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INVITED ARTICLES 
Model Comparisons Using Information Measures 

 
 
Methodologists have criticized the use of significance tests in the behavioral sciences but have failed to 
provide alternative data analysis strategies that appeal to applied researchers. For purposes of comparing 
alternate models for data, information-theoretic measures such as Akaike AIC have advantages in 
comparison with significance tests. Model-selection procedures based on a min(AIC) strategy, for 
example, are holistic rather than dependent upon a series of sometimes contradictory binary 
(accept/reject) decisions. 
 
Key words: Akaike AIC, significance tests, information measures 
 
 

Introduction 
 
Quantitative researchers have been trained to 
evaluate effects of interest utilizing the methods 
of statistical inference. In a single research study 
it is not unusual to see several dozen, or even 
several hundred, significance tests applied to 
assess, for example, multiple correlations, 
differences among multiple correlations and 
regression coefficients. However, the 
appropriateness of the use of significance tests in 
social and  behavioral  research settings has been 
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debated for more than 40 years. In particular, 
Rozeboom (1960) summarized criticisms of 
significance testing that have resurfaced in 
various guises from time to time. Generally, 
these criticisms have focused on the issue of 
binary decision-making (e.g., accept/reject null 
hypotheses) as opposed to considerations related 
to weight of evidence (e.g., measures of strength 
of effect or effect sizes). 
 The fundamental error, as seen by 
Rozeboom, “…lies in mistaking the aim of a 
scientific investigation to be a decision, rather 
than a cognitive evaluation of propositions (op. 
cit., page 212).” Although distinctions can be 
drawn between significance testing in the 
Fisherian (1959) sense and hypothesis testing in 
the Neyman-Pearson (1933) sense, current 
teaching and practice in the behavioral sciences 
blur these distinctions and the terms can be 
considered as essentially interchangeable in 
practice. However, it is likely that Fisher himself 
would concur with many of the criticisms as 
suggested by the following quotes (Fisher, 
1959): 

…the calculation {of significance 
levels} is absurdly academic, for in 
fact no scientific worker has a fixed 
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level of significance at which from 
year to year, and in all circumstance, 
he rejects hypotheses; he rather gives 
his mind to each particular case in the 
light of his evidence and his ideas. 
(page 42) 

On the whole the ideas (a) that 
a test of significance must be regarded 
as one of a series of similar tests 
applied to a succession of similar 
bodies of data, and (b) that the purpose 
of the test is to discriminate or ‘decide’ 
between two or more hypotheses, have 
greatly obscured their understanding, 
when taken not as contingency 
possibilities but as elements essential 
in their logic. (page 42) 

Advocates for change have urged 
minimizing (or, even eliminating) the role of 
significance tests in behavioral research and 
elevating the roles of procedures such as 
confidence intervals, measures of effect size 
(e.g., Carver, 1993) or replicability measures 
(e.g., Thompson, 1994). Although these 
advocacy positions have been well articulated 
and widely disseminated among applied 
statisticians, there is scant evidence for change 
in practice by applied researchers in the 
behavioral sciences. 

For example, the Fall 1995, Winter 1995 
and Spring 1996 issues of the American 
Educational Research Journal contained 11 data-
based articles in the Teaching, Learning and 
Human Development section of the journal. The 
number of significance tests per article (with 
some allowances for counting errors) are, in 
rank order: 3, 29, 33, 35, 40, 48, 94, 212, 290, 
335 and 448 for a total of 1567 tests or an 
average of 522 significance tests per issue of the 
journal. 

Although the lowest number, 3, might 
lead to useful interpretations within a single 
research study, it is highly doubtful that 29, 
much less 448, such tests in a single study can 
be interpreted in manner that provides much 
scientific value. Indeed, the lack of popularity 
for alternative procedures to significance testing 
has, itself, a long history as evidenced by 
Heermann and Braskamp (1970) who wrote in 
the Introduction to Part 4, Testing Statistical 
Hypotheses, of their book of readings: 

there is considerable agreement among 
statisticians and behavioral scientists 
that there has been an unfortunate 
emphasis on the part of the latter on 
hypothesis testing to the exclusion of 
other inferential techniques….In spite 
of this widely known fact, behavioral 
scientists continue to employ 
significance tests to the exclusion of 
other more informative techniques. 
(page 154) 

It can be argued that a major reason for 
the apparent resistance to change from 
significance tests to other techniques is that the 
alternatives that have been proposed are 
unattractive to applied researchers. Consider the 
relatively simple example of multiple 
comparisons among a set of, say, five sample 
means. A typical traditional approach would be 
the use of Tukey tests (or one of the plethora of 
variations such as Games-Howell tests). In 
effect, 10 significance tests would be conducted 
and referred to the appropriate theoretical 
distribution (e.g., studentized range). 

