
Journal of Modern Applied Statistical
Methods

Volume 2 | Issue 1 Article 29

5-1-2003

A Recursive Algorithm For Fractionally
Differencing Long Data Series
Joseph McCarthy
Bryant College

Robert DiSario
Bryant College

Hakan Saraoglu
Bryant College

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been
accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
McCarthy, Joseph; DiSario, Robert; and Saraoglu, Hakan (2003) "A Recursive Algorithm For Fractionally Differencing Long Data
Series," Journal of Modern Applied Statistical Methods: Vol. 2 : Iss. 1 , Article 29.
DOI: 10.22237/jmasm/1051748940
Available at: http://digitalcommons.wayne.edu/jmasm/vol2/iss1/29

http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol2/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol2/iss1/29?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol2%2Fiss1%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Modern Applied Statistical Methods Copyright  2003 JMASM, Inc.
May, 2003, Vol. 2, No. 1, 27 2-278 1538 – 9472/03/$30.00

272

A Recursive Algorithm For Fractionally Differencing Long Data Series

 Joseph McCarthy Robert DiSario Hakan Saraoglu
 Finance Department Department of Mathematics Finance Department

Bryant College

We propose a recursive algorithm to fractionally difference time series data. The algorithm eliminates the
need to evaluate the gamma function directly, and hence avoids the overflow problem that arises when
fractionally differencing a long data series. The proposed algorithm can be implemented using any general
matrix programming language. An implementation using SAS is presented. The algorithm and the code
provide a practical approach to including fractional differencing as part of a time series data analysis.

Key words: Fractionally differencing, time series

Introduction

The process of differencing is widely used in time
series data analysis. First differencing is often
adequate to deal with nonstationary data for an
ARIMA model. A useful generalization of integer
differencing is fractional differencing. The
resulting FARIMA models, or fractional ARIMA
models, are often used for time series exhibiting
long-range dependence (Beran (1994); Geweke
and Porter-Hudak (1983); Granger and Joyeux
(1980); Mandelbrot and Van Ness (1968)). Long-
range dependent series have hyperbolically
decaying autocorrelation functions, unlike the
exponential decay found in autocorrelation
functions for time series modeled by ARIMA.

Joseph McCarthy is a Professor in the Finance
Department at Bryant College. He received a DBA
in finance from the University of Colorado in
1983. His academic interests include fixed income
instruments, non-linear modeling and wavelets.
Robert DiSario is an Assistant Professor in the
Department of Mathematics at Bryant College. He
received a Ph.D. in statistics from Boston
University in 1996. His academic interests include
applied statistics and combinatorics. Hakan
Saraoglu is an Associate Professor in the Finance
Department at Bryant College. He received a
Ph.D. in finance from Michigan State University
in 1996. His academic interests include
investments, international finance, and corporate
finance.

Algorithms to do fractional differencing
can be used in simulating FARIMA data, in
fractionally differencing an empirical time series
to obtain a series suitable for ARIMA modeling,
and in testing for white noise of residuals after
fitting a FARIMA model. Because long-range
dependence is found in financial time series and in
some geophysical time series, practical algorithms
to accomplish fractional differencing are needed.

Statistical packages are beginning to
incorporate modules to do fractional differencing.
However, some of these modules are limited to
very small data sets. For example, the SAS
function FDIF can only handle approximately 171
observations (SAS release 8.2 Proc IML; SAS
Institute, Inc. 2001). This limit is apparently due to
use of the gamma function. Our proposed
algorithm uses a recursive approach to eliminate
the need to compute gamma directly. Thus it
provides a practical way to fractionally difference
a time series of much more than 171 observations.
As discussed in the results section, we have tested
this procedure for a time series as large as 10,000
observations. The algorithm that we describe
could be implemented in any general matrix
programming language. We provide an
implementation using the matrix language SAS
IML (SAS Institute, Inc. 1990).

Method

Let yt be obtained by taking the dth difference of a
time series ; 0,1, , 1tx t n= −… :

273 FRACTIONALLY DIFFERENCING LONG DATA SERIES

(1)d
t ty B x= − , (1)

where B is the backshift operator defined by
 1t tBx x −= .
If d=1 , then yt is the first difference:

1(1)t t t t t ty B x x Bx x x −= − = − = − . (2)

If d=2 , then yt is the second difference:

2
1

1 2

(1) (1)()

2
−

− −

= − = − −

= − +
t t t t

t t t

y B x B x x

x x x
. (3)

We could also obtain this second difference by
expanding 2(1)B− and applying the resulting
second degree polynomial in B to xt.

