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The Smooth Transition Autoregressive (STAR) models are becoming popular in modeling 
economic and financial time series. The asymmetric type of the model is the Logistic STAR 
(LSTAR) model, which is limited in its applications as a result of its asymmetric property, 
which makes it suitable for modelling specific macroeconomic time series. This study was 
designed to develop the Absolute Error LSTAR (AELSTAR) and Quadratic LSTAR 
(QLSTAR) models for improving symmetry and performance in terms of model fitness. 
Modified Teräsvirta’s Procedure (TP) and Escribano and Jordá's Procedure (EJP) were 

used to test for nonlinearity in the series. The performance of the AELSTAR and QLSTAR 
models showed that TP and EJP realized time series with improved symmetry as indicated 
by the lower relative frequencies than that realized with the existing LSTAR model. The 
AELSTAR model performed better than QLSTAR model at higher nonlinearity, and the 
selection of both models showed evidence of asymptotic property. The AELSTAR and 
QLSTAR models showed improved symmetry over the existing asymmetric LSTAR 
model. 
 

Keywords: Nonlinear models, smooth transition autoregressive models, transition 
function 

 

Introduction 

Smooth Transition Autoregressive (STAR) models have found widespread 

application in economics and finance. Logistic STAR (LSTAR), a form of the 

model, is characterized by the asymmetric properties which make it suitable for 

modelling specific macroeconomic time series. The asymmetric property often 

limits its application to some symmetric time series. The study was designed to 

develop the Absolute Error LSTAR (AELSTAR) and Quadratic LSTAR 

(QLSTAR) models for improving symmetry and performance. 
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The STAR model was introduced into time series literature by Chan and Tong 

(1986), who used the cumulative function of the standard normal variable as the 

transition function in the model. The specification, estimation, and evaluation of 

the model were considered in Teräsvirta (1994). This model was used to describe 

non-linearity in the business cycle (Teräsvirta & Anderson, 1992; Skalin & 

Teräsvirta, 1996; 1998) and real exchange rates (Baum, Caglayan, & Barkoulas, 

1998; Liew, Ahmad, & Sie-Hoe, 2002). Acemoglu and Scott (1994) examined the 

connection between business cycle, nonlinearity, and asymmetry in the UK labor 

market and found that the variables are interrelated. Öcal (2000) applied the STAR 

model on the nonlinearities in growth rates of UK macroeconomic time series: GDP, 

price, consumption, retail sales, personal disposable income, savings, investment, 

industrial production, and unemployment, and their findings suggest a three-regime 

STAR model for modelling GDP, price, and consumption. UK stock market returns 

have been studied using the Smooth Transition Regression (STR) framework by 

employing a variety of financial and macroeconomic series that are assumed to 

influence UK stock returns, namely GDP, interest rates, inflation, money supply, 

and US stock prices (Aslanidis, Osborn, & Sensier, 2002). They estimated STR 

models where the linearity hypothesis is strongly rejected for at least one transition 

variable. These non-linear models described the in-sample movements of the stock 

returns series better than the corresponding linear model. 

More recent applications are Teräsvirta, van Dijk, and Medeiros (2005), 

Woodward and Anderson (2009), and Dueker, Sola, and Spagnolo (2006). 

Teräsvirta et al. (2005) examine the forecast accuracy of linear Autoregressive 

(AR) and STAR models and concluded that STAR model generally outperforms 

linear AR models. Dueker et al. (2006) worked on the STAR model and proposed 

the Contemporaneous Smooth Threshold Autoregressive (C-STAR), model which 

is a modification of Teräsvirta (1994). This C-STAR model does not require the 

initial regime to be predetermined and was successfully applied to interest rate 

modelling. The results indicated that the model is capable of outperforming some 

competing alternative nonlinear models, especially in terms of relative out of 

sample forecasting performance. Woodward and Anderson (2009) studied the 

behavior of the financial markets using the LSTAR model to classify the market in 

two phases of bull and bear and the movement in the bull and bear were not the 

same, which confirmed asymmetry in the markets. 

The STAR model is of two forms: the Logistic STAR (LSTAR) and 

Exponential STAR (ESTAR), which have asymmetric and symmetric properties, 

respectively. Though market data are often asymmetric, the possibility of 

improving the symmetry of the LSTAR model could lead to models with better 
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parameter estimates and forecasts. Liew et al. (2002) proposed the Absolute 

Logistic STAR model with transition function that allows a V-shaped symmetry 

adjustment towards the mean of the series. In their model, mean adjusted data were 

used, and the performance of their model outperformed that of the LSTAR model. 

Adebile (2007) proposed the Error Logistic smooth Transition Regression 

(ELSTR) model with improved asymmetry over the existing LSTAR, and the 

model performed better in terms of forecasts. 

The economic and financial data display different levels of asymmetry; the 

possibility of improving the asymmetry of LSTAR models may lead to 

improvement of the model in terms of parameter estimates and forecasts. The 

performance of the proposed AELSTAR and QLSTAR models in terms of 

symmetry are then judged based on their similarity in their realization to symmetric 

ESTAR model. 

The remaining part of the work is structured as follows: the STAR model and 

the proposed models are discussed in following sections; the linearity and model 

specification testing procedures are then explained; the Monte Carlo simulations 

are presented; while a final section gives the conclusion. 

