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When conducting a statistical test one of the initial risks that must be considered is a 
Type I error, also known as a false positive. The Type I error rate is set by nominal alpha, 
assuming all underlying conditions of the statistic are met. Experiment-wise Type I error 
inflation occurs when multiple tests are conducted overall for a single experiment. There 

is a growing trend in the social and behavioral sciences utilizing nested designs. A Monte 
Carlo study was conducted using a two-layer design. Five theoretical distributions and 
four real datasets taken from Micceri (1989) were used, each with five different sample 
sizes and conducted with nominal alpha set to 0.05 and 0.01. These were conducted both 
unconditionally and conditionally. All permutations were performed for 1,000,000 
repetitions. It was found that when conducted unconditionally, the experiment-wise Type 
I error rate increases from alpha = 0.05 to 0.10 and 0.01 increases to 0.02. Conditionally, 

it is extremely unlikely to ever find results for the factor, as it requires a statistically 
significant nest as a precursor, which leads to extremely reduced power. Hence, caution 
should be used when interpreting nested designs. 
 
Keywords: Experiment-wise Type I error inflation, nested testing, Monte Carlo 
simulation, hierarchical linear modeling, Bonferroni-Dunn 

 

Type I Error 

When conducting a statistical test one of the initial risks that must be considered 

is a Type I error, also known as a false positive. It occurs by “rejecting a null 

hypothesis when it is true” (Hinkle, Wiersma, & Jurs, 2003, p. 178). It is set by 

nominal alpha, assuming all underlying conditions of the statistic are met. For 

example, if nominal α = 0.05, then this indicates the threshold for what constitutes 

a rare event is set to a 5% probability of a false positive, or odds corresponding to 

less than or equal to 1 in 20. 

https://doi.org/10.22237/jmasm/1493596980
mailto:jsitm585@gmail.com
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The risk represented by the Type I error only applies if a single statistical 

test is conducted on the data set. If multiple analyses are conducted, the Type I 

error rate will increase above nominal alpha. This is known as experiment-wise 

Type I error inflation: the “Experimentwise error rate (αE) is the probability of 

making a Type I error rate for the set of all possible comparisons” (Hinkle et al., 

2003, p. 372). Statisticians have considered this problem since the second half of 

the 20th Century and have proposed a variety of solution strategies to handle 

Type I error inflation, particularly for statistical approaches that invoke multiple 

procedures. 

Type I error inflation can arise in many statistical procedures. In some 

circumstances, such as the one-way independent samples ANOVA layout, there is 

a storied history of the development of a priori and post-hoc corrections to the 

F test to ameliorate this problem. Unfortunately, the experiment-wise inflation 

problem does surface in certain seemingly innocuous layouts, and results are often 

presented without recognizing the need for adjustment. 

According to some viewpoints, there are also statistical layouts that permit a 

step-down analysis. An example is following a multivariate test (e.g., MANOVA 

or MANCOVA) with univariate tests. Consider a Hotellings’ T2 which 

conceptually is an extension of the test of difference in means in the Student’s t 

test to the multivariate case, which is the difference in group centroids. A question 

that frequently arises following a significant T2 is if one or the other dependent 

variable was the greater contributor. 

Suppose both a test of reading and mathematics achievement were given 

following an intervention, and the T2 test of differences in means between females 

and males was statistically significant. The step-down univariate test (i.e., 

Student’s t test) on reading by gender, and mathematics by gender, would then be 

conducted. The statistical literature is not settled on the appropriateness of this 

approach. The general consensus is if the multivariate test was conducted only to 

maximize power there is no reason why step-down tests shouldn’t be conducted 

(other than the inflation of Type I errors). However, if the T2 was conducted 

because of a multivariate hypothesis with intertwined dependent variables (e.g., 

self-esteem and self-worth), conducting step-down tests and the concern with 

experiment-wise Type I error inflation vanishes. 