If a researcher were to follow Carver’s 
(1993) advice, the Tukey tests would be 
replaced by “…estimates of effect size and of 
sampling error such as standard errors and 
confidence intervals 89).” However, the q 
statistic per se can be viewed as an effect size 
(i.e., difference between two means divided by 
the estimated standard error of a mean) and how 
does the researcher arrive at a unified 
interpretation of the 10 confidence intervals? 
But Carver (1993) has additional advice: “Better 
yet, by conducting multiple studies, replication 
of results can replace statistical significance 
testing.” This is not a particularly attractive 
option given the obstacles that may exist to 
replication and the fact that the researcher really 
needs to interpret the present study in order to 
decide whether or not replication is a worth 
while expenditure of time and resources. 

A premise of this paper is that 
significance tests are appropriate for only 
certain, highly constrained purposes but have 
enjoyed much wider use because of the failure 
of methodologists to popularize other, more 
appropriate statistical methods. In particular, 
significance tests are useful for interpreting data 
that arise from controlled experimental or quasi-



MODEL COMPARISONS 283

experimental designs in which the role of 
specific hypotheses is well-defined. For non-
experimental settings, researchers typically 
utilize significance tests for purposes of 
comparing alternate models for data or for 
interpreting effects within specific models. It is 
this application that is better served by 
procedures specifically designed for 
comparisons among models and is ill-served by 
significance tests. 

An increasingly popular technique for 
comparing models involves information-
theoretic measures such as Akaike (1973, 1978) 
AIC or measures based on posterior Bayes 
factors such as Schwarz (1978) BIC. In either 
case, these measures may be viewed as 
penalized log-likelihoods and are computed 
separately for each model under consideration. 
Then, a preferred model, among those being 
compared, can be selected. 

This permits a very wide range of 
applications and even avoids some technical 
issues in applying statistical tests for model 
comparisons (e.g., for comparing number of 
components for discrete mixture models such as 
latent class models). Model comparison 
procedures are holistic in the sense that a variety 
of competing models can be assessed 
simultaneously and a best model selected by 
applying a single rule. Attempting to compare 
models using significance tests is, by contrast, 
piece-meal with the final selection of a model 
based on results from sometimes conflicting 
outcomes. 

Consider, for example, the procedure 
that is often used when fitting polynomial 
regression models to bivariate data. Assume 
there are five distinct levels of a quantitative 
independent variable, X, so that models 
corresponding to linear, quadratic, cubic and 
quartic regression can meaningfully be fit to the 
data. Typically, the differences in fit of 
increasingly more complex models are evaluated 
by significance tests based on differences in 
multiple correlations (of, equivalently, 
differences in explained variability). 

Thus, four distinct hypotheses are tested 
with, say, four hierarchical F statistics each at 
some specified level of significance. Since four 
independent tests are being conducted, an initial 
decision is whether or not to control the Type I 

error rate for the set of tests or, simply, to use a 
conventional .05 level for each test. This 
decision, it should be noted, can dramatically 
affect the interpretation of results. On the other 
hand, a holistic, model-comparison approach 
entails computing, say, an Akaike AIC statistic 
for each regression model and then selecting a 
“best” model corresponding to the minimum 
value of AIC.  

Another consideration in selecting an 
approach to comparing models is the logic of the 
decision-making strategy itself. In applying 
significance tests, the null hypothesis 
corresponds to some restricted form of a model 
(e.g., a test for quadratic regression involves a 
null hypothesis stating that the regression 
coefficient for the quadratic term is zero and this 
corresponds to a simpler, linear regression 
model). The validity of the test depends upon 
assuming that the simpler model is true and that 
deviations from the model are due to chance. 
But this is a gross over-simplification of the 
scientific process. In a holistic, model-
comparison approach the underlying goal is to 
select the best approximating model from among 
the models under consideration. It is not 
necessary to assume that any given model is 
“true” and there is no need to posit that a true 
model exists among those being compared.  

In this article, the rationale for 
information-theoretic model comparison 
procedures is presented and two specific areas of 
application are discussed – pairwise 
comparisons and analysis of finite mixtures. 

