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A Preliminary Test Estimator is introduced based on Principal Component Regression 
Estimator defined in the linear regression model when the stochastic restrictions are 
available in addition to the sample information, and when the explanatory variables are 
multicollinear. It is further developed as a large sample preliminary test estimator by 

using Wald (WA), Likelihood Ratio (LR), and Lagrangian Multiplier (LM) tests. 
Stochastic properties of this estimator based on F test as well as WA, LR, and LM tests 
are derived, and the performance of the estimator is compared using WA, LR, and LM 
tests with respect to Mean Square Error Matrix (MSEM). A Monte Carlo simulation is 
carried out to illustrate the theoretical findings. 
 
Keywords: Principal Component Regression, Preliminary Test Estimator, Wald Test, 

Likelihood Ratio Test, Lagrangian Multiplier Test, Mean Square Error Matrix 

 

Introduction 

Instead of using the Ordinary Least Square Estimator (OLSE), some biased 

estimation procedures were developed in the literature to combat the 

multicollinearity problem in the linear regression model. Some of these are 

namely the Principal Component Regression Estimator (PCRE) (Massy, 1965), 

Ridge Estimator (RE) (Hoerl & Kennard, 1970) and Liu Estimator (LE) (Liu, 

1993). Another way of solving the multicollinearity problem is to consider 

parameter estimation with some additional information on the unknown 

parameters such as the exact or stochastic restrictions. By adding exact 

restrictions to a sample model, the resulting Restricted Least Squares Estimator 

(RLSE) might again be better in the mean square error sense than the OLSE. By 

grafting the ridge regression philosophy into the RLSE, the Restricted Ridge 
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Estimator (RRE) has been proposed by Sarkar (1992). As done by Liu (1993), 

Kaçiranlar, Sakallioğlu, Akdeniz, Styan, & Werner (1999) proposed a biased 

estimator called Restricted Liu Estimator (RLE) by combining exact prior 

information with the sample information, and studied its properties. In the 

presence of stochastic restrictions, Theil and Goldberger (1961) proposed the 

Mixed Estimator (ME). By replacing OLSE by ME in the RE and LE respectively, 

the Stochastic Mixed Ridge Estimator (SMRE) (Li & Yang, 2010), and Stochastic 

Restricted Liu Estimator (SRLE) (Hubert & Wijekoon, 2006) were introduced. 

When different estimators are available, preliminary test estimation 

procedure is adopted to select a suitable estimator. The preliminary test approach 

was first proposed by Bancroft (1944), and then has been studied by many 

researchers, such as Judge and Bock (1978), Wijekoon (1990), and Saleh and 

Kibria (1993). Later Golam Kibria and Saleh (2003) have discussed the 

performance of preliminary test ridge estimators based on large sample tests; WA 

(Wald, 1943), LR (Atchison & Silvey, 1958), and LM (Rao, 1947). Recently 

Arumairajan and Wijekoon (2013) proposed the Preliminary Test Stochastic 

Restricted Liu Estimator (PTSRLE) by combining Liu Estimator and Stochastic 

Restricted Liu Estimator. A Preliminary Test Principal Component Regression 

Estimator (PTPCRE) is proposed by combining the idea of Preliminary Test 

Estimator and Principal Component Regression Estimator. 

Model Specification and Estimation 

Consider the multiple linear model 

 

  2, ~ 0,y X N I       (1) 

 

where y is an n × 1 observable random vector, X is an n × p known design matrix 

of rank p, β is a p × 1 vector of unknown parameters and ε is an n × 1 vector of 

disturbances. 

The Ordinary Least Squares Estimator (OLSE) for the model (1) is given as 

 

 -1ˆ S X y    (2) 

 

where S X X . 