The General STAR Model 

Following van Dijk, Teräsvirta, and Franses (2002), the general two-regime STAR 

model of order p observed at t = 1 – p, 1 – (p – 1),…, -1, 0, 1, N – 1, N for a 

univariate time series yt is 

 

 
        1 21 F ; , F ; ,

p p

t t t t t ty s c s c     y y   , (1) 

 

where 
   11 , ,

p

t t t py y 


 y , ϕi = (ϕi0, ϕi1,…, ϕip)', and i = {1, 2}. The ϵt are 

assumed to be a difference sequence with respect to the history of the time series 

up to time t – 1, denoted by Ωt – 1 = {yt – 1, yt – 2,…, y1 – (p – 1), yt – p}. That is 

E(ϵt
2 | Ωt – 1) = σ2 and E(ϵt | Ωt – 1) = 0 or E(ϵt

2 | Ωt – 1) = σt
2 for the heteroscedastic 

STAR model. 

Following Tsay (2005), the transition function F(yt – d; γ, c) can be a logistic, 

exponential, or cumulative continuous distribution function third order 

continuously differentiable with respect to γ (Escribano & Jordá, 1999; 2001), and 

is bounded between 0 and 1 for both LSTAR and ESTAR specifications. It defines 

regime-specific dynamics that govern the transition between 0 and 1 regimes, 

depending on the values of the transition variable relative to the slope γ and of the 
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location parameters c. The smoothness parameter γ > 0 determines the speed of 

transition of the transition function towards the inner or outer regime, as well as the 

degree of nonlinearity. As γ → 0, both LSTAR and ESTAR functions converge to 

constant, and the models become linear AR models. The delay parameter d of the 

transition variable can take values in the range of 1 ≤ d ≤ p or d > p (van Dijk, 1999; 

Siliverstovs, 2005). 

The LSTAR function of the first order is 

 

  
 

1
F ; , , 0

1 exp ;
t d

t d

y c
y c

 






 
   

 , (2) 

 

while the ESTAR function is defined as 

 

    
2

F ; , 1 exp ; , 0t d t dy c y c   
     
 

 . (3) 

The Absolute Error and Quadratic LSTAR Models 

The transition variable can assume a lagged endogenous transition variable yt – d as 

in Teräsvirta (1994), an exogenous variable, zt in Adebile (2007), a linear and 

nonlinear function of lagged endogenous variables,  h ;ty  , which depends on a 

(q × 1) parameters vector or a linear time trend t which gives rise to a model with 

smoothly changing parameters (van Dijk et al., 2002). The absolute value of the 

random error term, t, from the initial AR(p) and the quadratic function at lag, d (that 

is 
2

t d yt dy b  ), are assumed to cause the transition from one regime to another in 

this paper. These are the AELSTAR and QLSTAR transition functions which give 

rise to AELSTAR and QLSTAR models, respectively, once they are substituted in 

the general STAR model. 

The transition functions are 

 

  
 

1 1
F ; , , 0

21 exp t

d

d

ty c
c

 






  
    

  (4) 

 

and 
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1 1
F ; , , 0

21 exp
t d

t d t d

y c
y by c

 




 

  
    
 

  (5) 

 

for AELSTAR and QLSTAR models, respectively. The parameters in the transition 

function are as defined earlier in (2) above. The |ϵt – d| is the absolute lagged error, 

and b is used to stabilize the transition variable yt – d with b = ±1. The two transition 

functions above can be compared with the original LSTAR function of Teräsvirta 

(1994). Teräsvirta (1994) suggests subtracting 1/2 in order to ease the derivation of 

the test statistics (van Dijk et al., 2002), and this has been dropped in the proposed 

functions, Monte Carlo's procedures in this work, and the nonlinear parameters 

estimation. 

In the AELSTAR function in (4), as the slope γ increases, F(ϵt – d; γ, c) quickly 

changes from 0 to 1. The switching between these regimes also depends on the 

contribution of the absolute lagged endogenous variable, |ϵt – d|. Increasing the slope 

γ further (γ →  ∞) makes the transition function to the Self-Exciting Threshold 

Autoregressive (SETAR) in the context of STAR modelling, which is another 

variant of regime switching model. At γ = 0, F(ϵt – d; γ, c) = 0.5, and hence the 

LSTAR(p) model becomes the linear Autoregressive AR(p) model. The QLSTAR 

function in (5) has similar properties to the LSTAR function by changing smoothly 

from 0 to 1 as γ increases and this also depends on the value of the quadratic 

expression which forces the LSTAR function to symmetric function. At 
2

t d t dy by c   , F(ct – d; γ, c) = 0.5, hence the model is linear. Since 2

t d t dy by c   , 

the quadratic inequality then has real roots, which implies the values of the 

transition variables yt – d to be 2 4t dy b b c      for real roots using general 

quadratic function. For complex solutions (i.e. b2 < 4c) there is a discontinuation in 

the transition from yt – d to yt – d – 1. In the QLSTAR function in (5), the quadratic 

function in the transition variable as well as the slope parameter causes the 

transition to switch from one regime to the other, thereby absorbing the shock 

caused when the slope parameter, γ, suddenly increases or decreases. Unlike the 

traditional LSTAR function, the QLSTAR function produces a smooth symmetric 

realization. 

The Shapes of the Proposed Transition Functions 

Here, the original LSTAR and ESTAR functions are shown to be S and U shaped, 

respectively. Also, the Taylor series approximations (Teräsvirta, 1994; Escribano 
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& Jordá, 2001) to the functions are plotted alongside with the original LSTAR 

function. 

The proposed transition functions, AELSTAR and QLSTAR, are considered 

here, and empirical analyses are given to investigate the shape and behavior of the 

functions. The value of the intercept, c, is fixed at 0.05, and that of the slope, γ, is 

varied as γ = {1, 10, 100} for the original and proposed transition functions. 

Hypothetical values are then assigned for |ϵt – d| and yt – d, and the corresponding 

values of F(∙) are generated in both cases. The F(∙) is then plotted on |ϵt – d| for the 

case of the AELSTAR function and on yt – d for the case of the QLSTAR function. 

