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Based on left type II censored samples from a Gumbel type II distribution, the Bayes 
estimators and corresponding risks of the unknown parameter were obtained under 
different asymmetric loss functions, assuming different informative and non-informative 
priors. Elicitation of hyper-parameters through prior predictive approach has also been 

discussed. The expressions for the credible intervals and posterior predictive distributions 
have been derived. Comparisons of these estimators are made through simulation study 
using numerical and graphical methods. 
 
Keywords: Left censoring, loss functions, credible intervals, posterior predictive 
distributions 

 

Introduction 

Gumbel type II distribution is very useful in life testing. Kotz and Nadarajah 

(2000) have given a brief characterization of the Gumbel type II distribution. 

Corsini, Gini, Greco, and Verrazzani (2002) studied the maximum likelihood 

(ML) algorithms and Cramer-Rao (CR) bounds for the location and scale 

parameters of the Gumbel distribution. Mousa, Jaheen, and Ahmad (2002) 

considered the Bayesian estimation to analyze both parameters of the Gumbel 

distribution based on record values. 

The probability density function of the Gumbel distribution of the second 

kind is given by 

 

    1
exp ,    0, , 0.f x x x x

    
          (1) 
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The corresponding cumulative distribution function is: 

 

   1 exp ,      0, , 0.F x x x           (2) 

 

The parameter υ (being known) is a shape parameter of the model, and τ is the 

scale parameter. 

The use of a Bayesian approach allows both sample and prior information to 

be incorporated into the statistical analysis, which will improve the quality of the 

inferences and permit a reduction in sample size. The decision-theoretic 

viewpoint takes into account additional information concerning the possible 

consequences of decisions (quantified by a loss function). The aim of this is to 

consider the statistical analysis of the unknown parameters when the data are left 

censored from the Gumbel distribution of the second kind. There is a widespread 

application and use of left-censoring or left-censored data in survival analysis and 

reliability theory. For example, in medical studies patients are subject to regular 

examinations. Discovery of a condition only tells us that the onset of sickness fell 

in the period since the previous examination and nothing about the exact date of 

the attack. Thus the time elapsed since onset has been left censored. Similarly, 

consider left-censored data when estimating functions of exact policy duration 

without knowing the exact date of policy entry; or when estimating functions of 

exact age without knowing the exact date of birth. Coburn, McBride and Ziller 

(2002) faced this problem due to the incidence of a higher proportion of rural 

children whose spells were left censored (i.e., those children who entered the 

sample uninsured), and who remained uninsured throughout the sample. As 

another example, job duration might be incomplete because the beginning of the 

job spells is not observed, which is an incidence of left censoring (Bagger, 2005).  

Likelihood Function and Posterior Distribution 

Let X(r + 1),…, X(n) be the last n - r order statistics from a random sample of size n 

following Gumbel type II distribution. Then the joint probability density function 

of X(r + 1),…, X(n) is given by 
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where s = n – r, and  

 

       1
1
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Prior and Posterior Distributions 

 

The uniform prior is assumed to be 

 

   ,  0.p k     (4) 

 

The posterior distribution under the uniform prior for the left censored data is: 
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The informative prior for the parameter τ is assumed to be exponential 

distribution: 

 

   ,    0,   0.wp we w      (6) 

 

The posterior distribution under the assumption of exponential prior is: 
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The informative prior for the parameter τ is assumed to be gamma 

distribution: 
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The posterior distribution under the assumption of gamma prior for the left 

censored data is: 
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The informative prior for the parameter τ is assumed to be inverse Levy 

distribution: 
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       (10) 

 

The posterior distribution under the inverse Levy prior for the left censored 

data is: 
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Bayes Estimators and Posterior Risks under Different Loss 

Functions 

Consider the derivation of the Bayes estimator and corresponding posterior risks 

under different loss functions. The Bayes estimators are evaluated under 

precautionary loss function (PLF), weighted squared error loss function (WSELF), 

squared-log error loss function (SLELF), and entropy loss function (ELF). The 
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Bayes estimator and corresponding posterior risks under different loss functions 

are given in the Table 1. 
 
 
Table 1. Bayes estimator and posterior risks under different loss functions 

 

Loss Function =  ˆ,L    Bayes Estimator Posterior Risk 

PLF: 
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The Bayes estimators and posterior risks under uniform prior are: 
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The Bayes estimators and posterior risks under the rest of priors can be obtained 

in a similar manner. 

