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Study of the Left Censored Data
from the Gumbel Type Il Distribution
under a Bayesian Approach

Tabassum Naz Sindhu Navid Feroze Muhammad Aslam
Quaid-i-Azam University Ripha International University Ripha International University
Islamabad, Pakistan Islamabad, Pakistan Islamabad, Pakistan

Based on left type 1l censored samples from a Gumbel type Il distribution, the Bayes
estimators and corresponding risks of the unknown parameter were obtained under
different asymmetric loss functions, assuming different informative and non-informative
priors. Elicitation of hyper-parameters through prior predictive approach has also been
discussed. The expressions for the credible intervals and posterior predictive distributions
have been derived. Comparisons of these estimators are made through simulation study
using numerical and graphical methods.

Keywords: Left censoring, loss functions, credible intervals, posterior predictive
distributions

Introduction

Gumbel type Il distribution is very useful in life testing. Kotz and Nadarajah
(2000) have given a brief characterization of the Gumbel type Il distribution.
Corsini, Gini, Greco, and Verrazzani (2002) studied the maximum likelihood
(ML) algorithms and Cramer-Rao (CR) bounds for the location and scale
parameters of the Gumbel distribution. Mousa, Jaheen, and Ahmad (2002)
considered the Bayesian estimation to analyze both parameters of the Gumbel
distribution based on record values.

The probability density function of the Gumbel distribution of the second
kKind is given by

f(x)=zox“Vexp[-rx"], x>0,7,0>0. (1)
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The corresponding cumulative distribution function is:
F(x)=1-exp[-zx "], x>0,7,0>0. (2)

The parameter o (being known) is a shape parameter of the model, and 7 is the
scale parameter.

The use of a Bayesian approach allows both sample and prior information to
be incorporated into the statistical analysis, which will improve the quality of the
inferences and permit a reduction in sample size. The decision-theoretic
viewpoint takes into account additional information concerning the possible
consequences of decisions (quantified by a loss function). The aim of this is to
consider the statistical analysis of the unknown parameters when the data are left
censored from the Gumbel distribution of the second kind. There is a widespread
application and use of left-censoring or left-censored data in survival analysis and
reliability theory. For example, in medical studies patients are subject to regular
examinations. Discovery of a condition only tells us that the onset of sickness fell
in the period since the previous examination and nothing about the exact date of
the attack. Thus the time elapsed since onset has been left censored. Similarly,
consider left-censored data when estimating functions of exact policy duration
without knowing the exact date of policy entry; or when estimating functions of
exact age without knowing the exact date of birth. Coburn, McBride and Ziller
(2002) faced this problem due to the incidence of a higher proportion of rural
children whose spells were left censored (i.e., those children who entered the
sample uninsured), and who remained uninsured throughout the sample. As
another example, job duration might be incomplete because the beginning of the
job spells is not observed, which is an incidence of left censoring (Bagger, 2005).

Likelihood Function and Posterior Distribution

Let X(r +1),..., X(ny be the last n - r order statistics from a random sample of size n
following Gumbel type Il distribution. Then the joint probability density function
of X¢ +1),..., X(n) 1S given by

f (x(m),...,x(n);fr,u)=:—!!(F(x(m)))r f (x(m))...f (x(n))

= Y (-1) @T exp| -~z (x, )| 3)



LEFT CENSORED DATA FROM THE GUMBEL TYPE Il DISTRIBUTION

wheres=n-r, and

g(x(i)) = exp{—r{zn: x(’l;’ + kx(’rjl) H

i=r+l
Prior and Posterior Distributions

The uniform prior is assumed to be
p(r)ock, 7>0. 4)

The posterior distribution under the uniform prior for the left censored data is:

p(z]x)=""— Y 4D , 7>0. (5)
Rl

The informative prior for the parameter z is assumed to be exponential
distribution:

p(r)=we™, w>0, 7>0. (6)
The posterior distribution under the assumption of exponential prior is:

p<rx>g(f)k@(Ef{xp[r(:{:;g(xm)}]

{W+ g(xm )}(SH)

The informative prior for the parameter z is assumed to be gamma
distribution:

, 7>0 @)
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a

p(r) = tha) 2™ ab,r>0. (8)

The posterior distribution under the assumption of gamma prior for the left
censored data is:

, 7>0. 9

k(T I'(s+a)
Z( 1) (k] {b+g(x(i))}(s+a)

The informative prior for the parameter 7 is assumed to be inverse Levy

distribution:
p(r) = ,/Lrie_(@, c,7>0. (20)
27

The posterior distribution under the inverse Levy prior for the left censored
data is:

Bayes Estimators and Posterior Risks under Different Loss
Functions

Consider the derivation of the Bayes estimator and corresponding posterior risks
under different loss functions. The Bayes estimators are evaluated under
precautionary loss function (PLF), weighted squared error loss function (WSELF),
squared-log error loss function (SLELF), and entropy loss function (ELF). The
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Bayes estimator and corresponding posterior risks under different loss functions

are given in the Table 1.

