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Testing a point (sharp) null hypothesis is arguably the most widely used statistical 
inferential procedure in many fields of scientific research, nevertheless, the most 
controversial, and misapprehended. Since 1935 when Buchanan-Wollaston raised the 
first criticism against hypothesis testing, this foundational field of statistics has drawn 
increasingly active and stronger opposition, including draconian suggestions that 
statistical significance testing should be abandoned or even banned. Statisticians should 
stop ignoring these accumulated and significant anomalies within the current point-null 

hypotheses paradigm and rebuild healthy foundations of statistical science. The 
foundation for a paradigm shift in testing statistical hypotheses is suggested, which is 
testing interval null hypotheses based on implications of the Zero probability paradox. It 
states that in a real-world research point-null hypothesis of a normal mean has zero 
probability. This implies that formulated point-null hypothesis of a mean in the context of 
the simple normal model is almost surely false. Thus, Zero probability paradox points to 
the root cause of so-called large n problem in significance testing. It discloses that there is 
no point in searching for a cure under the current point-null paradigm. 

 
Keywords: zero-probability paradox, point null hypothesis, Lebesgue measure, 
rational numbers, algebraic numbers, almost sure false null hypothesis, inexactification, 
paradigm shift in testing statistical hypotheses. 

 

 
 

“It cannot be denied that, during the recent rapid development 
of practical methods, fundamental problems have been ignored 

and fundamental paradoxes left unresolved” 
Fisher (1922) 
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Introduction 

Following Fisher’s foundational contribution to significance tests, and Neyman 

and Pearson to hypothesis tests, statistical testing has become widely adopted by 

researchers as the most common statistical inferential approach in almost all 

different branches of science. However, there has been a steadily growing 

dissatisfaction in the scientific community with traditional tests of the point (sharp, 

precise) null hypothesis. Since Buchanan-Wollaston (1935) raised the first 

criticism against significance testing, their application has been debated 

extensively, and numerous objections and severe complaints have been leveled 

against their utility. Critics also accentuated statistical tests are not only overused, 

but are often misunderstood and misused. Nickerson (2000) provided a summary 

of common misconceptions, and criticisms as well as arguments in support of null 

hypothesis testing, from a non-statistician viewpoint.  

The most trenchant critics requested significance tests should be abandoned, 

banned or deinstitutionalized (e.g., Lindley, 1975; Hunter, 1997; Armstrong, 

2007; Orlitzky, 2012). The editors of the American Journal of Public Health 

imposed a ban, although it only lasted two years. Similarly, in 1997 the officers of 

the American Psychological Association (APA) created a task force to make 

recommendations about appropriate statistical practice and to consider banning 

significance testing. The proposal was regarded as too extreme and was rejected 

(Wilkinson, 1999). More recently, in 2015, the editors of Basic and Applied 

Social Psychology journal enforced a ban on significance testing (as well as 

confidence intervals). On behalf of the ASA Board of Directors, Wasserstein & 

Lazar (2016) formulated six principles regarding the usage of p-values, hoping 

that the ASA statement would open a fresh discussion with regards to the use of 

statistical inference. 

The ASA’s statement should be praised as the first organized reply from 

statistics community to the abovementioned issues. However, it did not address 

the fundamental problems and did not provide a new perspective on statistical 

testing. 

Critics advocated reform of statistical inference and statistics education. 

They recommended less emphasis should be placed on reporting of p values, 

cynically termed “harvest of asterisks” (Cohen, 1990). The reformers, mainly 

non-statisticians, argued attention should be shifted to effect size, point estimation, 

confidence interval, information theoretic approaches (e.g., Akaike Information 

Criterion), graphical methods, and progressively more on the communication of 

results using Bayesian inference. 
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Consider two of the most important criticisms of significance testing: (1) 

point null hypotheses are unlikely to be true, and (2) a statistical significant result 

is always obtainable with a sufficiently large sample. The scope of this paper is 

limited to the problem of testing the mean of a normal distribution, although this 

problem is of substantial importance because of its widespread application in 

statistical theory and practice. The primary objective is to prove that in the real-

world research when testing the mean of a normal distribution using a point-null 

hypothesis, the probability of that hypothesis is zero. We call this result the Zero 

probability paradox. This paradox undoubtedly reveals logical deficiency of a 

point-null hypothesis of a normal mean: in reality, its testing is actually a 

procedure that unequivocally will lead (with sufficiently large sample) to a 

foregone conclusion that formulated null hypothesis is almost surely false. The 

logical name for this procedure in which a sharp null hypothesis is ultimately 

being rejected should be “inexactification,” rather than testing (Good, 1994, p. 

241). 

The Existence of Point Null Hypothesis: History and 
Overview 

Testing a point null hypothesis is arguably the most widely used and at the same 

time the most controversial, misapprehended and severely criticized statistical 

procedure in many fields of scientific research. Focus on one of the most common 

criticisms, that point null hypotheses are not realistic. The Zero probability 

paradox, presented here, evolved as a result of persuasive and accumulated ideas 

of statisticians, and non-statisticians referred to in this section.  

There is a vast amount of references in statistics and non-statistics literature 

with the claim that, in reality, point null hypotheses are almost always false. 

Critics, however, supported this statement only by intuitive arguments, empirical 

evidence, and common sense. One of the early critics, L. J. Savage (1954, p. 254), 

disproved the validity of tests “in which the null hypothesis is such that it would 

not really be accepted by anyone.” I. R. Savage, (1957, p. 332-333) asserted the 

“null hypotheses of no difference are usually known to be false before the data are 

collected…when they are, their rejection or acceptance simply reflects the size of 

the sample and the power of the test, and is not a contribution to science.” 