Bayes Credible Interval for the Left Censored Data 

The Bayesian credible intervals for type II left censored data under informative 

and non-informative priors, as discussed by Saleem and Aslam (2009) are 

presented in the following. The credible intervals for type II left censored data 

under all priors are: 
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Elicitation 

Consider a probability elicitation method known as prior predictive elicitation. 

Predictive elicitation is a method for estimating hyper-parameters of prior 

distributions by inverting corresponding prior predictive distributions. Elicitation 

of hyper-parameter from the prior p(τ) is conceptually difficult task because we 

first have to identify prior distribution and then its hyper-parameters. The prior 

predictive distribution is used for the elicitation of the hyper-parameters which is 

compared with the experts' judgment about this distribution and then the hyper-

parameters are chosen in such a way so as to make the judgment agree closely as 

possible with the given distribution (see Grimshaw, 1993; Kadane, 1980; 

O'Hagan et al., 2006; Grimshaw, Collings, Larsen, & Hurt, 2001; Jenkinson, 

2005; and León, Vázquez-Polo, & González, 2003). 

According to Aslam (2003), the method of assessment is to compare the 

predictive distribution with experts' assessment about this distribution and then to 

choose the hyper-parameters that make the assessment agree closely with the 

member of the family. He discusses three important methods to elicit the hyper-

parameters: (i) via the prior predictive probabilities (ii) via elicitation of the 

confidence levels (iii) via the predictive mode and confidence level. We will use 

the prior predictive approach by Aslam (2003). 

 

Prior predictive distribution 

 

The prior predictive distribution is: 

 

      
0

p y p y p d  


    (12) 

 

The predictive distribution under exponential prior is: 
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       1
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       (13) 

 

After some simplification it reduces as 
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The predictive distribution under gamma prior is: 
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By using the method of elicitation defined by Aslam (2003), we obtain the 

following hyper-parameters w = 0.798566, a = 0.152109, b = 6.523695 and 

c = 15.985795. 

 

 

Posterior Predictive Distribution 

The predictive distribution contains the information about the independent future 

random observation given preceding observations. The reader desire more details 

can see Bansal (2007). 

The posterior predictive distribution of the future observation y = xn+1 is  

 

      
0

p y p p y d  


 x x   (17) 
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Where    1
exp ,p y x x

  
       is the future observation density and p (τ | x) 

is the posterior distribution obtained by incorporating the likelihood with the 

respective prior distributions. 

The posterior predictive distribution of the future observation y = xn+1 under 

uniform prior is  
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The posterior predictive distribution of the future observation y = xn+1 under 

exponential prior is 
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The posterior predictive distribution of the future observation y = xn+1 under 

gamma prior is 
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The posterior predictive distribution of the future observation y = xn+1 under 

Inverse-Levy prior is 
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Simulation Study  

Simulations can be helpful and an illuminating way to approach problems in 

Bayesian analysis. Bayesian problems of updating estimates can be handled easily 

and straight forwardly with simulation. Because the distribution function of the 

Gumbel type II distribution can be expressed, as well as its inverse in closed form, 

the inversion method of simulation is straightforward to implement. The study 

was carried out for different values of (n, r) using τ ∊ 2.5 and υ = 0.5. Censoring 

rates are assumed to be 5% and 10%. 

Sample size is varied to observe the effect of small and large samples on the 

estimators. Changes in the estimators and their risks have been determined when 

changing the loss function and the prior distribution of τ while keeping the sample 

size fixed. All these results are based on 5,000 repetitions. Tables 2-6 give the 

estimated value of the parameter, posterior risks and 95% confidence limits 

(Lower Confidence Limit (LCL) and Upper Confidence Limit (UCL)) for the 

parameter. The results are summarized in the following Tables and Figures 1-8. 