The proposed functions are then compared with the original LSTAR function. 

Figure 1 is the graph of the LSTAR function plotted on values of st = yt – d for 

γ = 1, 10, and 100. At γ = 1, a straight line approximation is obtained; at γ = 10, 

there is a slower transition from F(st = yt – d) = 0 to F(st = yt – d) = 1 and therefore the 

shape of the LSTAR function is S. The transition is faster at γ = 100, and the shape 

of the LSTAR function at this point is mirrored Z. Both S and mirrored Z are 

asymmetric shapes. This reconfirms the asymmetric property of the LSTAR 

function. The point yt – d = c is the switch-point between the regime, and the graphs 

of the logistic function with various smoothness parameters meet at F(c; γ, c) = 0.5. 
 
 

 
 
Figure 1. Behavior of the LSTAR function for different values of the slope parameter 
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Figure 2. Behavior of the AELSTAR function for different values of the slope parameter 

 

 

 
 
Figure 3. Behavior of the QLSTAR function for different values of the slope parameter 
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Figure 2 is the AELSTAR function. At γ = 1, a wider V shape is obtained, and this 

becomes thinner as γ increases. The thinnest V shape obtained is for γ = 100. The 

V shapes obtained are reflective of the symmetric nature of the AELSTAR 

transition. Figure 3 is the QLSTAR function plotted on values of st = yt – d, and 

shows that the widest U shape is obtained for γ = 1; this shape becomes thinner as 

γ increases. The U shape obtained is symmetric; hence the QLSTAR function is 

symmetrical. 

Linearity Testing Procedures 

The proposed LSTAR transition functions in (4) and (5) are defined with 1/2 

subtracted in order to ease the derivation of the linearity tests. 

The AELSTAR Transition Function 

The third order Taylor series approximation of the AELSTAR transition function 

around the null hypothesis γ = 0 is 
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  (6) 

 

where 

 

a)       
1

0

1
F 1 exp , F 0

2
; , ; ,t d t d t dc cc
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c) 
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F
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d) 
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Putting (a)-(d) above in (6), 

 

 
 

 

 
 

3

3

33

1
1 0 1 4F 0
4 1! 2! 8

;
3!

1

,

1

4 1! 48

t d
t d

t d

t d

t d

c

cc

c
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3 3

2 33 3 3 31 1 1 1 1

4 48 4 16 16 48
t d t d t d

c
c c c


      

      
            

      
  (7) 

 

The two-regime STAR model in (1) is equivalent to the LSTAR model 

 

 
     1 2 F ; ,

p p

t t t t d ty c
   y y    

 

with the transition function replaced by AELSTAR function. Substituting the 

approximated AELSTAR function in (7) in the AELSTAR model above gives 
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3 3
3 3

1 2

2 33 3

1 1 1

4 48 4 16

1 1

16 48

t d

t d

p p

t t t t

t d

c
c c

y

c


  

 



 

   
      
       

    
     

     

y y    

 

which is equivalent to the auxiliary regression model 

 

 
           

2 3

0 1 2 3

p p p p

t t t tt d t d tt tdy y y y y      
         . (8) 

 

Because γi (i = 0,…, 3) do not exist in real sense since they are parameters of the 

model, compute the corresponding estimates for them based on the regression 

model 

 

 
           

2 3

0 1 2 3

p p p p

t t t tt d t d tt tdy y y y y      
         , (9) 

 

which is equivalent to 

 

 
           

2 3

0 1 2 3

p p p p

t t t tt d t d t dt ty y y y       
         , (10) 

 

where 
 p

i ty , i = 0, 1, 2, 3 are functions of c and γ. The residuals ϑt and ςt are from 

the two auxiliary regressions, and are NID(0, σ2). So the regression above is 

performed by regressing ϑt on the series of regressors 
 p

ty  and 
   

2

t

p

t dy  , (i = 1, 

2, 3). At this stage, the existence of AELSTAR process depends on the parameters 

1 2 3, ,     , which should not all be zeros. This further establishes the nonlinearity 

of the AELSTAR(p) model. So the nonlinear AELSTAR effect is tested with the 

null hypothesis: 

 

 0 1 2 3H : 0       (11) 

 

tested against the standard Lagrange Multiplier (LM) test following the Teräsvirta 

decision rule. The test statistic has an asymptotic χ2 distribution with 3(p + 1) 

degrees of freedom and its F version defined as 
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0 1

3

1

SSR SSR 3 1

SSR 4 1

p
F

N p

 


 
 , (12) 

 

where p is the order of the autoregression, N is the sample size, and SSR0 and SSR1 

are the residual sum of squares from the linear and nonlinear specifications, 

respectively. 

Testing nonlinearity in the proposed AELSTAR model is similar to that of 

LSTAR since the orders of yt – d in the auxiliary model are up to 3. In a similar 

manner to the Teräsvirtá (1994) Procedure (TP), Escribano and Jordá (2001) 

Procedure (EJP) can also be generalized from the test for LSTAR nonlinearity 

which applied second-order Taylor series expansion of the transition function. In 

that case, obtained in a similar fashion, the auxiliary regression model is 

 

 

           
   

2 3

1 1 2 3

4

4

t

p p p p

t t t t td t d t

t t

p

d t

dy y y y y

y

   



  



      

 
  (13) 

 

The null hypothesis of linearity is then given as 

 

 
0 1 2 3 4H : 0        , (14) 

 

which is tested against the standard Lagrange Multiplier (LM) test using the EJP 

decision rule. The test statistic has an asymptotic χ2 distribution with 4(p + 1) 

degrees of freedom and its F version defined as 

 

 
   

  
0 1

4

1

SSR SSR 4 1

SSR 5 1

p
F

N p

 


 
 , (15) 

 

where p is the order of the autoregression, N is the sample size, and SSR0 and SSR1 

are the residual sum of squares. 