2 2

1 2

(1) (1 2)

2 − −

= − = − +

= − +
t t t

t t t

y B x B B x

x x x
. (4)

In general, for any integer d, the dth

difference can be found by expanding (1)dB− and
applying the resulting polynomial in B to xt.
Fractional differencing (-.5 < d < .5) is defined in
an analogous way. Expanding (1 - B)d in a Taylor
series (see Kaplan, 1984, p431):

1 2

2

0

(1)(1) 1 () ()
1! 2!

(1)(2)
()

3!
(1)(2) ((1)) (1)

!

∞

=

−− = + − + −

− −
+ − +

− − − −= −∑

L
L

d

j j

j

d d dB B B

d d d
B

d d d d j B
j

(5)

where the numerator in the above expression has j
factors except when j=0 where it is unity. Now by
multiplying each factor in the numerator by -1 we
change the sign of each:

0

(1)

()(1)(2) ((1))
!

d

j

j

B

d d d j d
B

j

∞

=

− =

− − − − −∑ L

(6)

Next, multiplying by
()

1
()

j j d
d

Γ − −
=

Γ −
 and

reversing the order of the factors in the product we
obtain:

0

(1)
(1)(2) () ()

! ()

∞

=

− =
− − − − − − Γ − −

Γ −∑ L
d

j

j

B
j d j d j j d j j d

B
j d

(7)

Finally, by repeatedly using the recurrence

property of the gamma function:
() (1) (1)x x xΓ = − Γ − we can re-express the

numerator as ()j dΓ − . Thus, we obtain

0

()
(1)

(1) ()
d j

j

j d
B B

j d

∞

=

Γ −
− =

Γ + Γ −∑ , which is a

commonly used representation for the fractional
differencing operator (Jensen, 1999).

To implement a fractional differencing
algorithm it necessary to compute the coefficients
in the above series:

()

0,1,2,
(1) ()j

j d
C j

j d
Γ −

= =
Γ + Γ −

… (8).

Because these coefficients are used to multiply
observations in the time series, this infinite
sequence of coefficients can be truncated to the
length of the data series.

A problem arises when calculating these
coefficients because for large values of j the
numerator and denominator become very large and
exceed the computational capacity of the
computer. For example, the gamma function
evaluated at 171 is approximately 7.257E306. Our
approach uses the recursive property of the gamma
function, () (1) (1)x x xΓ = − Γ − , to obtain a

recursive property for the jC as follows:

MCCARTHY, DISARIO, & SARAOGLU 274

()
() ()

()
() ()

()
() ()

0

1

0
1

1

1

(1) 1

(1)
−

Γ −
= =

Γ Γ −

Γ −
=

Γ + Γ −

− − Γ − −
=

Γ Γ −

− −
=

j

j

d
C

d

j d
C

j d

j d j d
j j d

j d
C

j

 (9).

Because the above recursive formula does

not involve use of the gamma function, it is
possible to calculate Cj for large values of j. It is

only necessary to multiply Cj-1 by
(1)j d

j
− −

which is computationally trivial. Our SAS
program which implements this appears in
Appendix I. The key lines of code which
recursively calculate Cj follow. Note that in SAS

the array []jC must be indexed from 1 to n,
rather than from 0 to n-1.

jj=0;
do i=1 to n;
 if i=1 then Cj[i] = 1;
 else Cj[i]= Cj[i-1]*((jj-d-
 1)/jj) ;
 jj=jj+1;
end;

The fractionally differenced time series, yt, is
obtained by convolving the input time series, xt,
with the vector of coefficients Cj. That is

()
0

1 −
=

= − = ∑
t

d
t t j t j

j

y B x C x (10).

The lines of SAS code that implement the
convolution appear below.

do i=1 to n;
 yt[i]=Cj[1:i]`*xt[i:1];
end;

Using our approach we have been able to
fractionally difference long data series. In the

results section we give an example using a series
of 10,000 observations.