The amounts of posterior risks have been presented in the parenthesis in the tables.  
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Table 2. Bayes estimates and the posterior risks under PLF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.737920 

(0.125898) 
3.35045 

(0.157935) 
3.77639 

(0.181710) 

40 
2.677940 

(0.064145) 
3.15159 

(0.077609) 
3.64915 

(0.097539) 

60 
2.62145 

(0.042453) 
3.09163 

(0.051534) 
3.54489 

(0.060447) 

80 
2.57594 

(0.031510) 
3.04116 

(0.038311) 
3.50579 

(0.045182) 

100 
2.56138 

(0.025173) 
3.03806 

(0.030759) 
3.47670 

(0.036015) 

n Exponential Prior 

20 
2.58014 

(0.118643) 
2.96201 

(0.138226) 
3.38135 

(0.156758) 

40 
2.52198 

(0.060409) 
2.95898 

(0.072220) 
3.36035 

(0.084258) 

60 
2.52440 

(0.040720) 
2.95009 

(0.049112) 
3.35418 

(0.057015) 

80 
2.52171 

(0.030847) 
2.94949 

(0.037501) 
3.33655 

(0.043241) 

100 
2.50779 

(0.024647) 
2.92773 

(0.030070) 
3.30688 

(0.035032) 

n Gamma Prior 

20 
1.43895 

(0.068852) 

1.55700 

(0.075152) 

1.64308 

(0.079688) 

40 
1.82853 

(0.044707) 

2.04504 

(0.050801) 

2.21285 

(0.055460) 

60 
2.00816 

(0.032974) 

2.26658 

(0.037962) 

2.49874 

(0.042352) 

80 
2.11237 

(0.026111) 

2.41150 

(0.030475) 

2.67252 

(0.034264) 

100 
2.218482 

(0.021653) 

2.51014 

(0.025478) 

2.79600 

(0.028819) 

n Inverse Levy Prior 

20 
1.32737 

(0.062473) 

1.43304 

(0.067927) 

1.49803 

(0.071294) 

40 
1.72182 

(0.041743) 

1.91963 

(0.047193) 

2.05833 

(0.051005) 

60 
1.93203 

(0.031544) 

2.16662 

(0.036031) 

2.37030 

(0.039845) 

80 
2.04177 

(0.025129) 

2.32593 

(0.029234) 

2.55092 

(0.032477) 

100 
2.12131 

(0.020951) 

2.41626 

(0.024413) 

2.68807 

(0.027552) 
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Table 3. Bayes estimates and the posterior risks under WSELF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.66809 

(0.133405) 
3.08160 

(0.157976) 
3.54947 

(0.186003) 

40 
2.55583 

(0.063896) 

3.05530 

(0.078578) 

3.43934 

(0.090409) 

60 
2.55213 

(0.042536) 

3.02388 

(0.051901) 

3.42741 

(0.060168) 

80 
2.53489 

(0.031686) 

3.01692 

(0.038842) 

3.41996 

(0.04506) 

100 
2.51670 

(0.025167) 

3.00774 

(0.030991) 

3.40597 

(0.035925) 

n Exponential Prior 

20 
2.37956 

(0.118978) 
2.93114 

(0.139567) 
3.35007 

(0.158471) 

40 
2.42840 

(0.060710) 

2.87664 

(0.073818) 

3.27245 

(0.085679) 

60 
2.46768 

(0.041128) 

2.85571 

(0.049693) 

3.270610 

(0.057314) 

80 
2.47487 

(0.030936) 

2.72288 

(0.037589) 

3.134120 

(0.043824) 

100 
2.48550 

(0.024855) 

2.624320 

(0.030108) 

3.02926 

(0.035046) 

n Gamma Prior 

20 
1.33348 

(0.069626) 
1.44368 

(0.075839) 
1.51586 

(0.080755) 

40 
1.75474 

(0.044819) 

1.98012 

(0.050968) 

2.12591 

(0.055810) 

60 
1.95524 

(0.03306) 

2.25507 

(0.038435) 

2.44299 

(0.042656) 

80 
2.07625 

(0.026231) 

2.40362 

(0.030624) 

2.63342 

(0.034421) 

100 
2.244640 

(0.021630) 

2.50664 

(0.025501) 

2.77998 

(0.029085) 

n Inverse Levy Prior 

20 
1.24650 

(0.063923) 
1.31807 

(0.068090) 
1.38627 

(0.071871) 

40 
1.665110 

(0.042155) 

1.74892 

(0.044659) 

1.84547 

(0.047385) 

60 
1.86831 

(0.031400) 

2.10212 

(0.035987) 

2.32167 

(0.040176) 

80 
1.99783 

(0.02513) 

2.33427 

(0.030086) 

2.50929 

(0.032640) 

100 
2.18089 

(0.020913) 

2.40249 

(0.024701) 

2.64028 

(0.027546) 
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Table 4. Bayes estimates and the posterior risks under SLELF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.70493 