 
Information Criteria 

Akaike (1973) suggested that the 
Kullback-Leibler (1951) information measure 
provides a natural criterion for ordering alternate 
models for data. He developed a sample-based 
estimate, AIC, for this information measure that 
he incorporated into a decision-making strategy. 
For any specific model, the form of AIC is 

2 2LL p− +  where LL is the log-likelihood for 
the model and p is the number of independent 
parameters that are estimated in fitting the model 
to data. 

For example, assuming normally 
distributed residuals for a homogeneous linear 
regression model for three independent 
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variables, p would equal five and comprise three 
partial regression coefficients, the mean of the 
dependent variable (or the Y-intercept) and the 
variance of the residuals.  
 A summary of the technical 
development for the AIC measure can be found 
in Dayton (2003a) whereas a detailed analysis of 
the measure is presented by de Leeuw (1992). In 
general terms, Kullback-Leibler information is a 
measure of the discrepancy between the true 
distribution for a random variable (possibly 
vector-valued) and the distribution specified by 
some particular model. Although the true model 
is never known, Akaike managed to derive an 
estimate of this discrepancy by considering the 
distribution of a future sample conditional on 
knowing the maximum-likelihood estimator for 
parameters in the model. 
 Fundamentally, AIC involves the notion 
of cross-validation, but only in a theoretical 
sense. Given AIC values for two or more 
alternate models, the model satisfying min(AIC) 
is, in this information-theoretic sense, most 
representative of the true model and, on this 
basis, may be interpreted as the best 
approximating model among those being 
considered. A useful interpretation of AIC is that 
it estimates the loss of precision (or, increase in 
information) that results from substituting 
maximum likelihood estimates for the true 
parametric values in the likelihood function. 
Thus, among the models under consideration, it 
can be argued that the preferred model (i.e., 
min(AIC) model) has the smallest expected loss 
of precision relative to the true, but unknown, 
model. 
 It should be noted that AIC does not 
depend directly on sample size. Bozdogan 
(1987) noted that, because of this, AIC lacks 
certain properties of asymptotic consistency and 
he proposed a related measure, CAIC, by 
applying his own heuristic to the development of 
the estimate for Kullback-Leibler information. 
In particular, for a sample of N cases, 

2 (ln( ) 1)CAIC LL N p= − + + . 
 This measure is very similar to the BIC 
measure proposed by Schwarz (1978) that takes 
the form 2 ln( )BIC LL N p= − + , although 
Schwarz developed his measure as an estimate 
for a particular posterior Bayes factor not 

directly related to Kullback-Leibler information. 
In any case, both CAIC and BIC reflect sample 
size and have properties of asymptotic 
consistency although the importance of this 
property for the interpretation of data for any 
specific sample setting can be disputed since, 
unlike significance tests, the interpretation of 
AIC does not depend on long-range sampling 
notions. AIC, CAIC and BIC may each be 
viewed as a penalized log-likelihood (Sclove, 
1987) with penalties per parameter of 2, ln(N)+1 
and ln(N), respectively. For all reasonable 
sample sizes, CAIC and BIC apply larger 
penalties than AIC and, thus, other factors being 
equal, they tend to select simpler models than 
does AIC.  

Among the reasons for preferring the 
use of a model selection procedure such as AIC 
in comparison to traditional significance tests 
are: 
 (a) A single, holistic decision can be 
made concerning the model that is best 
supported by the data in contrast to what is 
usually a series of possibly conflicting 
significance test. Moreover, models can be 
ranked from best to worst supported by the data, 
thus, extending the possibilities of interpretation. 
 (b) Models with various 
parameterizations can be compared even when 
the models do not obey hierarchic relations. 
 (c) Homogeneous and heterogeneous 
versions of models can be compared; in 
particular, the homogeneity of variance 
(homoscedasticity) assumptions required by 
many significance tests can be circumvented and 
the selection of the most appropriate model can 
be based on the information criteria. 
 (d) Considerations related to underlying 
distributions for random variables can be 
incorporated into the decision-making process 
rather than being treated as an assumption whose 
robustness must be considered (e.g., models 
based on normal densities and on log-normal 
densities can be compared). 
 Various arguments have been presented 
against the use of information criteria such as 
AIC although some of these are difficult to 
follow. For example, McDonald and Marsh 
(1990) seem to argue as follows: major premise 
– the saturated model is always the true model; 
minor premise – for sufficiently large sample 
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size, AIC will always select the saturated model; 
conclusion – AIC is defective and cannot be 
used in practice. In a context such as paired-
comparisons among K means, a saturated model 
based on normal densities would comprise K 
unique means and variances. Thus, no other 
model could possibly fit the data better in an 
absolute sense (i.e., yield a larger log-
likelihood). However, if two of the group means 
are truly equally and very large samples are 
involved, measures such as AIC will tend to 
select the correct model, not the saturated model.  

