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Evaluation of the Addition of Firth’s Penalty 
Term to the Bradley-Terry Likelihood 

Paul Meyvisch 
Janssen Pharmaceutica NV 

Beerse, Belgium 

 

 

 

 
A major shortcoming of the Bradley-Terry model is that the maximum likelihood 
estimates are infinite-valued in the presence of separation, and may be unreliable when 
data are nearly separated. A well-known solution consists of the addition of Firth's 
penalty term to the log-likelihood function, and solving this penalized likelihood through 
logistic regression. The maximum likelihood estimates with and without Firth's penalty 
are compared in a large and heterogeneous population of table tennis players, showing 

that exact penalized maximum likelihood estimates can be reasonably approximated 
using a well-chosen Minorization-Maximization (MM) algorithm. 
 
Keywords: Bradley-Terry, Firth, MM algorithm, table tennis 

 

Introduction 

Consider the evaluation of the addition of Firth's penalty term to the Bradley-

Terry likelihood function, with an application to a large dataset of table tennis 

players. The problem of rating table tennis players falls into the topic of binary 

paired comparison modeling, provided the victory margin is ignored. A binary 

paired-comparison experiment is used to assess the relative worth of t objects 

even though they can only be compared two at a time, and when the result of such 

a comparison can only be that one of the objects is preferred to the other. Zermelo 

(1929) is generally credited with being the first to address the problem of 

estimating the strengths of players. The model and various parts of the theory 

have been rediscovered over the intervening years and were first described in 

detail by Bradley & Terry (1952). 

Suppose there are m players and define  = (1, …, m)' to be the vector of 

the player’s strengths. The Bradley-Terry model assumes that the probability pij of 

player i defeating player j is: 

http://dx.doi.org/10.22237/jmasm/1478002500
mailto:pmeyvisc@its.jnj.com
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Any constant multiple of the strengths i estimates also satisfy (1), so they can be 

scaled to satisfy an additional constraint such as iI = 1 or I = 1 for sake of 

identifiability. 

If each pair of players i and j plays nij games against each other, with player 

i winning vij times and losing dij times, and all games assumed independent, the 

likelihood takes the form: 
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where vij = dji  and nij = nji. 

As noted by Ford (1957), if it is possible to partition the set of players into 

two groups A and B such that there are never any intergroup comparisons, then 

there is no basis for rating any player in A with respect to any player in B (Hunter, 

2004). It is therefore assumed that the tournament is completely connected, i.e., 

there is a chain of matches which links any given pair of players. In order for the 

maximum likelihood estimates of the strengths to exist, a second condition is 

required which will be further denoted as Ford's Assumption: In every possible 

partition of the players into two nonempty subsets, some player in the second set 

beats some player in the first set at least once (Ford, 1957). As a special case, 

Ford's Assumption is not satisfied if group A consists of only one player who has 

lost or won all games. The maximum likelihood estimate for this player will be 

infinite-valued. 

The likelihood can alternatively be expressed as a function of 

 = (1, …, m)' with i = log(i),  i : 1, …, m. Using (1), the probability pij then 

becomes: 
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The Bradley-Terry model can hence be solved using logistic regression 

(Agresti, 2002). Details as to how this model can practically be fit are provided by 
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So (1995). The non-existence of maximum likelihood estimates is a well-known 

and understood problem in logistic regression models and has been denoted by 

Albert & Anderson (1984) as separation. 

The log-likelihood takes the form: 

 

    1
12 :

log exp expm

i ij i ij j ij i jj j i
l v d n     

    
   , (4) 

 

Extensions to the Bradley-Terry model have been proposed in the literature 

but are not considered here. Hunter (2004) provides an interesting review. 

