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We propose a recursive agorithm to fractionaly difference time series data. The agorithm eliminates the
need to evaluate the gamma function directly, and hence avoids the overflow problem that arises when
fractionally differencing a long data series. The proposed agorithm can be implemented using any general
matrix programming language. An implementation using SAS is presented. The agorithm and the code
provide a practical approach to including fractiona differencing as part of atime series data anaysis.
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Introduction

The process of differencing is widely used in time
series data analysis. First differencing is often
adequate to deal with nonstationary data for an
ARIMA model. A useful generalization of integer
differencing is fractiona differencing. The
resulting FARIMA models, or fractiona ARIMA
models, are often used for time series exhibiting
long-range dependence (Beran (1994); Geweke
and Porter-Hudak (1983); Granger and Joyeux
(1980); Mandelbrot and Van Ness (1968)). Long-
range dependent series have hyperbolicaly
decaying autocorrelation functions, unlike the
exponential decay found in autocorrelation
functions for time series modeled by ARIMA.
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Algorithms to do fractional differencing
can be used in smulating FARIMA data, in
fractionally differencing an empirical time series
to obtain a series suitable for ARIMA modeling,
and in testing for white noise of residuals after
fitting a FARIMA modd. Because long-range
dependence is found in financia time seriesand in
some geophysical time series, practica agorithms
to accomplish fractional differencing are needed.

Statistical packages are beginning to
incorporate modules to do fractional differencing.
However, some of these modules are limited to
very small data sets. For example, the SAS
function FDIF can only handle approximately 171
observations (SAS release 8.2 Proc IML; SAS
Institute, Inc. 2001). This limit is apparently due to
use of the gamma function. Our proposed
algorithm uses a recursive approach to eliminate
the need to compute gamma directly. Thus it
provides a practica way to fractionaly difference
atime series of much more than 171 observations.
As discussed in the results section, we have tested
this procedure for atime series as large as 10,000
observations. The agorithm that we describe
could be implemented in any genera matrix
programming language. We provide an
implementation using the matrix language SAS
IML (SAS Institute, Inc. 1990).

Method

Let y; be obtained by taking the d" difference of a
timeseries X;t=01,...,n- 1:
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Yi =(1' B)dxt' (1)

where B is the backshift operator defined by

BX =X.:-
If d=1, then y; isthe first difference:

Yo = (@- B)x =X - Bx =X - X;. @

If d=2, then y; is the second difference:

y, = (- B)’x = (- B)(x - X.1)

(©)
=%X- 2)§-1+ X.2

We could also obtain this second difference by
expanding (1- B)? and applying the resulting
second degree polynomid in B to x;.

Y = (1' B)th :(l' ZB+BZ)Xt

@
=X 2%, %,

In genera, for any integer d, the d"
difference can be found by expanding(1- B)‘ and
applying the resulting polynomial in B to x.
Fractional differencing (-.5 < d < .5) is defined in
an analogous way. Expanding (1 - B)® in a Taylor
series (see Kaplan, 1984, p431):

ddd - 1)
21

- By’ =1+%(- B! + (- B?

,d(d-1@d-2)
3!

¥ d(d-(d-2)--(d-(j-

:Q( 1)( 2?!( (]

®)

where the numerator in the above expression has |
factorsexcept when j=0 whereit isunity. Now by
multiplying each factor in the numerator by -1 we
change the sign of each:

(- B)2+~-~

1)) (_ 1)] Bj

(1- B)' =
5 (- d)d - d)(2- ;j')"'((j- D-d) g,
(6) . .
Next, multiplying by 1= Gi-j-d)

G-d)
reversing the order of the factorsin the product we
obtain:

(1- B)* =
g (j-1-d)(j- 2- d_)'“(j- - G- -d) g
j=0 j'g-d)

Y

Finaly, by repeatedly using the recurrence
property of the gamma function:
GX) =(x-)GEx-1) we can reexpress the
numerator as G(j- d). Thus, we obtain

¥ :
A (K
iz ] +1)&(- d)
commonly used representation for the fractional
differencing operator (Jensen, 1999).

To implement a fractional differencing
agorithm it necessary to compute the coefficients
in the above series:

o_Gi-d)
' OQ(j+)G-d)

Because these coefficients are used to multiply
obsarvations in the time series, this infinite
sequence of coefficients can be truncated to the
length of the data series.