There are, however, other layouts that according to all viewpoints require 

multiple statistical tests. The classical example of this is the one-way analysis of 

variance. The omnibus F test can be used to determine if there is a difference in 

means somewhere within the K ≥ 3 groups. Either a priori or post-hoc 

comparisons must be conducted in order to determine precisely where the 
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difference(s) in means occurred. It is recognized that conducting multiple tests in 

this application increases the experiment-wise Type I error rate. 

Sequential (or Serial) Tests 

Sequential tests occur in separate phases. For example, there is the 

recommendation to test for underlying assumptions (e.g., homoscedasticity via 

Levine’s test and normality via Kolmogorov-Smirnov’s test), and only after 

failing to reject both proceeding to conduct a statistical test of effects (such as the 

t-test). This strategy was recommended in many statistical packages (e.g., 

Statistical Analysis Systems Institute, Inc., 1990, p. 25; Norušis, 1993, pp. 254-

255; Wilkinson, 1990, p. 487). However, Sawilowsky (2002) noted, “There is a 

serious problem with this approach that is universally overlooked. The sequential 

nature of testing for homogeneity of variance as a condition of conducting the 

independent samples t-test leads to an inflation of experiment-wise Type I errors” 

(p. 466). Sawilowsky (2002) conducted a Monte Carlo study that demonstrated 

the experiment-wise Type I error rate inflated to almost twice alpha. A possible 

solution to this is to avoid using a parametric test that requires testing for 

underlying assumptions when the data are not known to be normally distributed 

and homogeneous, and using a nonparametric alternative in its place. 

Parallel Tests 

Parallel tests occur when multiple tests are conducted at the same time. For 

example, in ANOVA, multiple main effects and interactions can all be of interest. 

There is debate whether to start with the main effects or interactions, and whether 

to stop or continue after finding significance (see, e.g., Sawilowsky, 2007a, ch. 

14). Regardless of the method chosen, all tests are conducted simultaneously. For 

example, with three main effects, the following seven combinations can be tested 

for significance: A × B × C, A × B, A × C, B × C, A, B, and C. 

There is a commonly held belief by researchers that ANOVA provides weak 

protection against the inflation of Type I error rates when conducting multiple 

tests. This is due to the researcher being genuinely interested in multiple 

hypotheses. It is believed that this interest adequately negates the effect of 

conducting repeated measures while utilizing the Frequentist approach. It is 

argued that ANOVA is in contrast to processes such as stepwise regression, in 

which the researcher does not have prior suspicion or even interest in the various 

hypotheses being tested. However, Kromrey and Dickenson (1995) stated: 
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In a two-factor ANOVA, three null hypotheses are tested (one for each 

main effect and one for the interaction effect), while in a three-factor 

analysis, seven null hypotheses are tested (three main effects, three 

first-order interactions, and one second-order interaction), and in a 

four-factor analysis, fifteen null hypotheses are tested. The effects of 

multiple testing… in factorial ANOVA has not been undertaken, 

despite the fact that the problem has been recognized for more than 30 

years. (pp. 51-52) 

 

They conducted a Monte Carlo simulation in which the number of factors (2-4), 

pattern of effects (null and/or non-null), effect size (small-large), and sample size 

(5, 10, and 20) were modeled. The simulation was conducted with 5,000 

repetitions per experimental condition. In order to safeguard against rival 

hypotheses affecting the results, the ANOVA F tests were conducted on data 

sampled from a theoretical normal distribution, thus ensuring internal validity. 

Conditioned on a significant omnibus F test, with the two-factor model, the 

experiment-wise Type I error rate for the null effects were 0.06. With the three-

factor model, it was as high as 0.16, and with four factors, it rose to 0.35 for the 

null effects. These results demonstrated that the issue of experiment-wise Type I 

error rate applies to the parallel scenario, even in the presence of a known 

significant non-null effect. In other words, the weak protection is ineffective in 

controlling experiment-wise Type I error rate inflation. 