Consider the transformation for model (1): 

 



PRINCIPAL COMPONENT PRELIMINARY TEST ESTIMATOR  

692 

 y XTT Z         (3) 

 

where Z XT , T   and    1 2, , , ,p k p kT t t t T T    is a p × p orthogonal 

matrix such that  

 

    
0

, ,
0

k

k p k k p k

p k

T T X X T T 



       
 

  

 

where 0 < k ≤ p,  1 2, ,...,k kT t t t ,  1 2, , ,p k k k pT t t t   , 

 1 2, , , pdiag     ,  1 2, , ,k kdiag     ,  1 2, , ,p k k k pdiag       , 

and 1 2 0p       are the eigenvalues of X X . Note that 

   1 2, , , ,p k k pZ XT z z z Z Z     is the n × p matrix of the principal 

components, where i iz Xt  is the ith principal component. When p kZ   contains 

principal components corresponding to near zero eigenvalues, Z can be separated 

as kZ  and p kZ  , where p kZ   is to be deleted. Rewrite the model (3) as 

 

 - - - - .k k p k p k k k p k p ky XTT XT T XT T Z Z                 (4) 

 

By omitting p kZ  , the OLSE of k  is obtained, and  
1

ˆ
k k k kZ Z Z y


  . Then 

PCRE of β is  

 

  
1ˆ

PCRE k k k kT T ST T X y


     (5) 

 

Xu and Yang (2011) showed that the PCRE estimator could be rewritten as 

follows. 

 

 ˆ ˆ ˆ
PCRE k k kT T L      (6) 

 

where k k kL T T  . 

The RE was proposed by Hoerl and Kennard (1970) as 

 

  ˆ ˆk W    (7) 
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where  
1

1W I kS


   for k ≥ 0. 

The LE was introduced by Liu (1993) as 

 

  ˆ ˆ
dd F    (8) 

 

where    
1

dF S I S dI


    for 0 < d < 1. 

In addition to sample model (1), suppose some prior information was given 

about β in the form of a set of m independent stochastic linear restrictions as 

follows; 

 

  2,    ~ 0,r R N          (9) 

 

where r is an m × 1 stochastic known vector, R is a m × p of full row rank m ≤ p 

with known elements, δ is non zero m × 1 unknown vector, υ is an m × 1 random 

vector of disturbances, and Ω is assumed to be known and positive definite. 

Further it is assumed that υ is stochastically independent of ε i.e.   0E   . 

The Ordinary Least Squares Estimator (OLSE) for the model (1) and the 

Mixed Estimator (ME) (Theil & Goldberger, 1961) due to a stochastic prior 

restriction (9) are given by 

 

    
1

1 1 1ˆ ˆ ˆ ˆ  and mS X Y S R RS R r R   


          (10) 

 

respectively. The expectation vector, and the mean square error matrix of ̂  are 

given as  ˆE    and   2 1ˆMSE S    respectively. 

The expectation vector, dispersion matrix, and the mean square error matrix 

of ˆ
m  are given as  ˆ

mE H    ,   2 1 2ˆ
mD S G     and 

   2 1ˆ
mMSE S G H H        respectively, where, 

 
1

1 1 1G S R RS R RS


     ,  
1

1 1H S R RS R


     and  E r R   . 

Li and Yang (2010) proposed the Stochastic Mixed Ridge Estimator 

(SMRE), and is given as 

 

  ˆ ˆ
SMRE mk W   . (11) 
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The Stochastic Restricted Liu Estimator (SRLE) was proposed by Hubert and 

Wijekoon (2006), and is given by 

 

  ˆ ˆ
srd d md F   . (12) 

 

By using the similar idea used by Hubert and Wijekoon (2006) and Li and 

Yang (2010), write the Stochastic Restricted Principal Component Regression 

Estimator (SRPCRE) as  

 

 ˆ ˆ
SRPCRE k mL   . (13) 

 

Turn to the question of the statistical evaluation of the compatibility of sample 

and stochastic information. The classical procedures is to test the hypothesis 

 

 0 1: 0  against  : 0H H     (14) 

 

under linear model (1) and stochastic prior information (9). 

The Ordinary Stochastic Pre Test Estimator (OSPE) of β (Wijekoon, 1990) 

is defined as 

 

 
0

1

ˆ    if   : 0
ˆ

ˆ      if   : 0

m

OSPE

H

H

 


 

 
 



  (15) 

 

Further, we can write equation (15) as 

 

 
     

, ,0, ( ) ( ),

ˆ ˆ ˆ
m n p m n p

OSPE m F F
I F I F

 
  

 
   

    (16) 

 

 
     

1
1

2

ˆ ˆ

where   
ˆ

r R RS R r R
F

m

 






  
   (17) 

 

has a non-central , ,m n pF   distribution under H1 : δ ≠ 0, with non-centrality 

parameter 
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     

1
1

2

2

ˆ ˆ

ˆ  with  
2

Y X Y XRS R

n p

  
 




 

  
 


  (18) 

 

and 
   

,0, m n pF
I F





 and 
    

,0, ,m n pF
I F


 

 are indicator functions which take the 

value one if F falls in the subscripted interval, and zero otherwise.  ,m n pF   is 

the upper α-level critical value from the central F distribution 
0,, pnmF 
. 