(0.048771) 
3.16249 

(0.051271) 
3.67867 

(0.054041) 

40 
2.60860 

(0.024690) 
3.08320 

(0.025973) 
3.52510 

(0.027396) 

60 
2.548760 

(0.016529) 
3.04864 

(0.017391) 
3.48125 

(0.018348) 

80 
2.53947 

(0.012422) 
3.02895 

(0.013072) 
3.46749 

(0.013793) 

100 
2.53070 

(0.009950) 
3.019810 

(0.010471) 
3.24692 

(0.011050) 

n Exponential Prior 

20 
2.42262 

(0.048771) 
2.89396 

(0.051271) 
3.13621 

(0.054041) 

40 
2.46614 

(0.024690) 
2.87997 

(0.025973) 
3.11318 

(0.027396) 

60 
2.47732 

(0.016529) 
2.79474 

(0.017391) 
3.01411 

(0.018348) 

80 
2.48808 

(0.012422) 
2.64583 

(0.013072) 
3.006108 

(0.013793) 

100 
2.497560 

(0.009950) 
2.60852 

(0.010471) 
2.985631 

(0.011050) 

n Gamma Prior 

20 
1.37081 

(0.050874) 

1.48503 

(0.0536004) 

1.56354 

(0.056635) 

40 
1.78940 

(0.025218) 

1.98832 

(0.026557) 

2.15504 

(0.028047) 

60 
1.98230 

(0.016764) 

2.23221 

(0.017651) 

2.45581 

(0.018638) 

80 
2.081680 

(0.012554) 

2.38376 

(0.013218) 

2.63859 

(0.013956) 

100 
2.26264 

(0.010035) 

2.48866 

(0.010565) 

2.77011 

(0.011154) 

n Inverse Levy Prior 

20 
1.27054 

(0.049989) 
1.34243 

(0.052619) 
1.42286 

(0.055541) 

40 
1.69351 

(0.024999) 
1.86554 

(0.026314) 
2.01136 

(0.027776) 

60 
1.90254 

(0.016663) 
2.19742 

(0.017856) 
2.32432 

(0.018518) 

80 
2.01472 

(0.012499) 
2.29894 

(0.013158) 
2.52262 

(0.013889) 

100 
2.20627 

(0.009999) 
2.40058 

(0.010526) 
2.64965 

(0.011111) 
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Table 5. Bayes estimates and the posterior risks under ELF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.63866 

(0.024792) 
3.10757 

(0.025787) 
3.56083 

(0.026520) 

40 
2.56586 

(0.012448) 
3.06196 

(0.012508) 
3.46458 

(0.012576) 

60 
2.53490 

(0.008310) 
3.03388 

(0.008570) 
3.42366 

(0.008987) 

80 
2.52287 

(0.006237) 
3.00312 

(0.006286) 
3.15751 

(0.006721) 

100 
2.51440 

(0.004992) 
2.901795 

(0.005235) 
3.003575 

(0.005982) 

n Exponential Prior 

20 
2.56510 

(0.024792) 
2.69689 

(0.025787) 
3.05465 

(0.026520) 

40 
2.52434 

(0.012448) 
2.58528 

(0.012508) 
3.02735 

(0.012576) 

60 
2.50708 

(0.008310) 
2.561238 

(0.008570) 
3.017921 

(0.008987) 

80 
2.48248 

(0.006237) 
2.52515 

(0.006286) 
3.00984 

(0.006721) 

100 
2.46838 

(0.004992) 
2.49894 

(0.005235) 
2.91496 

(0.005982) 

n Gamma Prior 

20 
1.33972 

(0.025879) 

1.44818 

(0.024988) 

1.52916 

(0.025776) 

40 
1.76606 

(0.012763) 

1.96735 

(0.012456) 

2.12581 

(0.011955) 

60 
1.94527 

(0.008429) 

2.21469 

(0.008322) 

2.44627 

(0.008047) 

80 
2.07237 

(0.006304) 

2.36455 

(0.006255) 

2.62396 

(0.006071) 

100 
2.15873 

(0.005034) 

2.47250 

(0.005010) 

2.75845 

(0.004880) 

n Inverse Levy Prior 

20 
1.23549 

(0.025422) 

1.31738 

(0.024519) 

1.39072 

(0.023289) 

40 
1.66838 

(0.012605) 

1.84774 

(0.012314) 

1.97503 

(0.0117967) 

60 
1.87576 

(0.008380) 

2.10021 

(0.008254) 

2.30080 

(0.007957) 

80 
2.011420 

(0.006276) 

2.26947 

(0.006214) 

2.49758 

(0.006016) 

100 
2.30955 

(0.005017) 

2.39526 

(0.004983) 

2.65130 

(0.004843) 
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Table 6. The 95% credible intervals for τ ∊ 2.5. 