As noted above, others are concerned 
with the fact that AIC does not directly depend 
upon sample size and, therefore, lacks properties 
of asymptotic consistency (Bozdogan, 1987). 
However, variations on AIC such as Schwarz’s 
(1978) BIC and Bozdogan’s (1987) CAIC do 
reflect sample size considerations. In practice, it 
is not necessarily the case that the property of 
asymptotic consistency leads to a better 
procedure in a true-model identification sense. 

For example, in the context of 
comparing non-nested latent clas (mixture) 
models, Lin and Dayton (1997) found that AIC 
was superior to BIC when the “true model” was 
relatively complex (i.e., was based on a 
relatively large number of parameters). 
Similarly, Huang and Dayton (1995) report that, 
for multiple comparisons among bivariate mean 
vectors, AIC tended to outperform BIC and 
CAIC when “the null case was excluded and, in 
general, for heterogeneous cases.” However, for 
multiple regression analysis, the results for AIC 
and BIC reported by Gagné and Dayton (2002) 
are more complex but consistent with the 
observation that AIC is more successful with 
more complex models. 

Clearly, further research around the 
issue of competing information measures is 
needed but that does not alter the fact that this 
class of procedures often provides a highly 
desirable alternative to traditional significance 
testing techniques. Finally, it should be pointed 
out that information measures themselves 
depend upon certain asymptotic properties of 
chi-square statistics and, thus, issues of 
robustness must be considered. This is a 
researchable topic about which little is known at 
present. Of course, very similar distributional 
issues must be considered for significance tests 

and, despite years of research, the best advice 
has always been to use large samples. 
 A technical point about the calculation 
of AIC (or CAIC or BIC) is that the log-
likelihood, LL, often involves the estimation of 
theoretical variances. The maximum-likelihood 
estimate for a variance is biased since the 
denominator for the computation is the sample 
size, N, regardless of the number of parameters 
that are estimated in fitting the model to data. In 
regression analysis with p independent variables, 
for example, the unbiased estimate for the 
residual variance is computed by dividing the 
residual sum of squares by N – p – 1 but in the 
context of computing AIC the divisor for the 
maximum likelihood estimate is N. 

The computation of AIC for any specific 
model requires the specification of a 
distributional form (e.g., univariate normal, 
multivariate normal, multinomial, Poisson, etc.). 
Then, the log-likelihood, LL, for the sample is 
computed based on the model and the specified 
distributional form. In multiple regression 
analysis, for example, residuals may be assumed 
to follow a univariate normal density with 
variances that are homogeneous conditional on 
the independent variables. 

However, unlike conventional 
significance tests, the set of alternate models 
being considered may include different 
specifications and different distributional 
assumptions. For example, residuals may be 
characterized as heterogeneous or dependent on 
the independent variables in various ways. On 
the other hand, residuals may be assumed to 
follow a mixture of homogeneous univariate 
normal densities. In any case, the min(AIC) 
criterion can be used to order and select among 
these models. 

To illustrate these ideas in the context of 
real data, consider the plot (Figure 1) for 
mathematics achievement scores as a function of 
weekend television watching activity based on a 
5% random sample of cases from the public use 
for the National Education Longitudinal Study 
(NELS). The distinct non-linear trend based on 
1092 cases seems to invite a quadratic regression 
model (the television watching categories were 
coded at their upper values except that the final 
category was coded 6). Conventional F tests for 
increments to explained variability (∆R2) using a 
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direct notation are Flinear = 5.34, Fquad = 41.05 
and Fcubic = 1.30. The linear and quadratic terms 
are significant at the conventional 5% level 
whereas the cubic term is non-significant. Thus, 
the three significance tests can be interpreted as 
supporting the selection of a quadratic model for 
the data. As reported in Gagné and Dayton 
(2002), the log-likelihood for homogeneous 
multiple regression models can be computed 
directly from the residual sum of squares (SSe) 
and sample size: 
 

LL = .5 ln(2 ) ln 1eSSN
N

π⎡ ⎤⎛ ⎞− ⋅ + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (1) 