The expectation vector, dispersion matrix, and the mean square error matrix 

of ˆ
OSPE  are derived by Wijekoon (1990) are given below: 

 

    ˆ 2OSPEE h H      (19) 

 

          2 1 2 2ˆ 2 2 2 4 2OSPED S h G h h h H H                 (20) 

 

and 

 

        2 1 2ˆ 2 2 2 4OSPEMSE S h G h h H H               (21) 

 

respectively. 

 

where  
2

,,

2

( )
Pr   for  

m n pm

n p

mF
h

n p













 
   

  

. 

When different estimators are available for the same parameter vector β in 

the linear regression model, one must solve the problem of their comparison. 

Usually as a simultaneous measure of covariance and bias, the mean square error 

matrix is used, and is defined by 

 

           ˆ ˆ ˆ ˆ ˆ ˆ, ,MSE E D B B        
 

     
 

  (22) 

 

where  ˆD   is the dispersion matrix and    ˆ ˆB E     denotes the bias 

vector. Recall the Scalar Mean Square Error     ˆ ˆ, ,SMSE trace MSE    . 
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For any two given estimators 
1̂  and 

2̂ , the estimator 
2̂  is said to be 

superior to 
1̂  under the MSEM criterion if and only if 

 

      1 2 1 2
ˆ ˆ ˆ ˆ, , , 0.M MSE MSE          (23) 

 

The Proposed Estimator 

Now it is possible to propose the Preliminary Test Principal Component 

Regression Estimator (PTPCRE) as 

 

 
0

1

ˆ   if   : 0

ˆ     if   : 0

k m

PTPCRE

k

L H

L H

 


 

 
 



  (24) 

 

Then the PTPCRE can be rewritten as follows. 

 

 
   

   
, ,0, ,

ˆ ˆ ˆ .
m n p m n p

PTPCRE k m k k OSPEF F
L I F L I F L

 
   

 
  

     (25) 

 

When k = p, Lk becomes Ip and consequently 
PTPCRE  becomes 

OSPE . 

Using equations given in (19) and (20), we can now obtain the expectation 

vector, bias vector, dispersion matrix and mean square error matrix as 

 

    2PTPCRE k kE L h L H      (26) 

 

      2PTPCRE k kB L I h L H       (27) 

 

 
   

      

2 1 2

2

2

2 2 4 2

PTPCRE k k k k

k k

D L S L h L GL

h h h L H H L



  

  



   

      
  

  (28) 

 

and 
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   

      

       

2 1 2

2

2

2 2 4 2

2 2

PTPCRE k k k k

k k

k k k k

MSE L S L h L GL

h h h L H H L

L I h L H L I h L H



  

 

  



   

   

      
  

          

  (29) 

 

respectively. 

The Proposed Estimator Based on WA, LR and LM Tests 

In general, the finite sample tests such as t or F were used to define the 

preliminary test estimator. In the field of Econometrics, these finite sample tests 

are not used due to large samples. In this situation it is very useful to define 

preliminary test estimators based on large sample tests. The three large sample 

tests considered in the literature are WA, LR, and LM. The WA test offers the 

advantage of only requiring estimates of the unrestricted model, whereas LR test 

requires estimates of both unrestricted and the restricted model. The LM test only 

requires estimates of the restricted model. In different situations, we may use one 

of these tests which are easier to compute. 

Judge and Bock (1978) have rewritten the model given in (1) and (9) to 

obtain the F statistics for testing the hypothesis in (14). Using the rewritten model 

we can derive the test statistics for the WA, the LR and the LM tests which are 

well employed for testing the hypothesis (14), and are given by  

 

 
 

 
 

,   ln 1 ,  and  WA LR LM

n m mF n m mFmF
n m

n p n p n p mF
  

  
     

    
  (30) 

 

respectively (Evans & Savin, 1982). 