Nunnally (1960, p. 642) expressed a similar assertion, but admitted he agreed 

although he cannot prove it directly. However, he argued it is supported both by 

common sense and by practical experience. Likewise, Meehl, (1967, p. 108) 

pointed out there is “universal agreement that the old point-null hypothesis…is 
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[quasi-] always false in biological and social science.” His opinion was based on 

the result that in “psychological and sociological investigations involving very 

large numbers of subjects, it is regularly found that almost all correlations or 

differences between means are statistically significant” (p. 109). Meehl illustrated 

this by providing an example of a large sample of over 55,000 Minnesota high 

school seniors that revealed 91% significant associations among a collection of 45 

variables.  

In the same way, Cohen (1990, p. 1308) stated the null hypothesis “taken 

literally (and that's the only way you can take it in formal hypothesis testing), is 

always false in the real world. It can only be true in the bowels of a computer 

processor running a Monte Carlo study (and even then a stray electron may make 

it false).  If it is false, even to a tiny degree, it must be the case that a large enough 

sample will produce a significant result and lead to its rejection. So if the null is 

always false, what’s the big deal about rejecting it?"  

There is near consensus in the literature that exactly true point null 

hypotheses are extremely rare in reality. This is exemplified by the following by 

Kadane (1987, p. 347): “For the last 15 or so years I have been looking for 

applied cases in which I might have some serious belief in a null hypothesis. In 

that time I found only one [testing an astrologer claim that on the bases of peoples 

birthdays it is possible to predict who is likely to have a drug problem]... I do not 

expect to test a precise hypothesis as a serious statistical calculation.”  

In a similar manner, there was a quest for an existence of a realistic case for 

which a null hypothesis cannot be regarded beforehand as false.  As a result of 

this pursuit, a commonly given example is found, that there is no extrasensory 

effect in a parapsychological experiment. Good (1994, p. 241) argued there is at 

least one example of a precisely sharp null hypothesis: precognition is impossible. 

Similarly, Ghosh et al. (2006, p. 45) suggested astrology cannot predict the future. 

Berger and Delampady (1987, p. 320), although admitting that it is perhaps 

impossible to have a null hypothesis that can be exactly modeled as θ = θ0, noted 

talking to plants has no effect on their growth. Nevertheless, they admitted minor 

biases in the design of the experiments may produce statistical significance. They 

also argued that point null hypotheses are reasonable approximations to fuzzy 

precise (small interval) nulls. However, as pointed out by Bernardo (1999, p. 102) 

“this approximation always breaks down for sufficiently large samples.” Likewise, 

Rousseau (2007) showed for large samples the Bayes factor associated with point 

null hypotheses is a poor approximation of Bayes factors of interval null 

hypotheses unless the intervals are extremely small. 
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In contrast, Zellner (1987, p. 339) emphasized many realistic examples of 

point null hypotheses can be given in testing well-formulated physical laws, such 

as s =. 5gt2 and E = mc2. Kass and Raftery (1995, p. 788) argued although “one 

rarely believes a scientific law in an absolute sense, it is a great convenience to 

speak and to act as if laws are valid. When one says that a certain theory is correct, 

one means that deviations from it are sufficiently minor to be irrelevant for all 

practical purposes at hand.” 

Based on the above arguments, a natural question arises: why are we testing 

point null hypotheses at all, when it is known in advance they are almost never 

exactly true in the real world? Sprenger (2013) argued these hypotheses often give 

useful idealization of reality. He considered this originated in the Popperian 

philosophy of science: “only a highly testable or improbable theory is worth 

testing and is actually (and not only potentially) satisfactory if it withstands severe 

tests.” (Popper, 1963, p. 219–220)  

According to Cox (2006, p. 31) null hypothesis refers to a probability model, 

and this implies idealization. He argued it would be absurd to think that a 

mathematical model could be an exact representation of a real system. Thus, null 

hypotheses are postulated within a system that is untrue. 

Good (1956, p. 254) remarked a null hypothesis is tested, although it is 

known in advance it cannot be exactly true, because “we wish to test whether the 

hypothesis is in some sense approximately true, or whether it is rejectable on the 

sort of size of sample that we intend to take.” Kruskal (1968) indicated the need is 

to test whether the mean is near µ0, meaning as near as makes no substantive 

difference. He stated this will be achieved as long as the sample sizes and 

significance levels are reasonable and the power is at least moderately large for 

alternatives interestingly different from the null hypothesis. 

Edwards, et al. (1963) presented a Bayesian view on the sharp null 

hypothesis problem. They acknowledged in usual applications the null hypothesis 

is known to be false from the outset, because realistically the null hypothesis 

cannot be infinitely sharp. From a Bayesian perspective, a sharp null hypothesis is 

likely to be appropriate only when it deserves special initial credence. They also 

highlighted in Bayesian analysis the null hypothesis is “a hazily defined small 

region rather than a point [italicized by authors]” (p. 235).  

Finally, consider Krueger’s (2001) attempt to explain why all null 

hypotheses are false. He started from the premise that in statistics populations are 

mathematical abstractions that contain infinite possible observations. “This 

implies an infinite number of possible states of the population, and each of these 

states may be a distinct hypothesis. With an infinite number of hypotheses, no 
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individual hypothesis can be true with any calculable probability” (p. 17). It is, 

however, clear that his arguments on the survival of the flawed significance 

testing are themselves flawed. It is erroneous to claim that one-sided and interval 

null hypotheses are always false. 

It can be concluded existing literature does not offer proof of the 

extraordinary statement that all point null hypotheses are false. 