 
The AIC values for linear, quadratic and cubic 
models are, respectively, 8140.02, 8101.62 and 
8127.30 leading to the choice of the quadratic 
model as the best approximating model among 
these three models (using BIC leads to the same 
preferred model). But, other models might be 
explored for these data. For example, using the 
reciprocal of weekend television watching as a 
predictor (actually, reciprocal of X+1 due to the 
presence of 0’s), the AIC value is 8144.16 which 
is less preferred than any of the polynomial 
models. Note that from a conventional point of 
view, a test of significance can be run for the 
regression coefficient in the reciprocal 
regression model (t = -1.095, p = .274) but there 
is no direct way of testing the difference in fit 
between, say, the linear model and the reciprocal 
model since they are not nested.  
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Figure 1. Mathematics achievement scores as a 
function of weekend television watching. 

Paired Comparisons Information Criterion 
Dayton (1998, 2003a) proposed a method 

for comparisons among means using information 
criteria such as Akaike’s AIC. He advocated this 
approach rather than standard pairwise-
comparison procedures such as Tukey tests in 
order to avoid or minimize the following 
problems with conventional procedures. 

(a) Tukey tests (and variations) have been 
proposed based on some arbitrary method for 
controlling the family-wise type I error rate for 
the set of correlated pairwise contrasts. Release 
11.5 of SPSS, for example, provides options for 
18 different post hoc pairwise comparison 
procedures that are based on several different 
approaches to controlling type I error. 

(b) Unequal sample sizes and heterogeneity 
of variance pose difficulties for many 
procedures. The classic Tukey test, for example, 
assumes constant sample size and homogeneous 
variances, an often unrealistic set of 
assumptions. Modifications of Tukey tests such 
as Games-Howell tests allow for both unequal 
sample sizes and heterogeneous variances but 
only provide approximate control of the family-
wise type I error rates by means of an 
adjustment to degrees of freedom.  

(c) Intransitive decisions are routinely 
encountered with pairwise-comparison 
procedures in general and pose serious 
interpretive problems if some overall conclusion 
is desired for the set of means. For three means 
in rank order, an intransitive decision entails 
rejecting the difference between the highest and 
lowest mean but retaining the null hypotheses 
for comparisons of these means with the middle 
mean. It has been argued that this really doesn’t 
pose a problem if the main concern of a study is 
to draw conclusions about the separate pairwise 
differences. However, if the focus is on 
individual pairwise contrasts, what rationale is 
there for sacrificing power and adopting a 
family-wise error rate rather than simply running 
separate t tests for each pair of means?   

The method based on information criteria 
described below and known as paired-
comparisons information-criterion, or PCIC, has 
been the topic of simulations by Cribbie & 
Keselman (2003) who suggest that PCIC has all-
pairs power that is typically superior to standard 
pairwise comparison procedures (e.g., Tukey 
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HSD). The method has been extended to 
repeated observations as well as to data in the 
form of proportions.  
 
(A) Independent Samples of Means 

Consider a design comprising J independent, 
random groups of respondents with sample 
sizes, ,jn  sample means jY and unbiased 

variance estimates, 2 ,jS  with N nj
j

J

=
=
∑

1

. In 

PCIC, AIC (or similar measure) is computed for 
each possible, different ordered subset of means. 
Thus, only non-overlapping subsets of means are 
compared rather than all possible subsets. In 
general, for J groups there are 2 1J− distinct 
patterns of subsets based on ordered means. For 
example, with three groups with the means 
ranked and labeled 1, 2, 3, the 22 4= ordered 
subsets are {123}, {1,23}, {12,3}, and {1,2,3,} 
where a comma is used to separate subsets with 
unequal means. Focusing on ordered subsets of 
means and using a min(AIC) [or min(BIC)] 
strategy avoids the intransitivity problem that 
may arise when using traditional paired-
comparisons techniques without sacrificing 
interpretability of results.   

Assuming homogeneity of variance, the log-
likelihood for the mth model can be written as: 

 
2

2
2

1 1

ˆ(2 ) ( )
2 2
1 ˆ( )
ˆ2

j

m W

nJ

ij mj
j iW

N NLL Ln Ln

Y
= =

=− −

− −∑∑

π σ

µ
σ

    (2) 

 
whereσW

2  is computed from the ANOVA 
within-groups sum of squares but with 
denominator N  rather than N J− . Means for 
the mth model are estimated assuming that the 
model is correct. The independent parameters 
estimated for a model comprise the variance and 
means, as necessary.  If variances are assumed 
to be equal in the same pattern as means, the 
case is termed the restricted heterogeneous 
variance case (for other cases, see Dayton, 
1998). Assuming the restricted heterogeneous 
variance case, an estimated variance for a subset 
of means can be obtained either by pooling 

variance estimates as appropriate from the 
separate groups or by computing the (biased) 
sample variance from the appropriate combined 
group. For the latter preferred case, the sample 
variance for a {23} subset of means, for 
example, would be  
 