A problem arises when calculating these
coefficients because for large values of | the
numerator and denominator become very large and
exceed the computational capacity of the
computer. For example, the gamma function
evaluated at 171 is approximately 7.257E306. Our
approach uses the recursive property of the gamma
function, G(X) =(x- )GEx-1), to obtan a

recursive property for the C; asfollows:

B’ , which is a

j=0,1.2,... ®).
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G(0- d)

" 6()6(-d)
o G(j- d)
1 G(j+1)G(- d)
=(j-d-1)G(j- d- 1)

iG6(i)G(- d)
_(-d-D

j o

9).

Because the above recursive formula does
not involve use of the gamma function, it is
possible to calculate C; for large values of j. It is

(j-d-1
J
which is computationally trivid. Our SAS
program which implements this appears in
Appendix |I. The key lines of code which
recursively calculate C; follow. Note that in SAS

the array C; [ ] must be indexed from 1 to n,
rather than from O to n-1.

only necessary to multiply C.; by

jj=0;
do i=1to n;
if i=1then gJ[i] = 1;
el se Cj_[i]zQ’[i-l]*((jj-d-
DAy
11 =)+
end;

The fractiondly differenced time series, y, is
obtained by convolving the input time series, x,
with the vector of coefficients C;. That is

t
y, =(1- B)d x =a Cx., (0.
i=0

The lines of SAS code that implement the
convolution appear below.

do i=11t0 n;
yt[i]=G[1:i] *xt[i:1];
end;

Using our approach we have been able to
fractionally difference long data series. In the

results section we give an example using a series
of 10,000 observations.

Results

In the first example, we fractionaly difference a
smal integer data series using d=.5, then
fractionally difference the result again using d=.5.
For this example, fractiona differencing was done
in two ways: first using the SAS function FDIF
(SAS release 8.2 Proc IML); then using the code
described above.

One reason for performing this test wasto
confirm that both approaches to fractiona
differencing produce the same result for a small
time series. A second reason was to check that the
d values are additive: fractiona differencing twice
with d=.5 isthe same as firgt differencing.

The data series and the two fractionaly
differenced series are presented in Table 1. The
column labeled XT isthe integer data series. YJ is
the fractional difference of XT using ‘Cal FDIF
with d=.5. ZJ is the fractiona difference of YJ
using Cal FDIF with d=.5. Next, YT is the
fractional difference of XT using our recursive
procedure with d=.5. Findly, ZT is the fractiona
difference of YT using the procedure with d=.5.
Clearly, YT = YJ and ZT = ZJ, showing that the
two procedures produce the same results for this
small data series. Also, the reader can check that
ZT and ZJ are the same as would be obtained by
doing first differencing. The program that
produced all four series appearsin Appendix I1.

In the second example we use our
recursive method to fractionally difference a
random series of 10,000 observations. Note that
the method using the SAS FDIF function will not
run on a time series that is longer than
approximately 171 observations (using a Pentium
IV, running at 1.7 GHz) and therefore was not
included in this example. The SAS LOG in
Appendix 111 shows that the program using our
method successfully ran. Thus this method
provides a practical way to fractionaly difference
long time series. Implementing this agorithm in
SAS provides a convenient way to include
fractional differencing as part of a complete
analysis of along memory time series.
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Conclusion

FARIMA modes are commonly used to model
long range dependent time series. In such cases,
fractional differencing is often a useful part of the
andyss. The practical way to fractionaly
difference along time seriesis to use an algorithm
that avoids caculating gamma(n) directly.
(Although not discussed in the results section, we
aso ran our program on a series of 100,000
observations using 5 minutes of CPU time). Our
implementation in SAS is a convenient way to
incorporate fractional differencing into time series
data analysis.
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Table 1. Fractional differencing using SAS Cdl
Fdif and using the recursive procedure.

XT | YT ZT YJ Z]
582 | 582 582 | 582 582
227 | -64 -355 | -64 -355

410 | 223.75 183 | 22375 183
109 |-160.75 |-301 | -160.75 | -301

686 | 543.3281 | 577 | 543.3281 | 577
753 | 345.9688 | 67 345.9688 | 67
903 | 399.7793 | 150 | 399.7793 | 150
9% | 377.9981 | 93 377.9981 | 93
60 |-647.4 -647.4

76 | -201.273 -201.273

-936 -936
16 16
716 | 523.3205 | 640 | 523.3205 | 640
202 | -27201 |-514 | -27201 | -514
637 | 361.6509 | 435 | 361.6509 | 435
-577 -577
254 254
655 655

60 | -394.921 -394.921
314 | 109.65 109.65

969 | 691.8636 691.8636
87 | -524.382 | -882 | -524.382 | -882

660 | 406.5947 | 573 | 406.5947 | 573
719 | 2482841 | 59 2482841 | 59
784 | 241.7671 | 65 241.7671 | 65