Table 1. Bayes estimator and posterior risks under different loss functions

Loss Function = L(T,f)

Bayes Estimator Posterior Risk

A\ 2
PLF: (r-7)
7
A\ 2
WSELF: (T_T)
7
SLELF: (Inz—1In r)2

N>

SREEGE

exp{E(In

e

E (z’| X) - { E (7_1‘ X)}_1
x)} E {(In 7| x)}2 —{E (In7| x)}2

‘x)}l In{E(r‘l‘ x)}+ E(In7)

The Bayes estimators and posterior risks under uniform prior are:

g(l)k@{

I'(s+3)

° (X<i>)}(s+3) |

I
N

s
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The Bayes estimators and posterior risks under the rest of priors can be obtained
in a similar manner.

Bayes Credible Interval for the Left Censored Data

The Bayesian credible intervals for type Il left censored data under informative
and non-informative priors, as discussed by Saleem and Aslam (2009) are
presented in the following. The credible intervals for type Il left censored data
under all priors are:

r r 1 r r 1
122(s+1)(%) Z (_1)k (k J G\ (s+2) Zzz(s+l)(1—%) Z (_1)k ( k J 0 (s+2)

(s+2)
k=0
{g(x(i) )}
< Z-Uniform <

e e e

I 3 G s o
2s+)(3) & k {W+g(x(i))}( 2) Y 2(s+)1-5) & k {W+g(x(i))}( 2)
B W o ) B W s
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Elicitation

Consider a probability elicitation method known as prior predictive elicitation.
Predictive elicitation is a method for estimating hyper-parameters of prior
distributions by inverting corresponding prior predictive distributions. Elicitation
of hyper-parameter from the prior p(z) is conceptually difficult task because we
first have to identify prior distribution and then its hyper-parameters. The prior
predictive distribution is used for the elicitation of the hyper-parameters which is
compared with the experts' judgment about this distribution and then the hyper-
parameters are chosen in such a way so as to make the judgment agree closely as
possible with the given distribution (see Grimshaw, 1993; Kadane, 1980;
O'Hagan et al., 2006; Grimshaw, Collings, Larsen, & Hurt, 2001; Jenkinson,
2005; and Leon, Vazquez-Polo, & Gonzalez, 2003).

According to Aslam (2003), the method of assessment is to compare the
predictive distribution with experts' assessment about this distribution and then to
choose the hyper-parameters that make the assessment agree closely with the
member of the family. He discusses three important methods to elicit the hyper-
parameters: (i) via the prior predictive probabilities (ii) via elicitation of the
confidence levels (iii) via the predictive mode and confidence level. We will use
the prior predictive approach by Aslam (2003).

Prior predictive distribution

The prior predictive distribution is:
p(y)=[p(y|z)p(r)dz (12)
0

The predictive distribution under exponential prior is:
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p(y)= TWury’(“*l) exp {—r (y*+ w)}dr (13)

After some simplification it reduces as

p(y)= 3 o —. ¥y>0 (14)
Y wy

The predictive distribution under gamma prior is:

ab?®
p(y)= (U+1)U —T 0<y<oo (15)
y " {b+y

v\c

= 23/2 y(u+l) {C/2+ y—u}

0O<y<oo, (16)

p(y)

32

By using the method of elicitation defined by Aslam (2003), we obtain the
following hyper-parameters w = 0.798566, a=0.152109, b=6.523695 and
¢ =15.985795.

Posterior Predictive Distribution

The predictive distribution contains the information about the independent future
random observation given preceding observations. The reader desire more details
can see Bansal (2007).

The posterior predictive distribution of the future observation y = Xn+1 IS

p(y|x):Tp(r|x)p(y|r)dr (17)
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v+l

Where p(y)=zox """ exp[—rx™ ], is the future observation density and p (t | X)

is the posterior distribution obtained by incorporating the likelihood with the
respective prior distributions.