32
2 2

2 23 3 23
2 1 1
23

2 3

ˆ ˆ( ) ( )
ˆ

( )

nn

i i
i i

Y Y

n n
= =

− + −
=

+

∑ ∑µ µ
σ .   (3) 

 
Assume that, for the mth model, the pattern of 
sample means has been partitioned into K non-
overlapping subsets. Then, 
 

[ ]

2

1

(2 ) 1
2

1 ˆln( )
2

m

K

mk mk
k

NLL Ln

n
=

= − +

− ∑

π

σ
    (4) 

 
whereσ mk

2 is the (biased) variance estimate 
and nmk is the sample size for the kth subset.  

Table 1 (following page) summarizes 
NELS data for standardized reading scores for 
five racial/ethnic as identified in the data base. 
Tukey tests, as well as Games-Howell tests that 
lack the homogeneity of variance assumption, 
yield a typical intransitive pattern of differences 
with three overlapping, non-significant ranges 
comprising, in rank order of means from high to 
low, {123}, {34} and {45}. The three smallest 
AIC values assuming homogeneity of variance 
and not making this assumption are shown in 
Table 1. 

Note that min(AIC) occurs for the 
pattern {12,345} assuming the restricted 
heterogeneous variance case although several 
models show quite similar AIC values. An 
interesting feature of model comparisons with 
AIC and related information measures is that, 
although a single preferred model is identified, a 
ranking of alternative models is provided. 
Additional illustrative analyses for both the 
homogeneous and heterogeneous cases are 
presented in Dayton (1998, 2003a) as well as in 
connection with a Gauss program (Aptech 
Systems, 1997) for conducting these tests 
(Dayton, 2001a). 
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(B) Means Based on Repeated Observations 

Consider a cohort of individuals that is 
measured on the same variable at several points 
in time. Assuming multivariate normality, the 
parameters of the distribution are means and 
variances for the occasions of measurement as 
well as covariances among occasions. As with 
independent observations, attention is focused 
on the distinct ordered subsets of means and 
AIC, or a related information measure, can be 
used to select a preferred pattern. 

As for the case of independent groups, 
variances and covariances can be homogeneous, 
heterogeneous or restricted heterogeneous. 
However, the situation is more complex since 
these conditions can be applied separately to the 
variances, covariances or to both. In addition, 
various patterned covariance matrices may be 
considered to be appropriate (e.g., a simplex 
pattern with observations closer in time more 
highly correlated that those further apart in 
time). Dayton (2003a) presents more detailed 
information about this case along with 
illustrative data. 
 
(C) Independent Samples of Proportions 

Consider J groups of sizes nj  with 

sample proportions, p p pJ1 2, ,..., , for a 
dichotomous dependent variable. The theoretical 
model  for  the data  is that responses represent a  

 
 
 
 

 
 
series of 0/1 Bernoulli trials with a true 
population  probability, π j , of  a  favorable 
outcome (e.g., 1 or positive) for the jth group. 
The log-likelihood for any specific ordered 
outcome (e.g., 0110 for proportions based on 
four outcomes) in the jth group is 
n p p n p pj j j j j jln( ) ( ) ln( )+ − −1 1 and the log-
likelihood for the total sample is found by 
summing across the J groups: 

 

1

ln( ) (1 ) ln(1 )
J

j j j j j j
j

LL n p p n p p
=

⎡ ⎤= + − −⎣ ⎦∑ . 

(5) 
  
 Note that n pj j is the expected number 
of favorable outcomes and n pj j( )1− is the 
expected number of unfavorable outcomes. The 
sample proportion, pj , is the MLE for the 
corresponding population proportion. Unlike the 
situation for sample means, there is no need to 
consider homogeneous and heterogeneous cases 
since each Bernoulli process is based on a single 
parameter,π j . Otherwise, model selection 
follows the same reasoning as for independent 
sample means (Dayton, 2001a). That is, there is 
a total of 2 1J− distinct patterns of subsets of 
proportions to evaluate and proportions for a 
model are estimated assuming that the model is 
correct. Illustrative analyses for this case are 
presented in Dayton (2001a, 2003a). 
 