The Nature of a Point Null Hypothesis 

Before exposing the Zero probability paradox, it is of fundamental importance to 

clarify some misconceptions about the nature of the point null hypothesis. 

Suppose that a random sample of size n, X = (X1, X2, …, Xn), is selected 

from the normal population N(θ, σ2), where θ is an unknown mean assuming 

values in a parameter space Θ   1 . Suppose also that the variance, σ2 > 0 is 

known. It is required to test the null hypothesis H0 : θ = θ0 versus an unspecified 

alternative hypothesis H1 : θ ≠ θ0. Regard this sharp or point null hypothesis as a 

numerically exact statement, that is free of vagueness and ambiguity, namely as 

an assertion that exactly specifies a single value of a parameter θ0. In other words, 

it is obvious that θ0 as a crisp number, not a fuzzy number. 

It is well known that to every real number there corresponds a unique point 

on the number line and vice versa. Obviously, point hypothetical value θ0 

corresponds to a distinctive point on the real number line, not to an interval. As 

Euclid gave an intuitive definition in the first sentence from his Elements book 1, 

“a point is that which has no part, or which has no magnitude.” In the 

contemporary notion, this is tantamount to saying that a point is a dimensionless 

entity that has only a location. It also naturally implies that “every point is 

unextended” (Playfair, 1819, p. 289). 

Claims that there are different kinds of sharp hypotheses, some fuzzy sharp 

and some infinitely sharp, in other words, that equal sign can be perceived in 

infinitely different ways, are unconvincing. If testing “hazily defined small region” 

is considered a null hypothesis in a scientific, non-subjective way, then it is a sine 

qua non to formulate that hypothesis accurately, for example, as H0 :|θ – θ0| ≤ δ or 

using fuzzy set theory as 0 0:H   , where   is the unknown fuzzy parameter 

and 0  a known fuzzy number. However, in the traditional point null hypothesis 

H0 : θ = θ0, in practice, (since the pioneering work of Arbuthnott (1710)) θ0 has 

always been formulated as a crisp rational number, never as a fuzzy number  . 
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A fuzzy number,  , in contrast, is a distinctly different entity. It is defined 

as a fuzzy set in  with a normal, fuzzy convex and a continuous membership 

function of bounded support. Note also that, in the fuzzy set framework, the 

possible values of the parameter of interest are expressed as linguistic variables, 

and that the data are observations of a normal fuzzy random sample. In conclusion, 

0 0  , that is, (Crisp number = Fuzzy number), is nothing else but a self-

deception. 

Zero Probability Paradox 

In a real-world research, the probability of an exact point-null hypothesis of the 

mean of a normally distributed population is zero. Let  be the set of all rational 

real numbers, that is  / ; , , 0m n m n n   , where  stands for the set of all 

integers. Suppose, as in the previous section, that a random sample of size n, 

X = (X1, X2, …, Xn), is selected from the normal population N(θ, σ2), where θ is an 

unknown mean assuming values in a parameter space Θ 1 . Divide parameter 

space into two disjoints sets   and \  that are mutually exclusive 

( \   ) and exhaustive ( \  ). Suppose further that the set 

  is equivalent to the set of all rational numbers  and that \  is equivalent 

to the set of all irrational numbers \ . 

It is desired to test the traditional null hypothesis 

 

 
0 0:H     (1) 

 

versus an unspecified alternative hypothesis 

 

 1 0:H   , 

 

where θ0 is a rational number, i.e. 0   

. 

Point-null zero probability paradox (Zero Probability paradox). 

Probability of the null hypothesis (1) is equal to zero: 

 

  0 | 0P H    .  

 



RAO & LOVRIC 

9 

This is tantamount to saying that probability of the null hypothesis 

 

 
  

  

0

1

| All rational numbers 0,  and

| All irrational numbers 1.

P H

P H





 

 
  

 

Here, regard rationals on the number line as indicators of the means of 

corresponding normal distributions that have rational numbers as their means. 

 

Proof: 

 

A) In scientific research and statistical practice, any point null 

hypothesis of the normal population is almost always stated as a 

single rational number. 

B) As proved by Cantor in 1873, rational numbers are countable—that 

is, there is in one-one correspondence between the rational numbers 

and the natural numbers (see, for example, Calkin and Wilf, 2000, 

for a binary tree argument). Because the rational numbers, qi, are 

countable, enumerate them as a sequence {qi}, or  1i iq

 . 

Hence, the set of all hypothetical null values of the point-null 

hypotheses that could be expressed using rational numbers,  , is 

also countable. In other words, this set has a bijective 

correspondence to the set of rational numbers. 

C) The Lebesgue measure of any singleton set, {x}, is zero (where 

singleton means the smallest possible nonempty set). Every 

countable set has Lebesgue measure zero (see, for example, Adams 

and Guillemin, 1996, p. 9). Therefore, Lebesgue measure of the set 

of all rational numbers is also zero, that is 

      1

1

0i i i

i

q q  








   . 

In light of this fact, Lebesgue measure of the set of all 

hypothetical null values of the point-null hypotheses that could be 

expressed using rational numbers ( 0 :H   ) is also zero because 

this set is countable, λ( ) = 0. 

D) Normal distribution is absolutely continuous with respect to the 

Lebesgue measure λ. This signifies that all sets which have zero 

Lebesgue measure must also have zero probability under probability 
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measure; i.e., for all events AR such that µ(A) = 0 → PX(A) = 0. 

As Borovkov (2013, p. 39) has nicely exemplified “for an absolutely 

continuous distribution, the probability of hitting a set of zero 

Lebesgue measure is zero.” 

E) Because for an absolutely continuous distribution, a countably 

infinite set of all rational numbers has Lebesgue measure zero, 

conclude their probability measure is also zero. 