The QLSTAR Transition Function 

For the QLSTAR transition function, the third order Taylor series approximation 

around the null hypothesis, γ = 0, is 
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Putting steps (a-d) in (16), 
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The two-regime STAR model in (1) is equivalent to the LSTAR model 

 

 
     1 F ; ,

p p

t t t t d ty y y y c  
      

 

with the transition function replaced by QLSTAR function. Substituting the 

approximated QLSTAR function in (18) in the QLSTAR model above gives 
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which is equivalent to the auxiliary regression model 
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Because γi (i = 0,…, 6) do not exist in real sense since they are parameters of the 

model, we therefore compute the corresponding estimates for them based on the 

regression model 
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which can be re-written as 
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  (21) 

 

where 
 p

i ty , i = 1, 2, 3 are functions of b, c, and γ. Hence all the 6 terms are duly 

represented in the model. The model is QLSTAR if at least one of i   is not zero 

when the auxiliary regression is performed. So the regression above is performed 

by regressing ϑt on the series of regressors 
 p

ty  and i

t dy 
, (i = 1,…, 6). Nonlinear 

QLSTAR is then tested based on the null hypothesis: 

 

 0 1 2 3 4 5 6H : 0             (22) 
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which can be tested against standard Lagrange Multiplier (LM) test. The test 

statistic has an asymptotic χ2 distribution with 6(p + 1) degrees of freedom and its 

F version defined as 
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  (23) 

 

The QLSTAR nonlinearity is then detected in the series once one of βj, (j = 1,…, 6) 

is significantly different from zero in the auxiliary regression model in (21). The 

QLSTAR model is then specified when the level of significance of parameters β1, 

β3, and β6 are higher than that of β2, β4, and β6. The counterpart, Quadratic ESTAR 

(QESTAR), is then chosen once there EW contrary results. Testing QLSTAR 

nonlinearity using Escribano and Jordá (2001) is much more straightforward. 

Linearity is established once the betas are zeroed. Once there is default in one, the 

decision rule of Escribano and Jordá (2001) is applied. Then apply the revised 

decision rule 

 

 
0QLSTAR 1 3 5

0QESTAR 2 4 6

H : 0

H : 0

  

  

  

  
  (24) 

 

Therefore, rejecting H0QLSTAR and failing to reject H0QESTAR points to QLSTAR 

model. Also, rejecting H0QESTAR and failing to reject H0QLSTAR suggests a QESTAR 

model. In addition, if the minimum p-value corresponds to F6, select QLSTAR and, 

if the minimum p-value corresponds to F6, select QESTAR model. 

Monte Carlo (MC) Simulations 

Due to the unavailability of the structural and distributional properties of the 

parameters of the STAR models as a result of unknown regularities conditions, 

Monte Carlo's simulation approach is then used to study the behaviors of some 

parameters in the model via the model selection procedures. The accuracy of the 

TP and EJP approaches in selecting between the two types of LSTAR models is 

then examined. The correct selection rate is reported as a proportion per 1000 

replications for which linearity was first rejected at 95% confidence level. The 

robustness of the selection procedures is also tested by considering non-zero 

threshold values, c ≠ 0 that make the model to be asymmetric. 
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The program for the simulation is set under the OxGAUSS engine. Most 

nonlinear simulation and estimations are performed under GAUSS machines, 

particularly with Ox, since this helps to perform the simulations at a faster rate 

when compared to other software or ordinary GAUSS software. (Lin, 2001; Chan 

and McAleer, 2001; 2003). We first consider using the STAR Data Generating 

Process (DGP) used in Granger and Teräsvirta (1993), Teräsvirta, Lin, and Granger 

(1993), Teräsvirta (1994), Escribano, Franses, and van Dijk (1998), Escribano and 

Jordá (2001), Lopes and Salazar (2006), and Adebile (2007): 

 

    1 2 20 1 21.800 1.060 0.900 0.795 ; ,t t t t t t ty y y y y F s c           (25) 

 

where ϵt ~ N(0, 0.022) and ϵt ~N(0, 0.102) for the STAR specification. The values 

for ϕ20 are set as ϕ20 = {0.0, 0.2}. The STAR DGP in (25) is suggested due to the 

fact that it has been used over and over by researchers. Probing into the DGP, when 

the transition function F(st; γ, c) = 0, the system is in the lower regime and gives a 

linear AR model with the characteristic equation 1.06B2 – 1.80B + 1 = 0, which has 

roots |0.849 ± 0.472| in the complex plane and the modulus of the complex root is 

0.971. The real root is 0.849, which is less than unity; this implies nonstationarity 

of the realized time series process. This may cause an explosion unless stationarity 

is imposed on the nonlinear part of the DGP, and yt will have the tendency to adjust 

to more stable parts of the state space. 

Teräsvirta (1994) and Escribano et al. (1998) supported this assertion. Also, 

when F(st; γ, c) = 1, the system is in the upper regime and gives the AR model 

yt = ϕ20 + 0.900yt – 1 – 0.265yt – 2 + ϵt. Because ϕ20 has values 0.0 and 0.2, we 

therefore have two characteristic equations: 0.265B2 – 0.900B + 1 = 0 and 

0.265B2 – 0.900B + 0.8 = 0, which give the complex roots |1.698 ± 0.943| and 

|1.698 ± 0.368| with the moduli of 1.942 and 1.737, respectively. These roots lie 

outside the unit circle, and this will control the system to realize stationary series. 