Results

In the first example, we fractionally difference a
small integer data series using d=.5, then
fractionally difference the result again using d=.5.
For this example, fractional differencing was done
in two ways: first using the SAS function FDIF
(SAS release 8.2 Proc IML); then using the code
described above.
 One reason for performing this test was to
confirm that both approaches to fractional
differencing produce the same result for a small
time series. A second reason was to check that the
d values are additive: fractional differencing twice
with d=.5 is the same as first differencing.
 The data series and the two fractionally
differenced series are presented in Table 1. The
column labeled XT is the integer data series. YJ is
the fractional difference of XT using ‘Call FDIF’
with d=.5. ZJ is the fractional difference of YJ
using Call FDIF with d=.5. Next, YT is the
fractional difference of XT using our recursive
procedure with d=.5. Finally, ZT is the fractional
difference of YT using the procedure with d=.5.
Clearly, YT = YJ and ZT = ZJ, showing that the
two procedures produce the same results for this
small data series. Also, the reader can check that
ZT and ZJ are the same as would be obtained by
doing first differencing. The program that
produced all four series appears in Appendix II.

In the second example we use our
recursive method to fractionally difference a
random series of 10,000 observations. Note that
the method using the SAS FDIF function will not
run on a time series that is longer than
approximately 171 observations (using a Pentium
IV, running at 1.7 GHz) and therefore was not
included in this example. The SAS LOG in
Appendix III shows that the program using our
method successfully ran. Thus this method
provides a practical way to fractionally difference
long time series. Implementing this algorithm in
SAS provides a convenient way to include
fractional differencing as part of a complete
analysis of a long memory time series.

275 FRACTIONALLY DIFFERENCING LONG DATA SERIES

Conclusion

FARIMA models are commonly used to model
long range dependent time series. In such cases,
fractional differencing is often a useful part of the
analysis. The practical way to fractionally
difference a long time series is to use an algorithm
that avoids calculating gamma(n) directly.
(Although not discussed in the results section, we
also ran our program on a series of 100,000
observations using 5 minutes of CPU time). Our
implementation in SAS is a convenient way to
incorporate fractional differencing into time series
data analysis.

References
Beran, J. (1994). Statistics for long

memory processes. New York: Chapman & Hall.
Geweke, J. & Porter-Hudak, S. (1983).

The estimation and application of long memory
time series models. Journal of Time Series
Analysis, 4, 221-238.

Granger, C. W. J. & Joyeux, R. (1980).
An introduction to long memory time series
models and fractional differencing. Journal of
Time Series Analysis 1(1), 15-29.

Jensen, M. (1999). Using wavelets to
obtain a consistent ordinary least squares estimator
of the fractional differencing parameter. Journal of
Forecasting, 18, 17-32.

Kaplan, W. (1984). Advanced calculus.
(3rd ed.). Reading, MA: Addison-Wesley.

Mandelbrot, B. B. & Van Ness, J.W.
(1968). Fractional Brownian motions, fractional
noises and applications. SIAM Review, 10, 422-
437.

SAS Institute, Inc., (1990). SAS/IML
Software: Usage and reference, Version 6. Cary,
NC: SAS.

SAS Institute, Inc., (2001). SAS/IML
Software: Changes and enhancements, Release
8.2. Cary, NC: SAS.

Table 1. Fractional differencing using SAS Call
Fdif and using the recursive procedure.

XT YT ZT YJ ZJ
582 582 582 582 582
227 -64 -355 -64 -355
410 223.75 183 223.75 183
109 -160.75 -301 -160.75 -301
686 543.3281 577 543.3281 577
753 345.9688 67 345.9688 67
903 399.7793 150 399.7793 150
996 377.9981 93 377.9981 93
60 -647.4 -936 -647.4 -936
76 -201.273 16 -201.273 16
716 523.3205 640 523.3205 640
202 -272.01 -514 -272.01 -514
637 361.6509 435 361.6509 435
60 -394.921 -577 -394.921 -577
314 109.65 254 109.65 254
969 691.8636 655 691.8636 655
87 -524.382 -882 -524.382 -882
660 406.5947 573 406.5947 573
719 248.2841 59 248.2841 59
784 241.7671 65 241.7671 65

Appendix I - SAS Program FRACDIFF.SAS

*******************************;
* fracdiff.sas *;
* *;
*******************************;
* create random data for fractional differencing algorithm *;
data one ;
* for n=171 both methods of fractional differencing work *;
* for n=172 call to fdif fails, but convolution works *;
 do i=1 to 10000;