F) Therefore, probability measure of a set of all possible hypothetical 

null rational values of the point-null hypotheses in testing a normal 

mean is also zero,   0 | 0P H    . This unequivocally 

amounts to the deduction that any single-point null hypothesis about 

the normal mean has also probability zero, that is, 

 

P(Point-null hypothesis formulated as a rational number | Normal 

distribution) = 0. 

 

Quod erat demonstrandum. 

 

Subsequently, the probability of point null formulated as an irrational 

number is one. Figuratively speaking, rationals occupy zero length on a real line 

and the set of irrationals is uncountably infinite. 

The scope of the Zero probability paradox can be further extended to the 

even more general set of all point null hypotheses asserted as real algebraic 

numbers, that is, the roots of single variable polynomial equations whose 

coefficients are all integers. This set includes rational numbers, Gaussian integers, 

golden ratio, constructible numbers, some irrational numbers such as √3, etc. 

Because this set is countable, as also proved by Cantor in 1874, (see, for example, 

Kaplansky, 2001, Paradox 4, p. 23) it has Lebesgue measure zero and therefore 

under Gaussian distribution its probability is zero. The cardinality (a measure of 

the "number of elements of the set") of the algebraic numbers is 0א (aleph-naught), 

the same as the natural numbers and rational numbers. However, the cardinality of 

the set of transcendental numbers is the same as that of the set of real numbers 

, the cardinality of the continuum. Almost all real numbers are transcendental, 

but we are familiar with almost none of them (except, for example, π, e, Liouville 

numbers, Champernowne constant, etc.). 

It is important to emphasize that the Zero probability paradox applies both 

in the case when population variance is known and unknown. 
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It might be objected that a point-null hypothesis that the mean of the errors 

made in astronomical observations is equal to zero is reasonable and that its 

probability could be larger than zero. Karl Pearson (1935a, p. 296) replied, “I 

have never found a normal curve fit anything if there are enough observations! 

The astronomical data provided to prove that errors of observation follow normal 

curves are pitiably scanty, and if proper tests are applied usually show that they 

do not!” 

Conclusion 

Zero Probability and Impossibility.  

Before discussing some of the implications of the Zero probability paradox, it is 

of considerable interest to clarify the difference between zero probability and 

impossibility. The most common and persistent misconception in the literature 

about probability is the interpretation that zero probability implies that an event is 

impossible. This is equally shared by many applied statistics textbooks writers 

(for example, Everitt, 1999, p. 14; de Muth, 2014, p. 20; Burns & Burns, 2008, p. 

164; Sharma, 2010, p. 191) and non-statisticians (for example, Poole & 

Mackworth, 2010, p. 296; Finlayson & McMahon, 2004, p. 360; Yoe, 2012, p. 

305; Quinn and Keough, 2002, p. 7). This does not come as a surprise since many 

notable scholars held the same false impression in the past.  

As reported by Finetti (2008, p. 49), Borel used to say “let us consider the 

probabilities 10-3, 10-10, 10-100, 10-1000. A probability of 10-1000 is roughly equal to 

the probability of picking by chance a particular atom in the entire universe.” 

Indeed, Borel (1962, p. 3), one of the founding fathers of measure theory, 

proposed in a book for the non-scientists published in 1943 “the single law of 

chance,” or Borel’s law. It states “Events with a sufficiently small probability 

never occur; or at least, we must act, in all circumstances, as if they were 

impossible.” Similar interpretations were given by many other eminent scientists 

who tried to relate probabilities to the physical world. For example, Bernoulli 

(1713, pp. 211-212) stated in the first chapter of Part IV of his Ars Conjectandi 

that “if one thing is considered morally certain which has 999/1000 certainty, 

another thing will be morally impossible, which has only 1/1000 certainty.” 

Cournot (1843, p. 78) also tried to build a bridge from probability theory to the 

physical world by stating that “a physically impossible event is one whose 

probability is infinitely small.” Likewise, Popper (2002, p. 195) pointed out that 
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“the rule that extreme improbabilities have to be neglected…agrees with the 

demand for scientific objectivity.”  

However, today, there is an almost general agreement among statisticians 

that probability zero means “almost surely impossible” or extremely unlikely. In 

other words, an event of zero probability will almost never happen but there may 

be exceptions. For example, Kolmogorov (1956, p. 5) emphasized that “P(A) = 0 

does not imply the impossibility of A…all we can assert is that…event A is 

practically impossible.” According to Hand (2014, p. 6), “extremely improbable 

events are commonplace. It’s a consequence of more fundamental laws, which all 

tie together to lead inevitably and inexorably to the occurrence of such 

extraordinarily unlikely events.” Although we approve of Hand’s position that 

events of vanishingly small probability will ultimately happen, we strongly 

disagree with establishing statistical tests on point-null hypotheses and expecting 

for coincidences and miracles to happen. 

In light of the previous discussion, we restate the Zero probability paradox 

in the following, more comprehensible way: in practice, when testing a mean of 

the normal distribution using a point-null hypothesis, the probability of that 

hypothesis is zero. This does not imply that it is “absolutely” impossible to state a 

true point-null hypothesis, but that formulated point-nulls in the context of the 

simple normal model are almost surely false. 

Some Implications of the Zero Probability Paradox.  

Fisher’s illuminating words (1922) are more relevant today than in 1922:  

 

It cannot be denied that, during the recent rapid development of 

practical methods, fundamental problems have been ignored and 

fundamental paradoxes left unresolved…This anomalous state of 

statistical science…the obscurity which envelops the theoretical bases 

of statistical methods may perhaps be ascribed to two considerations. 