These are the motives for using the GDP. It is obvious to see that the properties of 

time series to be generated will then depend on the relative magnitude of ϕ20 and c 

as they jointly determine the value of yt and its instability and stability (Escribano 

et al., 1998). 

Occasionally, the software simulates values yt < c which makes the linear AR 

model to be explosive, and this point is not common in real life situation (Escribano 

& Jordá, 2001). A burn-in of 100 observations shields the experiments against a 

potential dependence on starting values and, after making allowance to discard 

these, we proceed in the simulations. It is also noted that higher values of the slope 

parameter, γ, will cause the power of the two selection procedures to be closed to 
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each other, and this makes the nonlinearity to be sharp and significant. Therefore 

this will make the discrimination between the two models to be close to each other 

(Escribano & Jordá, 2001). So we also consider setting γ = {1, 10, 100} and 

c = {0.0, 0.2, 0.5, 1.0} in the transition functions. 

The DGPs are LSTAR with the transition functions 
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Relative frequencies of the models specification are computed and presented 

on every 1000 replications and across sample sizes N = {50, 100, 200, 500, 1000}. 

The cells report the number of times a variant of LSTAR model is selected at 5% 

nominal significant level in every 1000 replications. 

The results are presented in Tables 1-6 below. From Table 1, ϕ20, the 

nonlinear component of the DGP realizes real values though the linear component 

is still complex. The QLSTAR model compares favorably well with the LSTAR 

based on the specification tests, TP and EJP. Improvement in selection frequencies 

is seen as sample sizes increase, therefore specification of models is consistent with 

sample size. TP outperforms EJP when the threshold, c, is marginally different from 

zero (say c = 0.2). Comparison of the models shows that the proposed AELSTAR 

and QLSTAR models seem to realize lower frequencies when compared with the 

original LSTAR model. This implies that the data generated by the proposed 

models resembled ESTAR, which is a symmetric series, and this may be clearer 

when the variation in the series is increased.  

With increased standard deviation σ = 0.1, more selection frequencies of 

selection are computed for the variants of the model. Unlike the results in Table 1, 

here the frequencies are computed for the heteroscedastic versions of the models. 

This implies that the level of variations in the time series a direct the specification 

of the models. In the selection of variants of LSTAR models, the TP dominates EJP 

in discriminating between the two types of STAR models as indicated in the 

frequencies computed based on the two procedures for each of the LSTAR models. 

Also, the frequencies computed by the variants of LSTAR are smaller than the 

values realized by the original LSTAR model, which is indication that the 
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AELSTAR and QLSTAR models detect symmetric time series. The selection 

frequencies imply higher frequencies computed for the ESTAR models. 

In Table 2, the TP outperforms the EJP at different simulation points. TP is 

also seen to be more consistent with increasing sample sizes. Matrix inversion 

problems were also reported during the simulation due to lower variation in the 

series. Increasing the parameter ϕ20 = 0.0 to ϕ20 = 0.2 has caused an increase in the 

model selection frequencies. Since this parameter directs the stationarity level of 

the realized series, it then implies that stationarity has a relationship with 

nonlinearity of the series. For model comparison, the results here follow that of 

Table 1, only that the improvement in the symmetry as indicated by the proposed 

transition functions is not as significant as the results given in Table 1. 

From Table 3, with increased in transition speed γ = 10, nonlinearity is clearer 

due to more points that are computed for frequencies of selection. QLSTAR model 

competes favorably well with the LSTAR. Increase in transition speed also led to 

the computation of the GARCH component in the model. This implies that the 

GARCH effect is much felt in the series when nonlinearity is sharper. EJP is more 

consistent in selecting the variants of the LSTAR model up to c = 0.5 and N = 1000. 

TP is consistent up to c = 0.2 and N = 1000 for LSTAR and QLSTAR models. EJP 

is seen to dominate TP in LSTAR and QLSTAR versions of the models, whereas 

in AELSTAR models, TP dominates EJP. 

In Table 4, both TP and EJP compete well in selecting variants of AELSTAR 

and QLSTAR models. More frequencies are computed for the AELSTAR model, 

and this favors the selection of the LSTAR model. The proposed models realized 

symmetric time series as indicated in the lower frequencies realized for the LSTAR 

models by the two specification procedures. 

With nonlinearity further increased to transition speed γ = 100, more selection 

frequencies are generated. EJP is more sensitive to selection of LSTAR and 

QLSTAR models, while TP is sensitive to selecting only the AELSTAR model. In 

selecting the LSTAR model, only EJP is consistent with sample sizes throughout. 

The results indicated that symmetric time series are realized by the proposed 

models as indicated by the lower frequencies computed for the LSTAR models 

which is known to be asymmetric. 
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Table 1. Selection frequencies of variants of LSTAR model at γ = 1, ϕ20 = 0.0 for ϵt ~ N(0, 0.022) and ϵt ~ N(0, 0.102) for STAR 

Specifications 
 

  LSTAR  AELSTAR  QLSTAR 

  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102) 

c N TP EJP  TP EJP   TP EJP  TP EJP   TP EJP  TP EJP 

0.0 500 - -  0.740 0.480  - -  0.698 0.420  - -  0.750 0.500 

0.0 1000 - -  0.750 0.650  - -  0.641 0.590  - -  0.690 0.603 

0.0 200 0.538 0.410  0.762 0.655  0.474 0.421  0.579 0.395  0.538 0.410  0.659 0.622 

0.0 500 0.707 0.537  0.896 0.786  0.683 0.537  0.615 0.538  0.707 0.537  0.825 0.748 

0.0 10000 0.744 0.651  0.952 0.915  0.722 0.583  0.722 0.500  0.732 0.659  0.880 0.877 

