameters. This distribution is more flexible and belongs to the special case of AL 

distribution and is also easily tractable for statistical inference. Simulating 

observations from the ETL distribution is also possible by inverting the cumulative 

distribution function. 

The microarray gene expression data has been modeled using different 

densities by several authors. AL distribution was introduced in Purdom and Holmes 

(2005) in the analysis of gene expression data to capture the peak at the center as 

well as the asymmetry in the distribution. The Laplace mixture model as a long 

tailed alternative to the normal distribution in identifying differentially expressed 

genes in microarray experiments was introduced in Bhowmick et al. (2006). The 

Cauchy distribution was applied in Khondoker et al. (2006) in modeling microarray 

experiments which can estimate gene expressions by taking the outliers into 

account. Asymmetric type II compound Laplace distribution in the analysis of 

microarray gene expression data was introduced in (Punathumparambath et al., 

2012). The same author has proposed a family of skew-slash distributions generated 

by normal kernel (Punathumparambath, 2011), two compound mixture Gaussian 

models (Punathumparambath, George, & V. M., 2011), skew-slash distributions 

generated by the Cauchy kernel (Punathumparambath, 2013), skew-slash t and 

skew-slash Cauchy distributions (Punathumparambath, 2012b), and asymmetric 

slash Laplace distribution (Punathumparambath, 2012a) for modeling gene 

expression data. 

The ETL distribution was used in modeling microarray data as an alternative 

to normal and Laplace distributions. From Figures 4-9 and supplementary 

Figures. 10-19, we can see that the ETL distribution fits the tail region better as 

compared to other two distributions. This is also evident in the reduction in 

AIC/BIC values for the ETL distribution as compared to the normal and Laplace 

distributions. The ETL belongs to exponential family of distributions and is also a 

generalization of the AL distribution. The main motive of applying different 

distributions to microarray gene expression data is to capture the asymmetry and 

peakedness because a large proportion of genes are not differentially expressed, 

the log ratio of the intensities have tendency to cluster around a single point, and 

the presence of outliers (Punathumparambath et al., 2012). This distribution is 

already been applied in George and George (2013) to financial data modeling and 

web server data, and it was shown that the model fit was better as compared to 

other distributions. 
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