The posterior predictive distribution of the future observation y = Xn+1 under
uniform prior is

p(y]x)= ,(_1)km .1 _ . y>0, (18)

The posterior predictive distribution of the future observation y = Xxn+1 under
exponential prior is

kro(_l)k [;J o {W+gs(:(|1))+ yv}(s+2)
g(_l)k (U {W+g(i(l)>}(5+1)

The posterior predictive distribution of the future observation y =Xn+1 under
gamma prior is

, y>0. (19)

k(T s+a
(_1) [ j (s+a+1)
k=0 k y(u+1) {b+g(x(i))+ y_u}
p(y[x)= (rJ . L y>0. (20)

1)
Wy

r

k=0
The posterior predictive distribution of the future observation y =Xn+1 under
Inverse-Levy prior is
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- _1k[rj s+1/2 :
Ay y<u+1){c/2+g(x(i)>+yu}<s ¥

p(y|x)= 3 k(T 1
-1 2
( ) (kj{c/z_l_g(x(l))}(sd/ )

, y>0. (21)

Simulation Study

Simulations can be helpful and an illuminating way to approach problems in
Bayesian analysis. Bayesian problems of updating estimates can be handled easily
and straight forwardly with simulation. Because the distribution function of the
Gumbel type Il distribution can be expressed, as well as its inverse in closed form,
the inversion method of simulation is straightforward to implement. The study
was carried out for different values of (n, r) using z € 2.5 and » = 0.5. Censoring
rates are assumed to be 5% and 10%.

Sample size is varied to observe the effect of small and large samples on the
estimators. Changes in the estimators and their risks have been determined when
changing the loss function and the prior distribution of = while keeping the sample
size fixed. All these results are based on 5,000 repetitions. Tables 2-6 give the
estimated value of the parameter, posterior risks and 95% confidence limits
(Lower Confidence Limit (LCL) and Upper Confidence Limit (UCL)) for the
parameter. The results are summarized in the following Tables and Figures 1-8.
The amounts of posterior risks have been presented in the parenthesis in the tables.
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Table 2. Bayes estimates and the posterior risks under PLF for zr € 2.5.

Uniform Prior

No Censoring 5% Censoring 10% Censoring
20 2.737920 3.35045 3.77639
(0.125898) (0.157935) (0.181710)
40 2.677940 3.15159 3.64915
(0.064145) (0.077609) (0.097539)
60 2.62145 3.09163 3.54489
(0.042453) (0.051534) (0.060447)
80 257594 3.04116 3.50579
(0.031510) (0.038311) (0.045182)
100 2.56138 3.03806 3.47670
(0.025173) (0.030759) (0.036015)

n Exponential Prior
20 2.58014 2.96201 3.38135
(0.118643) (0.138226) (0.156758)
0 2.52198 2.95898 3.36035
(0.060409) (0.072220) (0.084258)
60 2.52440 2.95009 3.35418
(0.040720) (0.049112) (0.057015)
80 252171 2.94949 3.33655
(0.030847) (0.037501) (0.043241)
100 2.50779 2.92773 3.30688
(0.024647) (0.030070) (0.035032)

n Gamma Prior

20 1.43895 1.55700 1.64308
(0.068852) (0.075152) (0.079688)
40 1.82853 2.04504 2.21285
(0.044707) (0.050801) (0.055460)
60 2.00816 2.26658 2.49874
(0.032974) (0.037962) (0.042352)
80 211237 2.41150 2.67252
(0.026111) (0.030475) (0.034264)
100 2.218482 2.51014 2.79600
(0.021653) (0.025478) (0.028819)

n Inverse Levy Prior
20 1.32737 1.43304 1.49803
(0.062473) (0.067927) (0.071294)
0 1.72182 1.91963 2.05833
(0.041743) (0.047193) (0.051005)
60 1.93203 2.16662 2.37030
(0.031544) (0.036031) (0.039845)
80 2.04177 2.32593 2.55092
(0.025129) (0.029234) (0.032477)
100 212131 2.41626 2.68807
(0.020951) (0.024413) (0.027552)
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Table 3. Bayes estimates and the posterior risks under WSELF for z € 2.5.