0.2 50 - -  0.700 0.560  - -  0.676 0.486  - -  0.731 0.519 

0.2 100 - -  0.754 0.692  - -  0.641 0.590  - -  0.758 0.677 

0.2 200 0.486 0.541  0.787 0.719  0.421 0.447  0.394 0.424  0.486 0.568  0.648 0.625 

0.2 500 0.721 0.581  0.912 0.814  0.691 0.524  0.643 0.524  0.711 0.556  0.837 0.770 

0.2 1000 0.755 0.667  0.963 0.940  0.735 0.588  0.737 0.527  0.733 0.644  0.886 0.886 

0.5 50 - -  0.712 0.577  - -  0.667 0.615  - -  0.714 0.571 

0.5 100 - -  0.857 0.814  - -  0.778 0.667  - -  0.754 0.783 

0.5 200 0.525 0.550  0.803 0.752  0.528 0.500  0.455 0.424  0.537 0.537  0.679 0.696 

0.5 500 0.694 0.612  0.920 0.877  0.632 0.500  0.565 0.543  0.674 0.587  0.819 0.808 

0.5 1000 0.740 0.580  0.972 0.967  0.733 0.556  0.732 0.561  0.698 0.566  0.888 0.907 

1.0 50 - -  0.697 0.643  - -  0.600 0.600  - -  0.717 0.583 

1.0 100 - -  0.828 0.862  - -  0.771 0.686  - -  0.691 0.742 

1.0 200 0.561 0.463  0.824 0.818  0.548 0.387  0.455 0.394  0.538 0.436  0.684 0.759 

1.0 500 0.644 0.511  0.952 0.945  0.649 0.486  0.579 0.474  0.652 0.565  0.781 0.842 

1.0 1000 0.685 0.589  0.983 0.986   0.692 0.500  0.679 0.472   0.685 0.589  0.851 0.915 
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Table 2. Selection frequencies of variants of LSTAR model at γ = 1, ϕ20 = 0.2 for ϵt ~ N(0, 0.022) and ϵt ~ N(0, 0.102) for STAR 

Specifications 
 

  LSTAR  AELSTAR  QLSTAR 

  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102) 

c N TP EJP  TP EJP   TP EJP  TP EJP   TP EJP  TP EJP 

0.0 500 - -  0.721 0.465  - -  0.658 0.421  - -  0.589 0.464 

0.0 1000 - -  0.768 0.518  - -  0.686 0.486  - -  0.726 0.493 

0.0 200 0.595 0.500  0.778 0.583  0.526 0.526  0.568 0.522  0.707 0.463  0.745 0.480 

0.0 500 0.692 0.385  0.893 0.508  0.700 0.550  0.707 0.683  0.721 0.372  0.909 0.514 

0.0 10000 0.750 0.591  0.933 0.601  0.767 0.488  0.604 0.583  0.700 0.600  0.973 0.496 

0.2 50 - -  0.710 0.421  - -  0.667 0.500  - -  0.611 0.429 

0.2 100 - -  0.737 0.491  - -  0.737 0.500  - -  0.756 0.488 

0.2 200 0.625 0.550  0.805 0.61  0.421 0.579  0.459 0.595  0.659 0.561  0.744 0.529 

0.2 500 0.732 0.390  0.928 0.582  0.683 0.561  0.659 0.705  0.690 0.357  0.907 0.534 

0.2 1000 0.745 0.588  0.944 0.628  0.800 0.450  0.761 0.478  0.708 0.631  0.965 0.510 

0.5 50 - -  0.761 0.522  - -  0.703 0.432  - -  0.644 0.508 

0.5 100 - -  0.772 0.474  - -  0.778 0.417  - -  0.774 0.560 

0.5 200 0.657 0.514  0.826 0.616  0.545 0.545  0.529 0.529  0.625 0.475  0.739 0.556 

0.5 500 0.745 0.426  0.914 0.686  0.628 0.535  0.698 0.721  0.698 0.528  0.900 0.537 

0.5 1000 0.732 0.500  0.947 0.736  0.750 0.523  0.708 0.438  0.774 0.613  0.955 0.557 

1.0 50 - -  0.780 0.560  - -  0.567 0.600  - -  0.787 0.591 

1.0 100 - -  0.736 0.605  - -  0.765 0.618  - -  0.739 0.635 

1.0 200 0.634 0.537  0.819 0.624  0.500 0.600  0.441 0.559  0.636 0.477  0.727 0.556 

1.0 500 0.659 0.500  0.935 0.791  0.684 0.605  0.610 0.488  0.642 0.434  0.871 0.595 

1.0 1000 0.696 0.551  0.980 0.858   0.719 0.386  0.722 0.463   0.653 0.431  0.920 0.643 
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Table 3. Selection frequencies of variants of LSTAR model at γ = 10, ϕ20 = 0.0 for ϵt ~ N(0, 0.022) and ϵt ~ N(0, 0.102) for STAR 

Specifications 
 

  LSTAR  AELSTAR  QLSTAR 

  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102) 

c N TP EJP  TP EJP   TP EJP  TP EJP   TP EJP  TP EJP 

0.0 500 - -  0.922 0.962  - -  0.698 0.4199  - -  0.750 0.500 

0.0 1000 - -  0.973 0.994  - -  9   - -  0.690 0.603 

0.0 200 0.918 0.863  0.995 1.000  0.575 0.450  0.641 0.590  0.881 0.852  0.659 0.622 

0.0 500 0.986 0.973  1.000 1.000  0.684 0.553  0.579 0.395  0.983 0.970  0.825 0.748 

0.0 10000 1.000 0.993  1.000 1.000  0.522 0.478  0.615 0.538  0.999 0.992  0.880 0.870 