Appendix | - SAS Program FRACDIFF.SAS

ER IR R R I b b S S S I I kb R R S
’

* fracdi ff.sas *

* * -

’
kkkkhkhkhkhkkhkhkhkhkikhkhkhkhkhkkhkkkhkhkhkhkkhhkikhk*k-

* create randomdata for fractional differencing algorithm*;

data one ;

* for n=171 both nethods of fractional

di fferencing work *;

* for n=172 call to fdif fails, but convol ution works *;

do i=1 to 10000;



MCCARTHY, DISARIO, & SARAOGLU 276

x=rand(' NORVAL' ) ;
out put ;
end;
* fractional differencing algorithminplenented bel ow *;
proc im ;
use one;
read all into xx;
i ndex=xx[, 1] ;
xt =xx[, 2] ;
n=nr om xt);
* d = fractional differencing paraneter *;
d=. 5;
* initialization;
yt=j(n, 1,0);
g =j(n 1,0); o | |
* do | oop cal culates coefficients using recursive nethod *;
ji=0;
doi=11to n;
if i=1then G[i] = 1;
else G[il= Gi-1*((ji-d-1)/jj) ;
1=+
end;
* Convolution follows. The arrays are indexed in reverse order to
i mpl enent the *;

* convolution. Also, the synbol for transpose in SAS IM. is ' *
do i=1to n;
yt[i]=G[1l:i] *xt[i:1];
end;
qui t;

Appendix Il - SAS Program TESTPROG4.SAS

kkkkkkhkhkhkhkhkhkhkk*%-
’

* testprog4.sas *;

* * -
i)

kkkkkkkhkhkhkkhkhhkk*%k-
’

data one ;
* for n=171 both nmethods of fractional differencing work *;
* for n=172 call to fdif fails, but convol ution works *;
do i=1 to 20;
x=int(rand(‘ uni form)*1000);
out put ;
end;
proc print data=one ;
run;
proc im ;
use one;
read all into xx;
i ndex=xx[, 1] ;
xt=xx[, 2] ;
n=nr ow( xt ) ; d=. 5;
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* initialization
yt=j(n,1,0);
zt=j(n,1,0);
yi = (n, 1,0);
zj=j(n,1,0);
g=j(n,10);

call fdif(yj, xt, .5);
call fdif(zj, yj, .5);
jj=0;

doi=11to0 n;

if i=1then G[i] = 1;
else G[i]l=Qg[i-1]1*((jj-d-1)/jj) ;

Ji=ii+L
end;
doi=11to n;

* convolution follows *;
yt[i]=G[1:i] *xt[i:1];
end;

doi=1to n;

* convolution foll ows *;
zt[i]=Q[1:i] *yt[i:1];
end;

print index xt yt zt yj zj;

Appendix 111 - SAS LOG for FRACDIFF.SAS

653 E IRk S Sk Sk S bk S S S R Sk kS S

654 * fracdiff.sas * -
655 * *
656 *******************************;
657
658

659 * create random data for fractional differencing algorithm?*;
660

661 data one ;

662 * for n=171 both methods of fractional differencing work *;
663 * for n=172 call to fdif fails, but convol ution works *;
664 do i=1 to 10000;

665 x=rand(' NORVAL');

666 output;

667 end;

668

669

670 * fractional differencing algorithminplenmented bel ow *;
671

NOTE: The data set WORK. ONE has 10000 observati ons and 2 vari abl es.
NOTE: DATA st atement used:
real tine 0. 00 seconds

672 proc im ;
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NOTE: | M. Ready
673 use one;
674 read all into xx;
675 i ndex=xx[, 1] ;
676 xt=xx[, 2] ;
677 n=nr ow( xt ) ;
678 * d = fractional differencing paraneter *;
679 d=. 5;
680
681 * initialization;
682 yt=j(n,1,0);
683 g=j(n,1,0);
684
685 * do | oop cal cul ates coefficients using recursive nethod *;
686
687 jj=0 ;
688 do i=1 to n;
689 if i=1then gJ[i] = 1;
690 else G[i]=Qg[i-1]*((jj-d-1)/jj) ;
691  jj=jj+1
692 end;
693
694 * Convolution follows. Notice that the arrays are indexed in reverse
order to inplenent the
694! *;
695 * convolution. Also, the synbol for transpose in SAS IM is
695! *;
696
697 do i=1 to n;
698 yt[i]=G[1:i] *xt[i:1];
699 end;
700
701 quit;
NOTE: Exiting | M.
NOTE: 7659 wor kspace conpresses.
NOTE: PROCEDURE | M. used:
real tine 3. 18 seconds
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