 

n 
Uniform Prior 

Lower Limit Upper Limit Difference 

20 2.10503 5.23490 3.12987 

40 2.44587 4.67921 2.23334 

60 2.58722 4.39961 1.81239 

80 2.71041 4.29493 1.58452 

100 2.77531 4.19040 1.41509 

n Exponential Prior 

20 1.84980 4.60018 2.75038 

40 2.28485 4.37117 2.08632 

60 2.47071 4.20149 1.73078 

80 2.61670 4.14644 1.52974 

100 2.69796 4.07361 1.37565 

n Gamma Prior 

20 1.06688 2.58544 1.51856 

40 1.60787 3.04682 1.43895 

60 1.91272 3.23551 1.32279 

80 2.13391 3.36978 1.23587 

100 2.27978 3.43369 1.15391 

n Inverse Levy Prior 

20 0.86467 2.17747 1.31280 

40 1.41811 2.72520 1.30709 

60 1.74630 2.97690 1.23060 

80 1.98529 3.15093 1.16564 

100 2.14761 3.24636 1.09875 

 
 

Graphical Representation of Posterior Risks under Different Priors 

 

The graphs reveal that posterior risks under different informative and non 

informative priors. It is observed that both the priors (uniform and exponential) 

yield the approximately the identical posterior inferences under ELF and SLELF. 
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Figure 1. Effect of posterior risk under PLF with no censoring 

 

 
 

 
Figure 2. Effect of posterior risk under PLF with 10% censoring 
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Figure 3. Effect of posterior risk under WSELF with no censoring 

 

 
 

 
Figure 4. Effect of posterior risk under WSELF with 10% censoring 
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Figure 5. Effect of posterior risk under SLELF with no censoring 

 

 
 

 
Figure 6. Effect of posterior risk under SLELF with 10% censoring 
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Figure 7. Effect of posterior risk under ELF with no censoring 

 

 
 

Figure 8. Effect of posterior risk under ELF with 10% censoring 
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Conclusion 

The simulation study displayed some interesting properties of the Bayes estimates. 

The risks under said loss functions are reduced as the sample size increases. The 

effect of censoring on estimation of τ is in the form of overestimation under 

uniform and exponential priors and underestimation assuming gamma and inverse 

Levy priors. Larger degrees of censoring results in bigger sizes of over or 

underestimation.  

However, the parameter τ is either underestimated or overestimated 

depending upon the prior distribution to be used when censoring is not done. Then 

extent of this over or under estimation is directly proportional to amount of 

censoring rates and inversely proportional to the sample size. Further, the increase 

in sample size reduces the posterior risks of τ. 

Another interesting remark concerning the risks of the estimates is that 

increasing (decreasing) the censoring rate increasing (reduces) the risks of the 

estimates under said loss functions. The performance of squared-log error loss 

function and entropy loss function is independent of choice of parametric value. 

In comparison of informative priors and the uniform prior, the inverse Levy prior 

provides the better estimates as the corresponding risks are least under said loss 

functions except ELF and SLELF. Although the uniform and the exponential 

priors are equally efficient under ELF and SLELF, therefore they produce more 

efficient estimates as compared to the other informative priors. 

The credible intervals are in accordance with the point estimates, that is, the 

width of credible interval is inversely proportional to sample size. From the 

Table 6, appended above, it can be revealed that the effect of the prior information 

is in the form of narrower width of interval. The credible interval assuming 

inverse Levy prior is much narrower than the credible intervals assuming 

informative and non-informative priors.  

It is the use of prior information that makes a difference in terms of gain in 

precision. To see the effects of the posterior risks assuming different priors 

Figures 1-8 are prepared. It is observed from all the figures that posterior risk 

decreases with the increase in sample size under all loss functions. It is evident 

from Figures 5-8 that behavior of posterior risks is similar in all aspects. The 

study can further be extended by considering generalized versions of the 

distribution under variety of circumstances. 
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