0.2 50 - -  0.870 0.966  - -  0.722 0.500  - -  0.731 0.519 

0.2 100 0.897 0.932  0.928 0.994  0.585 0.463  0.676 0.486  0.875 0.913  0.758 0.677 

0.2 200 0.959 0.982  0.979 1.000  0.629 0.514  0.641 0.590  0.941 0.974  0.648 0.625 

0.2 500 0.996 1.000  1.000 1.000  0.608 0.431  0.394 0.424  0.993 0.997  0.837 0.770 

0.2 1000 1.000 1.000  1.000 1.000  0.612 0.531  0.643 0.524  1.000 1.000  0.886 0.886 

0.5 50 - 0.964  0.773 0.887  0.700 0.550  0.737 0.526  - 0.944  0.714 0.571 

0.5 100 - 0.997  0.865 0.961  0.680 0.480  0.667 0.615  - 0.983  0.754 0.783 

0.5 200 - 1.000  0.936 0.992  0.700 0.550  0.778 0.667  - 0.998  0.679 0.696 

0.5 500 - 1.000  0.997 1.000  0.683 0.542  0.455 0.524  - 1.000  0.819 0.808 

0.5 1000 - 1.000  1.000 1.000  0.642 0.512  0.565 0.543  - 1.000  0.888 0.907 

1.0 50 - 1.000  0.604 0.894  0.692 0.481  0.732 0.561  - 0.997  0.717 0.583 

1.0 100 - 0.999  0.664 0.960  0.735 0.490  0.600 0.600  - 1.000  0.691 0.742 

1.0 200 - 1.000  0.763 0.998  0.667 0.471  0.771 0.686  - 1.000  0.684 0.759 

1.0 500 - 1.000  0.914 1.000  0.664 0.502  0.455 0.394  - 1.000  0.781 0.842 

1.0 1000 - -  1.000 1.000   0.673 0.525  0.579 0.474   - 1.000  0.851 0.915 
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Table 4. Selection frequencies of variants of LSTAR model at γ = 10, ϕ20 = 0.2 for ϵt ~ N(0, 0.022) and ϵt ~ N(0, 0.102) for STAR 

Specifications 
 

  LSTAR  AELSTAR  QLSTAR 

  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102

) c N TP EJP  TP EJP   TP EJP  TP EJP   TP EJP  TP EJP 

0.
0 

500 - -  0.776 0.531  - -  0.604 0.566  - -  0.723 0.409 

0.
0 

1000 - -  0.843 0.585  - -  0.627 0.627  - -  0.758 0.532 

0.
0 

200 - -  0.842 0.614  - -  0.577 0.627  - -  0.832 0.589 

0.
0 

500 - -  0.854 0.776  0.830 0.616  0.731 0.737  - -  0.821 0.758 

0.
0 

1000
0 

- -  0.888 0.904  0.830 0.616  0.809 0.789  - -  0.843 0.870 

0.
2 

50 - -  0.775 0.598  - -  0.484 0.453  - -  0.706 0.557 

0.
2 

100 - -  0.912 0.616  0.605 0.579  0.600 0.537  - -  0.904 0.565 

0.
2 

200 - -  0.974 0.691  0.667 0.667  0.411 0.492  - -  0.963 0.586 

0.
2 

500 - -  0.999 0.820  0.580 0.540  0.475 0.660  - -  0.989 0.709 

0.
2 

1000 0.754 0.492  1.000 0.923  0.661 0.597  0.480 0.724  - -  0.993 0.787 

0.
5 

50 0.794 0.815  0.724 0.686  0.661 0.597  0.620 0.480  - -  0.745 0.670 

0.
5 

100 0.911 0.931  0.810 0.758  0.667 0.453  0.703 0.520  - -  0.849 0.739 

0.
5 

200 0.974 0.982  0.910 0.855  0.705 0.558  0.696 0.532  - -  0.933 0.843 

0.
5 

500 0.999 0.999  0.988 0.964  0.679 0.544  0.672 0.523  0.951 0.583  0.969 0.961 

0.
5 

1000 1.000 1.000  0.988 0.964  0.648 0.516  0.493 0.658  0.991 0.659  0.991 0.990 

1.
0 

50 0.678 0.938  - 0.722  0.692 0.481  0.679 0.472  0.338 0.779  0.612 0.646 

1.
0 

100 0.682 0.982  - 0.780  0.740 0.500  0.761 0.522  0.213 0.851  0.647 0.718 

1.
0 

200 0.740 1.000  - 0.887  0.667 0.471  0.667 0.504  0.085 0.949  0.697 0.744 

1.
0 

500 0.806 1.000  - 0.970  0.664 0.502  0.674 0.522  0.009 0.996  0.766 0.854 

1.
0 

1000 - -  - 0.996   0.672 0.525  0.663 0.521   0.000 1.000  0.830 0.919 
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Table 5. Selection frequencies of variants of LSTAR model at γ = 100, ϕ20 = 0.0 for ϵt ~ N(0, 0.022) and ϵt ~ N(0, 0.102) for STAR 

Specifications 
 

  LSTAR  AELSTAR  QLSTAR 

  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102

) c N TP EJP  TP EJP   TP EJP  TP EJP   TP EJP  TP EJP 

0.0 500 - -  0.941 0.989  - -  0.600 0.511  - -  0.889 0.985 

0.0 1000 - -  0.975 1.000  - -  0.500 0.455  - -  0.912 1.000 

0.0 200 0.994 1.000  0.999 1.000  - -  0.698 0.581  0.994 1.000  0.921 1.000 

0.0 500 1.000 1.000  1.000 1.000  - -  0.611 0.389  1.000 1.000  0.976 1.000 

0.0 1000
0 

1.000 1.000  1.000 1.000  0.500 0.444  0.725 0.500  1.000 1.000  0.995 1.000 

0.2 50 - 0.983  0.885 0.962  0.692 0.481  0.672 0.605  0.686 0.885  0.818 0.977 

0.2 100 - 0.968  0.949 0.991  0.735 0.510  0.777 0.658  0.783 0.968  0.853 0.994 

0.2 200 0.830 0.999  0.987 1.000  0.660 0.440  0.757 0.640  0.909 0.995  0.883 1.000 