It’s known that under the null hypothesis H0, the three test statistics have the 

same asymptotic chi-square distribution with m degrees of freedom (Evans & 

Savin, 1982). When the exact distribution is approximated by the asymptotic chi-

square distribution, the critical value for an α level test of H0 is approximated by 

the central chi-square critical value  2

m   for large sample tests. Further Berndt 

and Savin (1977) showed that a symmetric numerical inequality ε
WA

 ≥ ε
LR

 ≥ ε
LM

 

exists between these three tests. This asymptotic chi-square distribution has wide 

applications in the field of Econometrics. 

Based on the above tests, the PTPCRE takes the form 
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   2 2* * *[0, ( )) [ ( ), )

ˆ ˆ( )  ( )
m m

PTPCRE k m kL I L I
   

     


    (31) 

 

where (*) stands for either WA, LR or LM tests values, and  2

m   is the upper 

percentiles of the central χ2 distribution with m degrees of freedom. 

Using equation (26), (27), (28) and (29) we can obtain the stochastic properties of 

PTPCRE based on WA, LR and LM tests as follows. 

 

    *

* 2 ,PTPCRE k kE L h L H          (32) 

 

      *

* 2 ,PTPCRE k kB L I h L H           (33) 

 

 

   

      

2 1 2 *

*

2
* * *

2

2 2 4 2 ,

PTPCRE k k k k

k k

D L S L h L GL

h h h L H H L



  

   



     

      
  

  (34) 

 

 

   

      

       

2 1 2 *

*

2
* * *

* *

2

2 2 4 2

2 2 ,

PTPCRE k k k k

k k

k k k k

MSE L S L h L GL

h h h L H H L

L I h L H L I h L H



  

 

   



   

     

      
  

          

 (35) 

 

where  
2 *

,*

2
Pr  for  

m

n p

mc
h N

n p













 
   

  

 and c* takes the value for WA, LR 

and LM tests as 

 

 
   

 

      
2

2 1
,     and

m n m

mWA LR
n p en p

c c
n m m m

 

 


 
 


  

 

 
   

  

2

2
.

mLM

m

n p
c

m n m

 

 




 
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Mean Square Error Matrix Comparisons 

The performance of PTPCRE will be compared using WA, LR and LM tests with 

respect to Mean Square Error Matrix (MSEM) sense for the two cases in which 

the stochastic restrictions are correct, and not correct. 

Now we consider the following dispersion matrix differences. 

 

     2

1 1 ,PTPCRE WA PTPCRE LR k k k kD D L GL L H H L                      

 

     2

2 2 ,PTPCRE LR PTPCRE LM k k k kD D L GL L H H L                      

 

     2

3 3 ,PTPCRE WA PTPCRE LM k k k kD D L GL L H H L                      

 

where 

 

            *

1 1 12 2 0,   4 4 0,   2 2 0,LR WA LR WA LR WAh h h h h h                  

 

        *

2 22 2 0,   4 4 0,LM LR LM LRh h h h            

 

        2 32 2 0,   2 2 0,LM LR LM WAh h h h            

 

          * *

3 3 1 1 1 14 4 0,   2 2 0,   2 ,LM WA LM WAh h h h                   

 

    * *

2 2 2 2 3 3 3 32   and  2 .               

 

It is clear that 12 1   since 1 1  . This implies that  1 1 12      as 1 0  . 

But we can show that 
1 1 0    . This implies that  1 1 1 12 0         as 

 1 1 12     . Similarly we can show that 2 0   and 3 0  . 

Write the following mean square error matrices differences. 

 

 
   

 1

.

,

PTPCRE WA PTPCRE LR

k WA WA LR LR k

MSE MSE

L D b b b b L

         

    
  (36) 
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   

 2 ,

PTPCRE LR PTPCRE LM

k LR LR LM LM k

MSE MSE

L D b b b b L

         

    
  (37) 

 

 
   

 3 ,

PTPCRE WA PTPCRE LM

k WA WA LM LM k

MSE MSE

L D b b b b L

         

    
  (38) 

 

where 2

i i iD G H H        for i = 1, 2, 3,    1 2WA

WA kb I L h H    , 

   1 2LR

LR kb I L h H     and    1 2LM

LM kb I L h H    . 

Note that  1

WA LR LM kb b b I L      when δ = 0. 

Based on the mean square error matrix differences the following theorems 

can be stated. 