MCCARTHY, DISARIO, & SARAOGLU 276

 x=rand('NORMAL');
 output;
 end;
* fractional differencing algorithm implemented below *;
proc iml ;
 use one;
 read all into xx;
 index=xx[,1];
 xt=xx[,2];
 n=nrow(xt);
* d = fractional differencing parameter *;
 d=.5;
* initialization;
 yt=j(n,1,0);
 Cj=j(n,1,0);
* do loop calculates coefficients using recursive method *;
jj=0 ;
do i=1 to n;
 if i=1 then Cj[i] = 1;
 else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ;
 jj=jj+1;
 end;
* Convolution follows. The arrays are indexed in reverse order to
implement the *;
* convolution. Also, the symbol for transpose in SAS IML is ' *;
do i=1 to n;
 yt[i]=Cj[1:i]`*xt[i:1];
end;
quit;

Appendix II - SAS Program TESTPROG4.SAS

*****************;
* testprog4.sas *;
* *;
*****************;
data one ;
* for n=171 both methods of fractional differencing work *;
* for n=172 call to fdif fails, but convolution works *;
 do i=1 to 20;
 x=int(rand(‘uniform’)*1000);
 output;
 end;
proc print data=one ;
 run;
 proc iml ;
 use one;
 read all into xx;
 index=xx[,1];
 xt=xx[,2];
 n=nrow(xt);d=.5;

277 FRACTIONALLY DIFFERENCING LONG DATA SERIES

* initialization;
 yt=j(n,1,0);
 zt=j(n,1,0);
 yj=j(n,1,0);
 zj=j(n,1,0);
 Cj=j(n,1,0);
 call fdif(yj, xt, .5);
 call fdif(zj, yj, .5);
jj=0 ;
do i=1 to n;
 if i=1 then Cj[i] = 1;
 else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ;
 jj=jj+1;
 end;
 do i=1 to n;
 * convolution follows *;
 yt[i]=Cj[1:i]`*xt[i:1];
 end;
do i=1 to n;
 * convolution follows *;
 zt[i]=Cj[1:i]`*yt[i:1];
 end;
print index xt yt zt yj zj;

Appendix III - SAS LOG for FRACDIFF.SAS

653 *******************************;
654 * fracdiff.sas *;
655 * *;
656 *******************************;
657
658
659 * create random data for fractional differencing algorithm *;
660
661 data one ;
662 * for n=171 both methods of fractional differencing work *;
663 * for n=172 call to fdif fails, but convolution works *;
664 do i=1 to 10000;
665 x=rand('NORMAL');
666 output;
667 end;
668
669
670 * fractional differencing algorithm implemented below *;
671

NOTE: The data set WORK.ONE has 10000 observations and 2 variables.
NOTE: DATA statement used:
 real time 0.00 seconds

672 proc iml ;

MCCARTHY, DISARIO, & SARAOGLU 278

NOTE: IML Ready
673 use one;
674 read all into xx;
675 index=xx[,1];
676 xt=xx[,2];
677 n=nrow(xt);
678 * d = fractional differencing parameter *;
679 d=.5;
680
681 * initialization;
682 yt=j(n,1,0);
683 Cj=j(n,1,0);
684
685 * do loop calculates coefficients using recursive method *;
686
687 jj=0 ;
688 do i=1 to n;
689 if i=1 then Cj[i] = 1;
690 else Cj[i]= Cj[i-1]*((jj-d-1)/jj) ;
691 jj=jj+1;
692 end;
693
694 * Convolution follows. Notice that the arrays are indexed in reverse
order to implement the
694! *;
695 * convolution. Also, the symbol for transpose in SAS IML is '
695! *;
696
697 do i=1 to n;
698 yt[i]=Cj[1:i]`*xt[i:1];
699 end;
700
701 quit;
NOTE: Exiting IML.
NOTE: 7659 workspace compresses.
NOTE: PROCEDURE IML used:
 real time 3.18 seconds

	Journal of Modern Applied Statistical Methods
	5-1-2003

	A Recursive Algorithm For Fractionally Differencing Long Data Series
	Joseph McCarthy
	Robert DiSario
	Hakan Saraoglu
	Recommended Citation

	jnk.dvi