Uniform Prior

n . . .
No Censoring 5% Censoring 10% Censoring
20 2.66809 3.08160 3.54947
(0.133405) (0.157976) (0.186003)
40 2.55583 3.05530 3.43934
(0.063896) (0.078578) (0.090409)
60 2.55213 3.02388 3.42741
(0.042536) (0.051901) (0.060168)
80 2.53489 3.01692 3.41996
(0.031686) (0.038842) (0.04506)
100 2.51670 3.00774 3.40597
(0.025167) (0.030991) (0.035925)
n Exponential Prior
20 2.37956 2.93114 3.35007
(0.118978) (0.139567) (0.158471)
0 2.42840 2.87664 3.27245
(0.060710) (0.073818) (0.085679)
60 2.46768 2.85571 3.270610
(0.041128) (0.049693) (0.057314)
80 2.47487 2.72288 3.134120
(0.030936) (0.037589) (0.043824)
100 2.48550 2.624320 3.02926
(0.024855) (0.030108) (0.035046)
n Gamma Prior
20 1.33348 1.44368 1.51586
(0.069626) (0.075839) (0.080755)
40 1.75474 1.98012 2.12591
(0.044819) (0.050968) (0.055810)
60 1.95524 2.25507 2.44299
(0.03306) (0.038435) (0.042656)
80 2.07625 2.40362 2.63342
(0.026231) (0.030624) (0.034421)
100 2.244640 2.50664 2.77998
(0.021630) (0.025501) (0.029085)
n Inverse Levy Prior
20 1.24650 1.31807 1.38627
(0.063923) (0.068090) (0.071871)
0 1.665110 1.74892 1.84547
(0.042155) (0.044659) (0.047385)
60 1.86831 2.10212 2.32167
(0.031400) (0.035987) (0.040176)
80 1.99783 2.33427 2.50929
(0.02513) (0.030086) (0.032640)
100 2.18089 2.40249 2.64028
(0.020913) (0.024701) (0.027546)
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Table 4. Bayes estimates and the posterior risks under SLELF for z € 2.5.

Uniform Prior

No Censoring 5% Censoring 10% Censoring
20 2.70493 3.16249 3.67867
(0.048771) (0.051271) (0.054041)
20 2.60860 3.08320 3.52510
(0.024690) (0.025973) (0.027396)
60 2.548760 3.04864 3.48125
(0.016529) (0.017391) (0.018348)
80 2.53947 3.02895 3.46749
(0.012422) (0.013072) (0.013793)
100 2.53070 3.019810 3.24692
(0.009950) (0.010471) (0.011050)

n Exponential Prior
20 2.42262 2.89396 3.13621
(0.048771) (0.051271) (0.054041)
40 2.46614 2.87997 3.11318
(0.024690) (0.025973) (0.027396)
60 247732 2.79474 3.01411
(0.016529) (0.017391) (0.018348)
80 2.48808 2.64583 3.006108
(0.012422) (0.013072) (0.013793)
100 2.497560 2.60852 2.985631
(0.009950) (0.010471) (0.011050)

n Gamma Prior

20 1.37081 1.48503 1.56354
(0.050874) (0.0536004) (0.056635)
20 1.78940 1.98832 2.15504
(0.025218) (0.026557) (0.028047)
60 1.98230 2.23221 2.45581
(0.016764) (0.017651) (0.018638)
80 2.081680 2.38376 2.63859
(0.012554) (0.013218) (0.013956)
100 2.26264 2.48866 2.77011
(0.010035) (0.010565) (0.011154)

n Inverse Levy Prior
20 1.27054 1.34243 1.42286
(0.049989) (0.052619) (0.055541)
40 1.69351 1.86554 2.01136
(0.024999) (0.026314) (0.027776)
60 1.90254 2.19742 2.32432
(0.016663) (0.017856) (0.018518)
80 2.01472 2.29894 2.52262
(0.012499) (0.013158) (0.013889)
100 2.20627 2.40058 2.64965
(0.009999) (0.010526) (0.011111)
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Table 5. Bayes estimates and the posterior risks under ELF for r € 2.5.

Uniform Prior

No Censoring 5% Censoring 10% Censoring
20 2.63866 3.10757 3.56083
(0.024792) (0.025787) (0.026520)
20 2.56586 3.06196 3.46458
(0.012448) (0.012508) (0.012576)
60 2.53490 3.03388 3.42366
(0.008310) (0.008570) (0.008987)
80 2.52287 3.00312 3.15751
(0.006237) (0.006286) (0.006721)
100 2.51440 2.901795 3.003575
(0.004992) (0.005235) (0.005982)

n Exponential Prior
20 2.56510 2.69689 3.05465
(0.024792) (0.025787) (0.026520)
0 2.52434 2.58528 3.02735
(0.012448) (0.012508) (0.012576)
60 2.50708 2561238 3.017921
(0.008310) (0.008570) (0.008987)
80 2.48248 2.52515 3.00984
(0.006237) (0.006286) (0.006721)
100 2.46838 2.49894 2.91496
(0.004992) (0.005235) (0.005982)