 

Theorem 1: 

 

i) When the stochastic restrictions are true (i.e. δ = 0),  PTPCRE LR   is 

always superior to  PTPCRE WA   in the mean square error matrix 

sense. 

ii) When the stochastic restriction are not true (i.e. δ ≠ 0), and if 

 
1

*

1 1 12 2




  


   

 then the  PTPCRE LR   is superior to 

 PTPCRE WA   with respect to MSE matrix sense if and only if  

 

 

       

       

       

1 1

1

1 1

1

2

1 1

1

2 2 1

2 2 1

2 2 .

WA WA

k k

LR LR

k k

WA LR

k k

I L h H D I L h H

I L h H D I L h H

I L h H D I L h H

 

 

 

   

   

   

  

  

  

            
 

             
 

            
 
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Proof: 

 

Consider the mean square error matrix difference (36) between WA and LR. 

 

      1PTPCRE WA PTPCRE LR k WA WA LR LR kMSE MSE L D b b b b L                  

 

where 2

1 1 1D G H H       . 

When the stochastic restrictions are true (i.e. δ = 0), then the MSE matrix 

difference in (36) reduces to 2

1 k kL GL    which is clearly a nonnegative definite 

matrix since ψ1 ≥ 0, G ≥ 0 and Lk > 0. 

When the stochastic restrictions are not correct (i.e. δ ≠ 0), then 

   PTPCRE WA PTPCRE LRMSE MSE           is a nonnegative definite matrix if and 

only if 1 WA WA LR LRD b b b b    is a nonnegative matrix. To apply lemma 3 

(Appendix) we have to show that D1 is a nonnegative definite matrix. We rewrite 

1D  as 
1 1 1D D   , where 

2
* 1
1

1

D G H H
 




   . Then 1D is a nonnegative 

definite matrix, if and only if 
1D  is nonnegative definite matrix. To show that 

1D

is nonnegative definite matrix, lemma 1 (Appendix) is used by setting 

 

 
2

1

1

,     and  .B G a H
 

 


     

 

Note that  
1

1 1 1 0G S R RS R RS


      , and the generalized inverse of G is 

  1G SR RS R R S
      . Hence GG H H   . This implies that 

 H G  , where  .  denote the column space of the corresponding matrix 

and R+ is a Moore-Penrose matrix of R. 

Then according to lemma 1, *

1 0D   if and only if 

 

 
2

1

1

.H G H
 

 


     (39) 

 

After some straightforward calculations it can be shown 
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  
1

1 .H G H RS R   


        (40) 

 

By substituting this result to (39) obtain  

 

 
 

1
1

1

2

1

.
2 2

RS R  

 


 

   (41) 

 

Using (18), this inequality can be rewritten as 

 

 
 

1 1

*
1 1 1 1

.
2 2 2

 


   
 

   

  (42) 

 

This implies that *

1D  is a nonnegative definite matrix if and only if 

 
1

*

1 1 12 2




  


   

. Therefore *

1 1 1k kD L D L   is nonnegative definite matrix 

if and only if 
 

1

*

1 1 12 2




  


   

, 1 0  . 

To apply lemma 3 (Appendix), the Moore Penrose inverse of D1 is obtained 

by using lemma 2 (Appendix), and is given by 

 

 1
1 2 2

1 1 1

1
D G G H H G

H G H




      

   



 
    

  
  (43) 

 

After some straightforward calculations we can show that 

 

 
22H G H        (44) 

 

Using (43) and (44) we can easily prove that 1 1 pD D I  , where pI  is an 

identity matrix with order (p × p). This implies that 1 1 WA WAD D b b   and 

1 1 LR LRD D b b  . Then we have  1WAb D  and  1LRb D . To establish 

condition (a) in lemma 3, we find 1ij i jf b D b  for i, j, = WA, LR such that 
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        1 1

, 12 2WA WA

WA WA k kf I L h H D I L h H             
   

  

 

        1 1
, 12 2LR LR

LR LR k kf I L h H D I L h H             
   

 and 

 

        1 1
, 12 2WA LR

WA LR k kf I L h H D I L h H             
   

  

 

Note that, instead of 
1D , the Moore Penrose inverse 

1D  of 1D  is used, since ijf  

is invariant to the choice of 
1D . 

Now according to lemma 3 (Appendix) 

    0PTPCRE WA PTPCRE LRMSE MSE            if and only if 

 

 

       

       

       

1 1

1

1 1

1

2

1 1

1

2 2 1

2 2 1

2 2 .