In the first place, it appears to be widely thought, or rather felt, that in 

a subject in which all results are liable to greater or smaller errors, 

precise definition of ideas or concepts is, if not impossible, at least not 

a practical necessity. In  the  second place, it  has happened that  in  

statistics  a purely verbal  confusion  has hindered  the  distinct 

formulation  of statistical problems. (p. 311-312) 
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We argue that the Zero probability paradox has a specific power to shed new 

light on some fundamental problems in the foundations of statistical science that 

have been ignored, and help us to resolve some accumulated anomalies related to 

the point-null hypothesis testing, including so-called large n problem in 

significance testing, and the Jeffreys-Lindley paradox. It can also elucidate the 

notion of the Bayes factor, mixed prior distribution advocated by Jeffreys, 

“irreconcilability of p-values and evidence” (Berger & Sellke, 1987), and 

Cromwell’s rule (Lindley, 1991, p. 104), among others. 

However, detailed consideration of the implications of the Zero probability 

paradox for the Fisherian significance testing, Neyman-Pearson hypothesis testing, 

and Bayesian testing are beyond the scope of this paper. We confine ourselves, 

therefore, only to some general implications. Berkson (1938) was the first to 

notice dependence of significance testing on the sample size. He objected that it is 

possible to obtain a statistically significant chi-square test merely by increasing 

sample size:  

 

I believe that an observant statistician who has had any considerable 

experience with applying the chi-square test repeatedly will agree with 

my statement that, as a matter of observation, when the numbers in the 

data are quite large, the P's tend to come out small… we have 

something here that is apt to trouble the conscience of a reflective 

statistician using the chi-square test. For I suppose it would be agreed 

by statisticians that a large sample is always better than a small sample. 

If, then, we know in advance the P that will result from an application 

of a chi-square test to a large sample there would seem to be no use in 

doing it on a smaller one. But since the result of the former test is 

known, it is no test at all!” [italicized for emphasis]  

 

Berkson failed to recognize that the same deficiency (sensitivity to sample 

size) is also shared by other significance tests based on point-null hypotheses and 

continuous data. Today this is well known as the large n problem. As argued by 

Mayo (2006, p. 809): “for any discrepancy from the null, however small, one can 

find a sample size such as there is a high probability (as high as one likes) that the 

test will yield a statistically significant result (for any p-value one wishes).” She 

claims that the large n problem is the basis for the famous Jeffreys-Lindley 

paradox (Lindley, 1957), probably the most quoted divergence between the 

frequentist and Bayesian approaches to inference. A number of suggestions have 

been proposed to alleviate this problem, including adjustment of p-values to a 
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fixed sample size (Good, 1988, p. 391), rules of thumb for decreasing α as n 

increases, and indicated effect size. 

Karl Pearson (1935b, p. 550) opined “there is only one case in which an 

hypothesis can be definitely rejected, namely when its probability is zero.” 

Relating this to the Zero probability paradox leads to the following conclusion. 

Focusing on the inferential aspects of the problem (not on the decision-making 

approach) permits rejecting the point-null hypothesis a priori, before seeing data. 

To paraphrase Berkson, because the result of the significance tests are known, 

they are no test at all. Term testing is a misnomer in this case and should be 

replaced by inexactification.  These tests are merely procedures that ask 

researchers to waste their time and financial resources, to collect enough data, and 

when ultimately reject their point nulls to confirm what they knew beforehand, 

that their point nulls were almost surely false. 

Zero probability paradox points to the root cause of the large n problem and 

discloses that there is no cure for it under the current point-null paradigm. 

Because classical significance tests (Z and t-test) are consistent, as the sample size 

increase, they will become extremely sensitive and therefore, detect even the 

tiniest discrepancy from the crisp hypothetical (almost surely false) null 

hypothesis. In other words, classical test statistic converges almost surely to ∞ 

and therefore, gives the asymptotically correct result (see, for example, DasGupta, 

2008, p. 337, or Lehman and Romano, 2005, p. 462). Again, this means that in the 

real world testing any sharp null hypothesis of the normal mean will be ultimately, 

almost surely, rejected with large enough sample size.  

This significant logical inconsistency of the significance testing was not an 

overwhelming issue in the first half of the past century when Gosset was 

“‘naughtily’ playing about with absurdly small numbers” (Eagon Pearson, 1939, p. 

217). However, if Efron’s view (2010, p. VII) is embraced that in the 21st century, 

statisticians will deal with large data sets and complex questions, it is clear that 

the current point-null paradigm is inadequate. Van der Laan and Rose (2010), for 

example, indicated that next generation of statisticians must construct new tools 

for massive data sets since the current ones are severely limited. Similarly, Hand 

(1998, p. 113) insisted in data mining instead of “statistical significance, consider 

more carefully substantive significance: is the effect important or valuable or not?”  

To rephrase Box (1979): the only question of interest is "Is the normal 

model based on point-null hypothesis illuminating and useful?" The answer must 

be “No”. 

So, what should we do? This article is an initial contribution to making a 

paradigm shift in testing statistical hypotheses. Instead of testing highly 
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problematic and almost surely false point null hypotheses, as a natural 

replacement, test a negligible null hypothesis: 

 

0 0:H      (Effect size is negligible) against 

1 0:H      (Effect size is practically meaningful). 

 

We propose naming this avant-garde proposal the “Hodges-Lehmann 

paradigm”. Hodges and Lehmann (1954) were among first statisticians who had 

noted deficiencies of the point null hypothesis and formulated testing of “material 

significance” in their path-breaking paper “Testing the approximate validity of 

statistical hypotheses”. We do not regard the Hodges-Lehmann paradigm as deus 

ex machine, nor as a magic alternative to the traditional point-null testing. 