Firth’s penalty term 

The phenomenon of separation or monotone likelihood is observed in the fitting 

process of a logistic model if at least one parameter estimate diverges to . It is 

believed that separation is unpredictable because it is primarily caused by random 

variation as it may depend on the outcome of a few matches. Furthermore, it is 

demonstrated by Heinze (2006) that maximum likelihood estimation by logistic 

regression may give questionable results in the presence of so-called nearly 

separated data. This situation occurs when the existence of the maximum 

likelihood estimates depends on the presence of a few particular observations. A 

solution proposed by Heinze & Schemper (2002) and Heinze (2006) to separation 

and near-separation is to penalize the log-likelihood, as described by Firth (1993). 

The basic idea is to introduce a bias term into the standard likelihood function 

which itself goes to zero as n, but for small n operates to counteract the 

O(n−1) bias present here. The penalty function used is Jeffreys invariant prior 

(Jeffreys, 1961). One of the advantages of the addition of Firth's penalization term 

is that no arbitrary data manipulation is involved. It is also justified from the use 

of Jeffreys prior, in the sense that it is non-informative, thereby implying that 

maximal weight is given to the data. It should also be noted that the interpretation 

of the model is not changed in any way. Firth (1993) demonstrated that, for a 

broad class of generalized linear models, this penalized likelihood is 

asymptotically consistent and eliminates the usual small-sample bias found in 

maximum likelihood estimates. 

The suggested penalized log-likelihood function takes the following form: 

 

      * 1
2
logl l I    , (5) 
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where I(θ) is the Fisher Information Matrix of θ. 

Case Study 

The impact of the addition of Firth’s penalty using a motivational (simplified) 

example will be demonstrated. The evaluation will be done on a large data set of 

table-tennis players. The data that are used for analysis consist of all recorded 

match results during the sports season of 2006-2007 of a population of 770 

players from the province of Vlaams-Brabant (Belgium). It is shown in Figure 

1(a) that the population is highly heterogeneous, both in terms of strengths as 

number of matches played. It is noted that, in line with existing rating systems, 

the estimates for  were linearly transformed to fall roughly between 0 and 3,000 

(Glickman, 1995 and 1999) and (Marcus, 2001). 

The transformation used was such that a difference of 100 points between 2 

players corresponds with odds of 2 for the highest rated player to win. The 

median (Q1-Q3) number of matches per player equals 61 (35-78). The primary 

objective is to rate each player in this pool using the penalized and unpenalized 

maximum likelihood estimates, and to provide Wald-based and profile likelihood 

95% confidence intervals. The differences between penalized and unpenalized 

maximum likelihood estimates will be investigated. Additionally, the differences 

between both types of confidence intervals will be discussed. 

Consistent with local regulation, a simplified log-likelihood was used to 

allow the new rating of the ith player,  i : 1, …, m to depend only on the ratings 

of each of his/her opponents, which are by way of simplification (naively) 

considered constant during the season. Therefore,  i : 1, …, m: 

 

    
:

log exp expc c

i ij i ij j ij i jj j i
l v d n    


    
  , (6) 

 

where θj
c indicates the (scalar-valued) rating of the jth player. 

This log-likelihood (6) can, contrary to (4), not be considered a logistic 

regression model but has to be optimized using Newton's Method or through an 

appropriate Minorization Maximization (MM) algorithm. Maximum likelihood 

estimation using (6) will better allow an evaluation of the impact of separation as 

it will, unlike model (4), not depend on a linear combination of regressors. It can 

indeed be verified that monotonicity of the log-likelihood (6) is only to occur 

when a player loses or wins all matches. It is therefore expected that the 

phenomenon of near-separation is more simply expressed as a function of the 
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victory rate. Application of (4) to the same data set will be presented in before the 

conclusion of this article. It can easily be shown that the score function of the 

penalized log-likelihood can be expressed as: 
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where the Fisher Information I(θi) = Σj:j≠i nijpij(1 – pij) is alternatively expressed as 

Σj:j≠i Ij(θi). It should also be noted that pij is equal to the expression in (3) with θj 

replaced by θj
c. 