WA WA

k k

LR LR

k k

WA LR

k k

I L h H D I L h H

I L h H D I L h H

I L h H D I L h H

 

 

 

   

   

   

  

  

  

            
 

             
 

            
 

  

 

This completes the proof. 

By considering the mean square error matrix differences given in equation 

(37) and (38), we can state Theorem 2 and Theorem 3 respectively. The proofs of 

these theorems are similar to the proof of Theorem 1.  

 

Theorem 2: 

 

i) When the stochastic restrictions are true (i.e. δ = 0),  PTPCRE LM   is 

always superior to  PTPCRE LR   in the mean square error matrix 

sense.  
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ii) When the stochastic restriction are not true (i.e. δ ≠ 0), and if 

 
2

*

2 2 22 2




  


   

 then the  PTPCRE LM   is superior to 

 PTPCRE LR   with respect to MSE matrix sense if and only if  

 

 

       

       

       

1 1

2

1 1

2

2

1 1

2

2 2 1

2 2 1

2 2 .

LR LR

k k

LM LM

k k

LR LM

k k

I L h H D I L h H

I L h H D I L h H

I L h H D I L h H

 

 

 

   

   

   

  

  

  

            
 

             
 

            
 

  

 

Theorem 3: 

 

i) When the stochastic restrictions are true (i.e. δ = 0),  PTPCRE LM  is 

always superior to  PTPCRE WA   in the mean square error matrix 

sense. 

ii) When the stochastic restrictions are not true (i.e. δ ≠ 0), and if 

 
3

*

3 3 32 2




  


   

 then the  PTPCRE LM   is superior to 

 PTPCRE WA   with respect to MSE matrix sense if and only if  

 

 

       

       

       

1 1

3

1 1

3

2

1 1

3

2 2 1

2 2 1

2 2 .

WA WA

k k

LM LM

k k

WA LM

k k

I L h H D I L h H

I L h H D I L h H

I L h H D I L h H

 

 

 

   

   

   

  

  

  

            
 

             
 

            
 
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Monte Carlo Simulation 

To illustrate the behavior of the proposed estimators, a Monte Carlo Simulation 

study was designed by considering different levels of multicollinearity. Following 

McDonald and Galarneau (1975) generate explanatory variables as follows: 

 

  
1/2

2

, 11 ,  1,2, , ,   1,2, , ,ij ij i px z z i n j p         

 

where zij is an independent standard normal pseudo random number, and ρ is 

specified so that the theoretical correlation between any two explanatory variables 

is given by ρ2. A dependent variable is generated by using the equation. 

 

 1 1 2 2 3 3 4 4 ,  1,2, , ,i i i i i iy x x x x i n            

 

where εi is a normal pseudo random number with mean zero and variance σ
2

i
 . 

Newhouse and Oman (1971) have noted that if the MSE is a function of σ2 and β, 

and if the explanatory variables are fixed, then subject to the constraint    = 1, 

the MSE is minimized when β is the normalized eigenvector corresponding to the 

largest eigenvalue of the X X  matrix. In this study we choose the normalized 

eigenvector corresponding to the largest eigenvalue of X X  as the coefficient 

vector β, n = 50, p = 4 and 2 1i  . Three different sets of correlations are 

considered by selecting the values as ρ = 0.7, 0.8 and 0.9, and two various 

significance levels are taken as α = 0.01 and 0.05. Further R, r and υ in equation 

(9) are taken as R = (0, 1, 3, 1), r = 0 and  2ˆ~ 0,N    , where 
2ˆ
  is 

estimated by using equation (18). The eigenvalues of the matrix S for ρ = 0.7, 0.8 

and 0.9 are given in Table 1.  

The first three principal components account for 91.29% and 93.65% of the 

total variance when ρ = 0.7 and 0.8 respectively, and also the first two principal 

components account for 91.8% of the total variance when ρ = 0.9. Therefore we 

choose the number of the principal components k = 3 when ρ = 0.7 and 0.8, and 

k = 2 when ρ = 0.9. Table 2, Table 3 and Table 4 show the scalar mean square 

errors (SMSE) obtained by using equation (35). 
  



PRINCIPAL COMPONENT PRELIMINARY TEST ESTIMATOR  

706 

Table 1. Eigenvalues of the matrix S for ρ = 0.7, 0.8 and 0.9. 