However, we argue that it will substantially improve scientific research based on 

statistical testing. The argument that point nulls are mathematically more tractable 

is obsolete and belongs to the pre-MCMC era.  

We regard statistics as the grammar of science. Thus, we are responsible for 

providing unambiguous rules of that grammar. We should not feel proud if non-

statisticians are trying to make reform in statistical inference and statistics 

education. We, statisticians, are accountable to provide researchers in other 

sciences non-conflicting, coherent, and consistent concepts of testing the 

statistical hypotheses. Otherwise, significance tests “can actually impede 

scientific progress.” (Kirk, 2003, p. 100) and even harm “development of 

scientific knowledge” (Armstrong, 2007, p. 321). Researchers and scientists will 

feel confused and deceived by statistics and statisticians. As pointed out by 

Cousins (2014, p. 35): “More than a half century after Lindley drew attention to 

the different dependence of p-values and Bayes factors on sample size n 

(described two decades previously by Jeffreys), there is still no consensus on how 

best to communicate results of testing scientific hypotheses.” 

Presumably, we all agree on the point that overcoming of accumulated 

inconsistencies is always a crucial method in science. As pointed out by Good 

(1982, p. 489), “a Bayes/non-Bayes compromise or synthesis is necessary for 

human reasoning.” We argue that this compromise is impossible to reach within 

the point null-hypothesis testing paradigm, as Jeffreys-Lindley paradox evidently 

testifies. 

In sharp contrast to the current point-nulls model, we argue that it is possible 

to harmonize inferential results of frequentist and Bayesian testing within the new 

framework. In other words, frequentist and Bayesian inference will become, in 
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principle, compatible and would (or at least could) lead to the similar conclusions 

in (a) one-sided testing, (b) two-sided testing, and (c) interval estimation. 

However, to make this proposal fully justifiable it is necessary to obtain a 

proof that point nulls are also almost always false in the case of two samples. The 

initial clue is given by Tukey (1991, p. 100): 

 

“Statisticians classically asked the wrong questions—and were willing 

to answer with a lie, one that was often downright lie. They asked 

“Are the effects of A and B different?” and they were willing to 

answer “no.” All we know about the world teaches us that the effects 

of A and B are always different—in some decimal place—for any A 

and B. Thus asking ‘Are the effects different’ is foolish.”  

 

Only then, we can set as one of the fundamental rules of the 21st century 

Statistical Science Decalogue: Hypotheses exactas non fingo! 

References 

Adams, M. & Guillemin, V. (1996). Measure theory and probability. Basel, 

Switzerland: Birkhäuser. 

Arbuthnott, J. (1710). An argument for divine providence, taken from the 

constant regularity observ'd in the births of both sexes. Philosophical 

Transactions of the Royal Society of London, 27(325–336), 186–190. 

Armstrong, J. S. (2007). Significance tests harm progress in forecasting. 

International Journal of Forecasting, 23(2), 321-327. doi: 

10.1016/j.ijforecast.2007.03.004 

Berger, J. O. & Delampady, M. (1987). Testing precise hypotheses. 

Statistical Science, 2(3),  317-335. doi: 10.1214/ss/1177013238 

Berger, J. O. & Sellke, T. (1987). Testing a point null hypothesis: the 

irreconcilability of p values and evidence, Journal of the American Statistical 

Association, 82(397), 112-122. doi: 10.1080/01621459.1987.10478397 

Berkson, J. (1938). Some difficulties of interpretation encountered in the 

application of the chi-square test. Journal of the American Statistical Association, 

33(203), 526-542. doi: 10.1080/01621459.1938.10502329 

Bernardo, J. M. (1999). Nested hypothesis testing: the Bayesian reference 

criterion. In J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Eds. 

http://dx.doi.org/10.1016/j.ijforecast.2007.03.004
http://dx.doi.org/10.1214/ss/1177013238
http://dx.doi.org/10.1080/01621459.1987.10478397
http://dx.doi.org/10.1080/01621459.1938.10502329


RAO & LOVRIC 

17 

Bayesian Statistics (6th Ed.). Oxford: Oxford University Press, 101-130 (with 

discussion). 

Bernoulli, J. (1713). Ars conjectandi. (Opus posthumum). Impensis 

Thurnisiorum, Fratrum.  

Borel, E. (1962). Probabilities and life. Mineola, New York: Dover 

Publications.  

Borovkov, A. (2013). Probability theory. NY: Springer. 

Box, G. E. P. (1979). Robustness in the strategy of scientific model building, 

In R. L. Launer and G. N. Wilkinson, Eds. Robustness in Statistics. Cambridge, 

MA: Academic Press, pp. 201–236. 

Buchanan-Wollaston, H. J. (1935). Statistical tests. Nature, 136(3431), 182-

183. doi: 10.1038/136182b0 

Burns, R. P. & Burns, R. (2008). Business research methods and statistics 

using SPSS. London: Sage Publications. 

Calkin, N. & Wilf, H. (2000). Recounting the rationals. American 

Mathematical Monthly, 107(4), 360–363. doi: 10.2307/2589182 

Cohen, J. (1990). Things I have learned (so far). American Psychologist, 

45(12), 1304-1312. doi: 10.1037/0003-066x.45.12.1304 

Cousins, R. D. (2014). The Jeffreys–Lindley paradox and discovery criteria 

in high energy physics. Synthese, 1-38. doi: 10.1007/s11229-014-0525-z 

Cournot, A. A. (1843). Exposition de la théorie des chances et des 

probabilities. Paris: Hachette. 