0.2 500 - 1.000  1.000 1.000  0.715 0.548  0.699 0.606  0.991 1.000  0.951 1.000 

0.2 1000 - 1.000  1.000 1.000  0.635 0.501  0.650 0.554  1.000 1.000  0.984 1.000 

0.5 50 - 0.994  0.780 0.868  0.692 0.481  0.692 0.481  0.498 0.980  0.723 0.907 

0.5 100 - 1.000  0.898 0.960  0.735 0.510  0.735 0.510  0.576 1.000  0.750 0.962 

0.5 200 - 1.000  0.967 0.994  0.660 0.440  0.660 0.441  0.739 1.000  0.759 0.997 

0.5 500 - 1.000  0.999 1.000  0.768 0.643  0.776 0.592  0.900 1.000  0.827 1.000 

0.5 1000 - 1.000  1.000 1.000  1.000 0.000  0.663 0.588  0.978 1.000  0.894 1.000 

1.0 50 - 0.998  0.657 0.901  0.692 0.481  0.692 0.481  0.414 0.995  0.580 0.854 

1.0 100 - 1.000  0.779 0.973  0.735 0.510  0.735 0.510  0.515 1.000  0.568 0.936 

1.0 200 - 1.000  0.918 0.999  0.660 0.440  0.660 0.440  0.576 1.000  0.512 0.990 

1.0 500 -- 1.000  0.993 1.000  0.768 0.643  0.768 0.643  0.774 1.000  0.492 1.000 

1.0 1000 - 1.000  1.000 1.000   1.000 0.000  0.000 1.000   0.884 1.000  0.488 1.000 
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Table 6. Selection frequencies of variants of LSTAR model at γ = 100, ϕ20 = 0.2 for ϵt ~ N(0, 0.022) and ϵt ~ N(0, 0.102) for STAR 

Specifications 
 

  LSTAR  AELSTAR  QLSTAR 

  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102)  ϵt ~ N(0, 0.022)  ϵt ~ N(0, 0.102

) c N TP EJP  TP EJP   TP EJP  TP EJP   TP EJP  TP EJP 

0.0 500 - -  0.617 0.532  - -  0.553 0.426  - -  0.617 0.532 

0.0 1000 - -  0.569 0.510  - -  0.447 0.523  - -  0.549 0.490 

0.0 200 - -  0.733 0.550  0.917 0.421  0.679 0.491  - -  0.705 0.557 

0.0 500 - -  0.763 0.700  0.984 0.515  0.746 0.380  - -  0.750 0.688 

0.0 1000
0 

- -  0.850 0.796  0.998 0.484  0.890 0.378  - -  0.847 0.802 

0.2 50 - -  0.751 0.643  0.692 0.491  0.710 0.571  - -  0.646 0.653 

0.2 100 - -  0.905 0.659  0.735 0.510  0.777 0.642  - -  0.854 0.637 

0.2 200 - -  0.979 0.679  0.660 0.440  0.747 0.657  - -  0.933 0.681 

0.2 500 - -  0.993 0.818  0.715 0.548  0.699 0.604  - -  0.960 0.829 

0.2 1000 - -  1.000 0.908  0.635 0.501  0.638 0.550  - -  0.966 0.919 

0.5 50 0.744 0.747  0.731 0.666  0.692 0.481  0.692 0.481  - -  0.743 0.644 

0.5 100 0.835 0.856  0.837 0.751  0.735 0.510  0.735 0.510  - -  0.838 0.728 

0.5 200 0.923 0.962  0.924 0.835  0.660 0.440  0.660 0.440  - -  0.912 0.824 

0.5 500 0.987 0.998  0.994 0.960  0.768 0.643  0.776 0.596  - -  0.944 0.943 

0.5 1000 0.999 1.000  1.000 0.995  1.000 0.000  0.670 0.592  - -  0.980 0.999 

1.0 50 - 0.951  0.535 0.739  0.692 0.481  0.692 0.481  - 0.807  0.618 0.655 

1.0 100 - 0.997  0.573 0.824  0.735 0.510  0.735 0.510  - 0.937  0.663 0.717 

1.0 200 - 1.000  0.645 0.905  0.660 0.440  0.660 0.440  - 0.990  0.723 0.765 

1.0 500 - 1.000  0.774 0.969  0.768 0.643  0.768 0.643  - 1.000  0.776 0.838 

1.0 1000 - 1.000  0.865 0.996   1.000 0.000  0.000 1.000   - 1.000  0.822 0.899 
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Conclusion 

Two variants of LSTAR models were proposed which realized time series data with 

improved symmetry over the existing LSTAR model, which is known to be 

asymetric. These proposed models were the AELSTAR and QLSTAR models. 

Monte Carlo experiment was set up, and selections of the nonlinear model was 

based on Teräsvirta Procedure (TP) and Escribano and Jordá Procedure (EJP). The 

two selection procedures selected models at frequencies lower than that of the 

LSTAR model, and this implied more frequencies of selection of symmetric 

variants of the model. The selection frequency increased as nonlinearity power in 

the model and sample sizes increased. This work therefore presents the AELSTAR 

and QLSTAR models as better alternatives to the existing LSTAR model in 

empirical economic and financial modeling. 
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