Table 1 
NELS Reading Standardized Scores 

    Homogeneity Restricted 
Heterogeneity 

"Race" n Mean Variance Pattern AIC Pattern AIC 
White Non-

Hispanic 
798 52.55 98.21 {1,2,345} 8926.90 {12,345} 8926.62 

API 75 50.40 97.66 {1,2,3,45} 8927.59 {1,2,345} 8927.37 
Hispanic 140 47.36 92.13 {12,34,5} 8928.30 {12,3,45} 8927.56 

Black Non-
Hispanic 

152 46.16 77.68      

American Indian 44 46.00 70.39      
 1209        
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PCIC for Distributions 
Standard pairwise comparison 

procedures, such as Tukey HSD and its many 
variations, have been the subject of a good deal 
of research directed toward assessing their 
robustness with respect to distributional 
assumptions. Typically, non-normal 
distributions with varying degrees of skew and 
kurtosis are selected for comparison (e.g., 
Keselman, Lix & Kowalchuk, 1998, report 
simulations with normal distributions, three-
degree-of-freedom chi-square distributions and a 
highly non-normal distribution with skewness 
and kurtosis indices equal to 6.2 and 114, 
respectively). The issue, then, is the degree of 
sensitivity of the multiple comparison 
procedures to departures from normality. Also, a 
number of simulations have dealt with the 
relative power of pairwise comparison 
procedures (e.g., Ramsey, 2002). 

An alternative approach is to directly 
model the underlying distributions for observed 
data and then compute appropriate likelihoods 
for candidate distributions of interest. Once 
these distributions have been selected, 
procedures comparable to PCIC can be 
implemented. In practice, identifying the set of 
candidate distributions is a non-trivial problem. 
Two classes of plausible models that have 
credibility in practice than can be compared are 
normal and log-normal densities. 

The motivation for log-normal models 
arises from the fact that, in contrast to an 
additive effect, a multiple effect for an 
independent variable can be modeled in log-
linear terms. For example, the usual additive 
model for a response in a one-way ANOVA 
design can be represented as ij j ijY µ τ ε= + +  

whereµ  is a grand mean effect, jτ  is the effect 

of the jth treatment and ijε  is a residual error 
term. Alternatively, assuming a multiplicative, 
rather than an additive treatment effect, yields 
the model: ij j ijY µ τ ε= × ×  or 

* * *ln( )ij j ijY µ τ ε= + +  where the * superscript 
denotes a parameter on a logarithmic scale. In 
practice, many positively skewed distributions 
of observations are reasonably well 
approximated by log-linear models. 

Some preliminary simulation results 
have been carried out for two-sample and a 
limited number of three-sample cases to assess 
how well the AIC and BIC information 
measures distinguish between samples based on 
normal and log-normal distributions (Dayton, 
2003b). In one series of simulations, theoretical 
log-normal densities with means, standard 
deviations of (0, .1), (0, .5) and (0, 1.0) in log 
units corresponding to (1.00, .10), (1.13, .60) 
and (1.65, 2.16) in raw units were considered. 
The first distribution is slightly skewed (index = 
.30) and modestly kurtotic (index = 3.16), the 
second distribution is moderately skewed (index 
= 1.75) and somewhat peaked (index = 8.89), 
while the third distribution is both highly 
skewed (index = 6.18) and highly kurtotic (index 
= 113.94). In a second series of simulations, 
information criteria were compared assuming 
only log-normal densities but the generated data 
were either normal or log-normal. 

Typical results for two groups are, in 
additional to the expected sample size 
differences: (a) BIC selected the correct model 
more often than AIC in virtually all simulated 
cases with an average difference ranging from 
about 6% to 13%; (b) both information criteria 
were much more successful in selecting models 
when the true distribution was log-normal as 
opposed to when it was normal. This latter result 
occurs because, as the median increases, log-
normal distributions assume a nearly symmetric 
shape that approximates normality. Limited 
results for three samples suggest that, as was 
true for two groups, BIC tends to select the 
correct pattern of means more often than does 
AIC and both criteria were more successful for 
log-normal than for normal distributions. The 
superiority of BIC over AIC should not be 
generalized at this time, however, since Dayton 
(1998) found for cases with several groups that 
neither criterion was uniformly superior to the 
other.  
 