Cox, D. R. (2006). Principles of statistical inference. Cambridge, UK: 

Cambridge University Press. 

DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability. NY: 

Springer. 

de Finetti, B. (2008). Philosophical lectures on probability: collected, edited, 

and annotated by Alberto Mura. NY: Springer. 

De Muth, J. E. (2014). Basic statistics and pharmaceutical statistical 

applications (3rd Ed.). Boca Raton, FL: CRC Press. 

Edwards, W., Lindman, H. & Savage, L. J. (1963). Bayesian statistical 

inference for psychological research. Psychological Review, 70(3), 193-242. doi: 

10.1037/h0044139 

Efron, B. (2010). The Future of Statistics. In M. Lovric (Ed.). International 

Encyclopedia of Statistical Science. NY: Springer, pp. VII-X. 

http://dx.doi.org/10.1038/136182b0
http://dx.doi.org/10.2307/2589182
http://dx.doi.org/10.1037/0003-066x.45.12.1304
http://dx.doi.org/10.1007/s11229-014-0525-z
http://dx.doi.org/10.1037/h0044139


TESTING POINT NULL HYPOTHESIS OF A NORMAL MEAN  

18 

Everitt, B. (1999) Chance rules: an informal guide to probability, risk and 

statistics. NY: Springer-Verlag. 

Finlayson, B. L. & McMahon, T. A. (2004). Stream hydrology: an 

introduction for ecologists. Chichester, UK: John Wiley & Sons. 

Fisher, R. A. (1922). On the mathematical foundations of theoretical 

statistics. Philosophical Transactions of the Royal Society of London, Series A, 

222(594-604), 309-368. doi: 10.1098/rsta.1922.0009 

Ghosh, J. K, Delampady M. & Tapas, S. (2006). An introduction to 

Bayesian analysis: theory and methods. NY: Springer. 

Good, I. J. (1994). The existence of sharp null hypothesis. Journal of 

Statistical Computation and Simulation, 49(3-4), 241-242. doi: 

10.1080/00949659408811587 

Good, I. J. (1956). Which comes first, probability or statistics? Journal of 

the Institute of Actuaries, 82(2), 249-255. doi: 10.1017/S0020268100046448 

Good. I. J. (1988). The interface between statistics and philosophy of 

science. Statistical Science, 3(4), 386-397. doi: 10.1214/ss/1177012754 

Hand, D. (1998). Data mining: statistics and more? The American 

Statistician, 52(2), 112-118. doi: 10.1080/00031305.1998.10480549 

Hand, D. J. (2014). The improbability principle: why coincidences, miracles, 

and rare events happen every day. NY: Scientific American / Farrar, Straus and 

Giroux. 

Hodges, J. L. & Lehmann, E. L. (1954). Testing the approximate validity of 

statistical hypotheses. Journal of the Royal Statistical Society. Series B, 16(2), 

262–268. 

Hunter, J. E. (1997). Needed: A ban on the significance test. Psychological 

Science, 8(1), 3-7. doi: 10.1111/j.1467-9280.1997.tb00534.x 

Kadane, J. B. (1987). [Testing precise hypotheses]: Comment. Statistical 

Science, 2(3), 347–348. doi: 10.1214/ss/1177013244 

Kaplansky, I. (2001). Set Theory and Metric Spaces (2nd Ed.). Providence, 

RI: AMS Chelsea Publishing. 

Kass, R. E. & Raftery, A. E. (1995). Bayes Factors. Journal of the American 

Statistical Association, 90(430), 773-795. doi: 10.1080/01621459.1995.10476572 

Kirk, R. E. (2003). The importance of effect magnitude. In S. F. Davis (Ed.), 

Handbook of research methods in experimental psychology. Malden, MA: 

Blackwell, pp. 83–105 

http://dx.doi.org/10.1098/rsta.1922.0009
http://dx.doi.org/10.1080/00949659408811587
http://dx.doi.org/10.1017/S0020268100046448
http://dx.doi.org/10.1214/ss/1177012754
http://dx.doi.org/10.1080/00031305.1998.10480549
http://dx.doi.org/10.1111/j.1467-9280.1997.tb00534.x
http://dx.doi.org/10.1214/ss/1177013244
http://dx.doi.org/10.1080/01621459.1995.10476572


RAO & LOVRIC 

19 

Kolmogorov, A. N. (1956). Foundations of the theory of probability (2nd 

English Ed.). Providence, RI: AMS Chelsea Publishing. 

Krueger, J. (2001). Null hypothesis significance testing: On the survival of a 

flawed method. American Psychologist, 56(1), 16-26. doi: 10.1037//0003-

066x.56.1.16 

Kruskal, W. H. (1968). Significance, tests of. In: The international 

encyclopedia of the social sciences, 14. NY: The Macmillan Co. and the Free 

Press, pp. 238–250. 

Lehmann, E. L. & Romano, J. P. (2005). Testing statistical hypotheses, 3rd 

Ed. NY: Springer. 

Lindley, D. V. (1957) A statistical paradox. Biometrika, 44(1-2), 187-192. 

doi: 10.1093/biomet/44.1-2.187 

Lindley, D. V. (1975). The future of statistics: a Bayesian 21st century. 

Advances in Applied Probability, 7(Supplement: Proceedings of the Conference 

on Directions for Mathematical Statistics), 106-115. doi: 10.2307/1426315 

Lindley, D. V. (1991). Making decisions (2nd Ed.). NY: John Wiley & Sons. 

Mayo, D. 2006. Philosophy of statistics. In: S. Sarkar & J. Pfeifer, Eds. The 

philosophy of science: an encyclopedia. London: Routledge, pp. 802–815.  