Rearranging some of the terms and denoting the total number of wins for the 

ith player as Vi  results in 
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This expression has a simple interpretation in terms of data adjustments: add ½ 

match to the players total number of wins and add a fraction of a match to the 

total number of matches played against the jth player.  The fractions to be added 

depend on the unknown θi. 

Prior to fitting the data, note Ford’s Assumption is not satisfied for about 

5% of the players, and hence, the maximum likelihood estimates of these players 

will be infinite-valued. Removing these players from the data by no means 

guarantees the maximum likelihood estimates of the remaining players to exist, as 

some of the latter may have only won matches against those that are removed. To 

solve this problem, two virtual games for every single player are added, i.e., one 

win and one loss against a (virtual) player of equal strength. These virtual players 

are added with their given strengths at the right-hand side of (6). The introduction 

of virtual matches may dilute the difference between penalized and unpenalized 

maximum likelihood estimates for every single player; however, given the size 

and the heterogeneity of the data, the overall relationship between both estimates 

can still reliably be expressed. 

As observed from Figure 1(b), the penalized maximum likelihood (PML) 

estimates are slightly more conservative, i.e., the estimate is pulled towards the 

center. Players with a low victory rate, i.e. 20%, have a PML estimate which is 

slightly higher than the ML estimate. The reverse phenomenon is observed for 
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players with a high, perhaps ≥80%, victory rate. The small-sample bias reduction 

is also evident in the subset of players who have played fewer than 30 matches. 

The shrinkage towards the mean is more pronounced compared to players on 

whom more information is available. 
 
 

 
 
Figure 1. Supporting figures of Case Study 

 

 
 

Although the symmetry of the profile likelihood may be enhanced by the 

addition of a penalization term, it is important to bear in mind that the resulting 

profile likelihood may still be asymmetric, in particular in the presence of near-

separation. Heinze & Schemper (2002) therefore advise against the use of Wald-

based confidence intervals and propose the profile penalized likelihood 

confidence interval as a more suitable solution. The discrepancy between Wald 

and profile likelihood 95% confidence intervals is graphically presented in Figure 

1(c). For this purpose, the percent overlap of both confidence intervals is defined 

as the length of the intersecting interval, divided by the length of its union. It 

shows that both confidence intervals match very well when victory rates are close 
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to 50%. However, as the victory rate is an indicator of the likelihood’s asymmetry, 

it is not surprising that the discrepancy is increased with increasing victory or 

defeat rate. It is also shown that the discrepancy is more pronounced for players 

on whom less data is available. Compared to Wald-based confidence limits, 

profile likelihood confidence limits are slightly shifted towards higher values for 

players with a high victory rate. The reverse phenomenon is observed for players 

with a low victory rate. Finally, it is seen from Figure 1(d) that the length of the 

profile likelihood confidence interval is not only dependent on the number of 

matches played but also on the victory/defeat rate. It may not come as a surprise 

that the precision of the estimates is lowest for extreme victory rates. 

Optimizing the penalized Bradley-Terry log-likelihood 

It was shown by Firth (1993) and Heinze & Schemper (2002) that maximum 

penalized likelihood estimates in logistic regression models are obtained by 

splitting each original observation i into two new observations having response 

values yi and 1 − yi with iteratively updated weights 1 + hi / 2 and hi / 2 

respectively (using their notation). It is also argued that the splitting of each 

original observation into a response and non-response guarantees finite estimates. 

It is further shown that the hi’s are obtained from the ith diagonal elements of the 

hat matrix whose elements are refreshed at every iteration. Mathematical details 

are provided by Firth (1993) and Heinze & Schemper (2002). 

This led to the development of software to allow calculation of Firth-type 

estimates. Direct implementation of the methodology in a SAS macro, S-plus 

library and R package owes to Heinze & Ploner (2004). An additional R package 

to fit the Bradley-Terry logistic model was developed by Firth (2005). 