Number of Components in Mixture models 

An emerging area of interest in applied 
research is the use of finite mixture models 
when distributions such as normal, Poisson and 
binomial fail to provide satisfactory fit to data. 
An impetus for considering mixtures is the 
phenomenon of over-dispersion which is 
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manifested by, for example, distributions with 
“heavy tails.” For situations of this sort it is 
often reasonable to assume that observations 
represent a mixture from two or more sub-
populations rather than arising from a single 
population. In general, a mixture of J 
distributions for some dependent variable, Y, 
can be represented by: 

g Y g Yj j j
j

J

( | ) ( | )β θ β= ×
=
∑

1

 where θ j  are 

mixing fractions such that θ j
j

J

=
=
∑ 1

1

, g( ) is 

some specified probability (e.g., binomial) or 
density (e.g., normal) function based on a vector 
of parameters, β j , and β  is a vector containing 
all relevant parameters. 

For a mixture of two heterogeneous 
normal densities, for example, 2

1 1 1( | , )g Y µ σ  

and 2
2 2 2( | , )g Y µ σ would represent normal 

densities with unique means and variances that 
are mixed in proportions 1θ  and 2 11θ θ= − . To 
fit such models to data, the parameters for the 
separate components as well as mixing fractions 
must be estimated. For a mixture of two normal 
densities this would entail estimating five unique 
parameters (two means, two variances and one 
mixing proportion). Some relatively simple 
mixtures (e.g., normal densities) can be 
estimated using available statistical software 
such as Mplus (Muthén and Muthén, 1998) but 
specialized programs such as LEM (Vermunt, 
1993) are required in more complex cases such 
as latent class models. 

A persistent dilemma for applications of 
mixture models is that models with varying 
numbers of components cannot be compared 
using conventional significance tests even 
though these models are hierarchical. For 
example, the comparison of a mixture of two 
normal densities to a single normal density 
could, seemingly, be based on a difference-chi-
square test since the single normal density is a 
restricted form of the mixture (e.g., by setting 

2 0θ = ). However, as noted by Everitt and Hand 
(1981) and Titterington, Smith and Makov 
(1985), among others, this difference-chi-square 
statistic fails to satisfy theoretical requirements 

related to boundaries of the parameter space and 
is not distributed as expected (nor is its 
distribution known). Some insight into the 
problem can be seen from observing that the 
single restriction, 2 0θ = is equivalent to the two 

restrictions 1 2µ µ=  and 2 2
1 2σ σ=  since, in 

either case, the resulting model is a single 
normal density. In fact, the mixture is based on 
five parameters whereas the single normal 
distribution is based on only two parameters, yet 
only one restriction is required to obtain the 
simpler from the more complex model. 

Given the failure of conventional 
significance tests to provide a basis for assessing 
the number of components in a mixture, 
information measures such as AIC present an 
attractive alternative. Information criteria 
provide a single summary statistic for each 
model being compared and avoid the asymptotic 
distributional issues faced by difference-chi-
squares tests for mixture models. Some 
preliminary work on assessing AIC, BIC and 
related measures was reported by Dayton 
(2001b) who focused on the issue of selecting 
the appropriate number of mixtures in binomial 
models (restricted latent class models) with four 
and six binary variables. 

Simulations were based on samples 
sizes ranged from 80 to 1280, binomial 
probabilities for mixtures of two and three 
processes were selected to represent varying 
degrees of discriminability of the components 
and mixing proportions were varied from equal 
splits to cases where one component represented 
only 20% of the cases. Cases with high 
discriminability involved, for two components, 
cases with binomial probabilities and .1, .5 and 
.1, .8 where low discriminability involved cases 
with binomial probabilities of .1, .2. All of the 
measures studied provided reasonable correct 
identification rates for the high disciminability 
cases (e.g., 80% and above across the 
conditions) but very poor correct identification 
rates for the low disciminability cases (e.g., 10% 
or less across the conditions). Dayton (2001b) 
concludes that this area of analysis requires 
“…reasonably large sample sizes and the 
realization that poorly defined latent structures 
will almost certainly go undetected.” 
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Conclusion 
 

Although the recommendation has been repeated 
often in the past, researchers should become 
aware of modern alternatives to the use of 
significance tests when comparing alternate 
models is the focus of analysis. Information 
theoretical procedures such as Akaike AIC 
provide a holistic approach to ordering and 
selecting among competing models that avoids 
the piece-meal and potentially inconsistent 
outcomes that arise from applying multiple 
significance tests. This paper has summarized 
applications of these measures to multiple 
comparisons including the possibility of varying 
distributional assumptions and to mixture 
models where traditional significance tests are 
known to be inappropriate. 
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