n Gamma Prior

20 1.33972 1.44818 1.52916
(0.025879) (0.024988) (0.025776)
40 1.76606 1.96735 2.12581
(0.012763) (0.012456) (0.011955)
60 1.94527 2.21469 2.44627
(0.008429) (0.008322) (0.008047)
80 2.07237 2.36455 2.62396
(0.006304) (0.006255) (0.006071)
100 2.15873 2.47250 2.75845
(0.005034) (0.005010) (0.004880)

n Inverse Levy Prior
20 1.23549 1.31738 1.39072
(0.025422) (0.024519) (0.023289)
0 1.66838 1.84774 1.97503
(0.012605) (0.012314) (0.0117967)
60 1.87576 2.10021 2.30080
(0.008380) (0.008254) (0.007957)
80 2.011420 2.26947 2.49758
(0.006276) (0.006214) (0.006016)
100 2.30955 2.39526 2.65130
(0.005017) (0.004983) (0.004843)
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Table 6. The 95% credible intervals for r € 2.5.

Uniform Prior

n Lower Limit Upper Limit Difference
20 2.10503 5.23490 3.12987
40 2.44587 4.67921 2.23334
60 2.58722 4.39961 1.81239
80 2.71041 4.29493 1.58452

100 2.77531 4.19040 1.41509

n Exponential Prior
20 1.84980 4.60018 2.75038
40 2.28485 437117 2.08632
60 2.47071 4.20149 1.73078
80 2.61670 4.14644 1.52974

100 2.69796 4.07361 1.37565

n Gamma Prior
20 1.06688 2.58544 1.51856
40 1.60787 3.04682 1.43895
60 1.91272 3.23551 1.32279
80 2.13391 3.36978 1.23587

100 2.27978 3.43369 1.15391

n Inverse Levy Prior
20 0.86467 217747 1.31280
40 1.41811 2.72520 1.30709
60 1.74630 2.97690 1.23060
80 1.98529 3.15093 1.16564

100 2.14761 3.24636 1.09875

Graphical Representation of Posterior Risks under Different Priors
The graphs reveal that posterior risks under different informative and non

informative priors. It is observed that both the priors (uniform and exponential)
yield the approximately the identical posterior inferences under ELF and SLELF.
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Figure 2. Effect of posterior risk under PLF with 10% censoring
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Figure 5. Effect of posterior risk under SLELF with no censoring
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Figure 6. Effect of posterior risk under SLELF with 10% censoring
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Figure 7. Effect of posterior risk under ELF with no censoring
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Figure 8. Effect of posterior risk under ELF with 10% censoring
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Conclusion

The simulation study displayed some interesting properties of the Bayes estimates.
The risks under said loss functions are reduced as the sample size increases. The
effect of censoring on estimation of 7 is in the form of overestimation under
uniform and exponential priors and underestimation assuming gamma and inverse
Levy priors. Larger degrees of censoring results in bigger sizes of over or
underestimation.

However, the parameter 7 is either underestimated or overestimated
depending upon the prior distribution to be used when censoring is not done. Then
extent of this over or under estimation is directly proportional to amount of
censoring rates and inversely proportional to the sample size. Further, the increase
in sample size reduces the posterior risks of z.

Another interesting remark concerning the risks of the estimates is that
increasing (decreasing) the censoring rate increasing (reduces) the risks of the
estimates under said loss functions. The performance of squared-log error loss
function and entropy loss function is independent of choice of parametric value.
In comparison of informative priors and the uniform prior, the inverse Levy prior
provides the better estimates as the corresponding risks are least under said loss
functions except ELF and SLELF. Although the uniform and the exponential
priors are equally efficient under ELF and SLELF, therefore they produce more
efficient estimates as compared to the other informative priors.

The credible intervals are in accordance with the point estimates, that is, the
width of credible interval is inversely proportional to sample size. From the
Table 6, appended above, it can be revealed that the effect of the prior information
is in the form of narrower width of interval. The credible interval assuming
inverse Levy prior is much narrower than the credible intervals assuming
informative and non-informative priors.

It is the use of prior information that makes a difference in terms of gain in
precision. To see the effects of the posterior risks assuming different priors
Figures 1-8 are prepared. It is observed from all the figures that posterior risk
decreases with the increase in sample size under all loss functions. It is evident
from Figures 5-8 that behavior of posterior risks is similar in all aspects. The
study can further be extended by considering generalized versions of the
distribution under variety of circumstances.
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