Implementation in logXact version 8 by Cytel (Cytel, n.d.) has become available 

in 2005. As of 2008, users of SAS version 9.2 can apply Firth's correction as an 

option to the LOGISTIC procedure.  

Because of the recent advancements in software development for logistic 

regression, maximum likelihood estimation using a Minorization-Maximization 

(MM) algorithm seems to be of lesser use from a practical point of view. In 

addition, an MM algorithm method to obtain the maximum penalized likelihood 

estimates has so far not been developed. However, it is important to note that 

some of the extensions to the Bradley-Terry model cannot be fitted using logistic 

regression (Hunter, 2004) and the MM algorithm may need to be used here as an 

alternative. In the next sections, the approximate score equations and an MM 



ADDING FIRTH'S PENALTY TO THE BRADLEY-TERRY LIKELIHOOD 

231 

algorithm for approximate maximum penalized likelihood estimation will be 

presented. 

Approximating the penalized score equation 

From (4) it follows that 
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and off-diagonal elements 
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Differentiation of log | I(θ) | in (5) requires derivatives of a log determinant 

with respect to the vector . To avoid that optimization of the penalized score 

equation would require major matrix operations at every iteration, lengthening the 

computational process and likely making it less stable, suggesting an approximate 

rather that an exact approach. The approximation consists of imposing the score 

function to be of a similar structure as (7) to obtain: 
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The term Ij(θ)ii in the numerator is the jth contribution to I(θ)ii and is equal to 

nijpij (1 − pij). Setting this expression (12) to zero and rearranging some of the 

terms results in: 
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The same reasoning as Firth (1993) is applied, i.e., that each original 

observation xij (i.e., a win or a loss of the ith player against the jth player) can be 

split into 2 new observations having response values xij and 1 − xij with iteratively 

updated weights 1 + gij /2 and gij /2 respectively. Note that the weights gij are an 

approximation to the diagonal elements of the hat matrix introduced earlier if we 

were to express (5) as a logistic regression model. The weights are updated at 

each iteration and depend on the unknown θ. It can then be verified that the 

approximation to the likelihood function l*(θ) can alternatively be expressed as: 
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Optimizing (14) for θi, it is easily verified from (8) that 
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Expressions (14) and (15) will allow construction of a MM-algorithm. 

Minorization-Maximization algorithms 

Hunter (2004) demonstrated optimization of the unpenalized log-likelihood 

function is obtained using a specific case of a general class of algorithms referred 

to here as Minorization-Maximization (MM) algorithms and shows that 

convergence is reached provided Ford's Assumption holds. 

An MM algorithm operates by creating at each iteration a surrogate function 

Q(θ) that minorizes the log-likelihood function l(θ).  This is to say Q(θ) ≤ l(θ) 

with equality if and only if θ = θ(k). When now the surrogate function is 

maximized, the log-likelihood is driven uphill. This combination of a 

minorization and a maximization step is repeated until convergence. 
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The strict concavity of the logarithm function implies for positive x and y 

that −log(x) ≥ 1 − log(y) – x / y with equality if x = y.  As shown in Hunter (2004), 

fixing θ(k) and defining the function 
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it can be seen that  *

kQ   minorizes l*
approx(θ) as 
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with equality if θ = θ(k).  

Using (15), optimization of  *

kQ   for θi is now straightforward with 

solution 
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Similarly, minorization and maximization of the unpenalized log-likelihood 

function l(θ) is achieved with 
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Application 

The same data will be used. Approximate maximum penalized likelihood 

estimates will be produced using (17). In addition equation (17) will be 

generalized such that the ½ match to the player’s total number of wins can be 

modified at both sides of the equation: 

 

 
 

 :
2

j ii
i ij ijj j i

ii

I
V a n a p

I





 
   

  
  (19) 

 

Comparisons with the exact penalized maximum likelihood estimates obtained 

using logistic regression are compared with the approximate penalized likelihood 

estimates for a = 0.3, 0.5, 0.7 and 1. A comparison between exact penalized 

likelihood estimates and unpenalized likelihood estimates is presented in Figure 

2(a). 