 

ρ Eigenvalues 
Proportion of Total Variance 

(%) 
Cumulative Percentage of 

Total Variance (%) 

0.7 

0.12261 63.02 63.02 
0.03209 16.49 79.51 
0.02292 11.78 91.29 
0.01693 8.80 100 

0.8 

0.13843 73.15 73.15 
0.02255 11.92 85.07 
0.01624 8.58 93.65 
0.01201 6.35 100 

0.9 

0.15549 85.30 85.3 
0.01184 6.50 91.8 
0.00861 4.72 96.52 
0.00636 3.48 100 

 
 
Table 2. Estimated SMSE of PTPCRE for WA, LR and LM tests for ρ = 0.7 and k = 3. 
 

Estimators SMSE at α = 0.01 SMSE at α = 0.05 

 PTPCRE WA   0.0584 0.0543 

 PTPCRE LR   0.0590 0.0544 

 PTPCRE LM   0.0597 0.0544 

 
 
Table 3. Estimated SMSE of PTPCRE for WA, LR and LM tests for ρ = 0.8 and k = 3. 

 

Estimators SMSE at α = 0.01 SMSE at α = 0.05 

 PTPCRE WA   0.2444 0.1556 

 PTPCRE LR   0.2621 0.1592 

 PTPCRE LM   0.2841 0.1633 

 
 
Table 4. Estimated SMSE of PTPCRE for WA, LR and LM tests for ρ = 0.9 and k = 2. 

 

Estimators SMSE at α = 0.01 SMSE at α = 0.05 

 PTPCRE WA 
 

0.3227 1.7228 

 PTPCRE LR 
 

0.3313 1.7098 

 PTPCRE LM 
 

0.3409 1.6961 
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Based on Table 2, there are no big differences in the SMSE among the 

estimators when ρ = 0.7. Based on the Table 3, the PTPCRE based on WA test 

has the smallest SMSE. From Table 4, notice that when ρ = 0.9 and α = 0.01, the 

PTPCRE based on WA test has the smallest SMSE. Then the LM test has the 

smallest SMSE when ρ = 0.9 and α = 0.05. 

Conclusion 

A new Preliminary Test Estimator based on Principal Component Regression 

Estimator defined in the linear regression model when the stochastic restrictions 

are available in addition to the sample information, and when the explanatory 

variables are multicollinear. Based on the simulation study, we can conclude that 

the PTPCRE based on WA test has the smallest SMSE when ρ = 0.9 and α = 0.01. 

The PTPCRE based on LM test has smallest SMSE when ρ = 0.9 and α = 0.05. 
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Appendix 

Lemma 1:   (Baksalary & Kala, 1983) 

Suppose B is a symmetric real (n × n) matrix, a is an (n × 1) real vector and γ is a 

positive real number. Then the following two properties are equivalent 
 

i) γB – ad is nonnegative definite (n.n.d) 

ii) B is n.n.d,  a B  and .a B a    

 

Lemma 2:   (Trenkler, 1985) 

Let A be a symmetric (n × n) matrix, and let a, a1, and a2 be (n × 1) vectors. 

Suppose that 
 

a)  a A , and the real numbers ϕ and ψ satisfy ϕ ≠ 0 and 

0a A a    . Then we have the identity 

 
1

A aa A A aa A
a A a


 

  

   



 
     

 

b)  ja A , j = 1, 2, and the real number ρ satisfies 
1 11 0.a A a    

Then we have  2 1 1a A a a   . 

 

Lemma 3:   (Baksalary & Trenkler, 1991) 

Let C be a nonnegative definite matrix and c1, c2 be linearly independent vectors. 

Furthermore for some generalized inverse C- of C, let ij i jf c C c ; 

i = 1, 2, j = 1, 2 and let 
 

 
   
  

2 2

1 1

c I CC I CC c
s

c I CC I CC c

 

 

  


  
  

 

where  1c C  and  .  denote the column space of the corresponding matrix. 

Then we have 1 1 2 2 0C c c c c     if and only if  

 

a)    1 2,c C c C   and    2

11 22 121 1f f f    or 

b)    1 2 1, ,c C c C c  and     2

2 1 2 1) 1c sc C c sc s      

 

and all expressions in (a) and (b) are independent of the choice of C -. 
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