Meehl, P. E. (1967). Theory testing in psychology and physics: a 

methodological paradox. Philosophy of Science, 34(2), 103-115 (doi: 

10.1086/288135). Reprinted in The significance test controversy - a reader, D. E. 

Morrison and R. E. Henkel, Eds. 1970. London: Aldine Publishing Company 

(Butterworth Group). 

Nickerson, R. S. (2000). Null hypothesis significance testing: a review of an 

old and continuing controversy. Psychological Methods, 5(2), 241-301. doi: 

10.1037//1082-989x.5.2.241 

Nunnally, J. (1960). The place of statistics in psychology. Educational and 

Psychological Measurement, 20(4), 641-650. doi: 10.1177/001316446002000401 

Orlitzky, M. (2012). How can significance tests be deinstitutionalized? 

Organizational Research Methods, 15(2), 199-228. doi: 

10.1177/1094428111428356 

Pearson, E. S. (1939). "Student" as statistician. Biometrika, 30(3-4), 210-

250. doi: 10.2307/2332648 

Pearson, K. (1935a). Statistical tests. Nature, 136(3434), 296-297. doi: 

10.1038/136296a0 

http://dx.doi.org/10.1037/0003-066x.56.1.16
http://dx.doi.org/10.1037/0003-066x.56.1.16
http://dx.doi.org/10.1093/biomet/44.1-2.187
http://dx.doi.org/10.2307/1426315
http://dx.doi.org/10.1086/288135
http://dx.doi.org/10.1037/1082-989x.5.2.241
http://dx.doi.org/10.1177/001316446002000401
http://dx.doi.org/10.1177/1094428111428356
http://dx.doi.org/10.2307/2332648
http://dx.doi.org/10.1038/136296a0


TESTING POINT NULL HYPOTHESIS OF A NORMAL MEAN  

20 

Pearson, K. (1935b). Statistical tests. Nature, 136(3440), 550. doi: 

10.1038/136550a0 

Playfair, J. (1819). Elements of geometry: containing the first six books of 

Euclid, with a supplement on the quadrature of the circle and the geometry of 

solids; to which are added, Elements of plane and spherical trigonometry. NY: G. 

Long. 

Poole, D. L. & Mackworth, A. K.  (2010). Artificial intelligence: 

foundations of computational agents. Cambridge, UK: Cambridge University 

Press. 

Popper, K. R. (2002).The logic of scientific discovery, 2nd Ed. NY: 

Routledge.  

Popper, K. R. (1963). Conjectures and refutations: the growth of scientific 

knowledge. New York: Harper. 

Quinn, G. P. & Keough, M. J. (2002). Experimental design and data 

analysis for biologists. Cambridge, UK: Cambridge University Press. 

Rousseau, J. (2007). Approximating interval hypothesis: p-values and Bayes 

factors. In J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, Eds. 

Bayesian Statistics (8th Ed.). Oxford: University Press, pp. 417-452. 

Savage, I.  R. (1957). Nonparametric Statistics. Journal of the American 

Statistical Association, 52(279), 331-344. doi: 10.1080/01621459.1957.10501392 

Savage, L. J. (1954). The foundations of statistics. New York: John Wiley 

and Sons. 

Sharma, J. K. (2010). Fundamentals of business statistics. Noida, India: 

Dorling Kindersley. 

Sprenger, J. (2013). Testing a precise null hypothesis: the case of Lindley's 

paradox. Philosophy of Science, 80(5), 733–744. doi: 10.1086/673730 

Trafimow, D. & Marks, M. (2015). Editorial. Basic and Applied Social 

Psychology, 37(1), 1-2. doi: 10.1080/01973533.2015.1012991. 

Tukey, J. W. (1991). The philosophy of multiple comparisons. Statistical 

Science, 6(1), 100-116. doi: 10.1214/ss/1177011945 

van der Laan, M. J. & Rose, S. (2010). Statistics ready for a revolution: next 

generation of statisticians must build tools for massive data sets. Amstat News, 

399, 38-39. 

Wasserstein, R. L. & Lazar, N. A. (2016). The ASA's statement on p-values: 

context, process, and purpose. American Statistician. 70(2), 129-133. doi: 

10.1080/00031305.2016.1154108 

http://dx.doi.org/10.1038/136550a0
http://dx.doi.org/10.1080/01621459.1957.10501392
http://dx.doi.org/10.1086/673730
http://dx.doi.org/10.1080/01973533.2015.1012991
http://dx.doi.org/10.1214/ss/1177011945
http://dx.doi.org/10.1080/00031305.2016.1154108


RAO & LOVRIC 

21 

Wilkinson, L. (1999). Statistical methods in psychology journals: guidelines 

and explanations. American Psychologist. 54(8), 594-604. doi: 10.1037/0003-

066x.54.8.594 

Yoe, C. (2012). Principles of risk analysis: decision making under 

uncertainty. Boca Raton, FL: CRC Press. 

Zellner, A. (1987). [Testing precise hypotheses]: Comment. Statistical 

Science, 2(3), 339-341. doi: 10.1214/ss/1177013241 

http://dx.doi.org/10.1037/0003-066x.54.8.594
http://dx.doi.org/10.1037/0003-066x.54.8.594
http://dx.doi.org/10.1214/ss/1177013241

	Journal of Modern Applied Statistical Methods
	11-1-2016

	Testing Point Null Hypothesis of a Normal Mean and the Truth: 21st Century Perspective
	Calyampudi Radhakrishna Rao
	Miodrag M. Lovric
	Recommended Citation


	Testing Point Null Hypothesis of a Normal Mean and the Truth: 21st Century Perspective