Unlike the results shown in Figure 1(b), the differences between both 

estimates are not only a function of the percentage of wins and of the sample size. 

This is because separation can occur as a result of a non-trivial linear combination 

of regressors, which can potentially occur at any sample size or victory rate. Also 

note the far larger presence of players with low rather than high victory rates in 

the data. It is further shown in Figure 2(b) that unpenalized estimates obtained 

using either logistic regression or by the MM algorithm (18) effectively give the 

same results. An investigation of the effect of the value a for the added match in 

(19) is presented in Figures 2(c) to 2(f). It is shown in Figure 2(c) that the 

approximate penalized ML estimates (for a = 1) strongly differ from the exact 

penalized ML estimates. 

It is also clear from Figures 2(c) and 2(d) that approximations implied by 

values of a larger than 0.5 result in a too strong correction of the unpenalized ML 

estimates, when compared to the exact penalized ML estimates. The reverse 

phenomenon is observed for a = 0.3 (see Figure 2(f)) and for any value of a lower 

than 0.3 (results not shown). For these small values of a, the comparison with the 

exact penalized ML estimates will become more and more similar to the pattern 

observed in Figure 2(a), for a → 0. It is clear from Figure 2(e) that choosing 

a = 0.5 resulted in the best fit. Similar results were obtained through simulations 

(data not shown). A value of a = 0.5 always yielded results that are sufficiently 

close to the exact values. It was observed that the correction implied by the exact 

results, both on the real data as on the simulation, was always slightly larger 



ADDING FIRTH'S PENALTY TO THE BRADLEY-TERRY LIKELIHOOD 

235 

compared to the approximate results. However, differences between the exact and 

the approximate estimates were always negligible. 
 
 

 
 
Figure 2. Supporting figures of Case Study 

 

 

Conclusion 

The objective of this work was to evaluate the effect of the addition of Firth's 

penalty term to the Bradley-Terry log-likelihood. One of the fundamental 

differences between the current work and earlier applications of strength 

estimation in the literature, such as in Agresti (2002) and Firth (2005), is due to 

the size and degree of imbalance of the data. Application of the implied models to 

a sufficiently large and heterogeneous pool of players allows better 

characterization of the impact of the penalty term. The differences between 

penalized and unpenalized ML estimates were generally more pronounced when 

the number of matches were relatively low or when victory or defeat rates were in 
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the high range. Findings due to Heinze & Schemper (2002) such as the 

recommended use of profile likelihood confidence intervals over Wald-based 

confidence limits, in presence of asymmetric likelihood functions, also carry over 

to the Bradley-Terry model. 

A secondary objective consisted of the development of a MM algorithm for 

optimization of the penalized log-likelihood. Direct application of the MM 

algorithm to this type of data may seem inefficient due to the availability of 

logistic regression software that can easily produce Firth-type maximum 

likelihood estimates. However, some of the extensions of the Bradley-Terry 

model cannot be expressed as a logistic regression model and MM algorithms can 

be used as an alternative as they tend to give fast, simple-to-code iterations, where 

each iteration moves in the right direction. When applied to the full size of the 

data, the MM algorithm converged within an acceptable time frame and behaved 

stably for any set of starting values. Although exact results were not obtained with 

the proposed MM algorithm, the approximate values were shown to be 

sufficiently close to the exact values when applied to the data at hand. The 

applicability of these results may need to be confirmed on other data sets. A 

favorable feature of the proposed MM algorithm is that it is constructed in such a 

way that major matrix operations at every single iteration are avoided. As 

convergence of the algorithm is only obtained after several hundreds of iterations, 

the gain in processing time is expected to be considerable. In a next step, 

approximate MM algorithms will need to be constructed on some of the well-

known extensions of the Bradley-Terry model. This will be a subject for further 

research. 
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