Post-Hoc Tests: A Resolution to the Type I Error Inflation Problem 

Wilcox (1996) described the most extreme post hoc solution to experiment-wise 

Type I error inflation: 

 

The Bonferroni procedure, sometimes called Dunn’s Test, provides a 

simple method of performing two or more tests such that the 

experimentwise Type I error probability will not exceed α. If you want 

experimentwise Type I error probability to be at most α, you simply 

perform paired t-tests, each at the αb = α/C level of significance, where 

C is the total number of comparisons you plan to perform. (pp. 279-

280) 

 

The Bonferroni-Dunn procedure divides alpha by the number of tests to be 

conducted, to ensure that after all hypothesis tests are computed the total Type I 



EXPERIMENT-WISE TYPE I ERROR IN NESTED DESIGNS 

56 

error rate does not exceed nominal alpha. This method is guaranteed to contain 

the Type I error rate, but it also guarantees loss of statistical power, because as α 

decreases, β increases; and as β increases, power decreases (Hinkle et al., 2003, p. 

300). All other multiple comparison procedures are a compromise between the 

Bonferroni and making no adjustments to control Type I error inflations. 

Nesting 

Hierarchical linear modeling (HLM), which is based on testing nested effects, is a 

popular statistical approach to school-based research. Kreft and De Leeuw (1998) 

stated, “Hierarchical data structures are very common in the social and behavioral 

sciences… Once you know that hierarchies exist, you see them everywhere” (p. 1).  

Kanji (1999) provided a definition of a nested or hierarchical classification as 

follows: 

 

In the case of a nested classification, the levels of factor B will be said 

to be nested with the levels of factor A if any level of B occurs with 

only a single level of A. This means that if A has p levels, then the q 

levels of B will be grouped into p mutually exclusive and exhaustive 

groups, such that the ith group of levels of A is qi, i.e. we consider the 

case where there are ii
q  levels of B. (p. 128) 

 

Winer (1971) explained, “Effects which are restricted to a single level of a 

factor are said to be nested within that factor” (p. 360). Winer emphasized the 

substantial limitation of nested designs in that they do not permit the testing of an 

interaction effect. 

As an example of a nested design, consider a teacher within school layout. 

Kanji (1999) decomposed the three components (A School factor, B Teacher 

factor, Residual) nested sums of squares as 
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Table 1. Nested design example data from Kanji (1999, p. 129) 

 

 
Schools 

 

I 

 

II 

 

III 

 

IV 

 
Teacher 

 
Teacher 

 
Teacher 

 
Teacher 

  1 2 3   1 2 3   1 2 3   1 2 3 

 
44 39 39 

 
51 48 44 

 
46 45 43 

 
42 45 39 

 
41 37 36 

 
49 43 43 

 
43 40 41 

 
39 40 38 

 
39 35 33 

 
45 42 42 

 
41 38 39 

 
38 37 35 

 
36 35 31 

 
44 40 39 

 
40 38 37 

 
36 37 35 

 
35 34 28 

 
40 37 37 

 
36 35 34 

 
34 32 35 

 
32 30 26 

 
40 34 36 

 
34 34 33 

 
31 32 29 

TT 227 210 193 
 

269 244 241 
 

240 230 227 
 

220 223 211 

X̅T 37.80 35.00 32.17 
 

44.83 40.67 40.16 
 

40.00 38.33 37.83 
 

36.67 37.17 35.17 

ST 630 
   

754 
   

679 
   

654 
  

X̅S 35       41.89       38.72       36.33     
 

Note: TT = Teacher total, ST = School total, X̅T = Teacher mean, X̅S = School mean, Grand mean School total = 2,735 
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Table 2. Kanji (1999, p. 130) ANOVA table 

 

 
df SS Mean Square F 

Schools 3 493.60 164.53 6.47 

Teachers within School 8 203.55 25.44 1.46 

Pupils within Teachers 60 1047.84 17.46 
 

Total 71 1744.99 
  

 
 

where S is the School, T is the Teacher, and E is the residual, where HA: αi = 0 for 

all i and HB: βij = 0 for all i, j. The data for the example are compiled in Table 1, 

and the traditional ANOVA table is presented in Table 2. 

Hierarchical Modeling 

Kreft and De Leeuw (1998) stated that hierarchical modeling tends to address 

research questions that lack independence and other experimental conditions, 

which makes it incompatible with ANCOVA (p. 5). Similarly, Kennedy and Bush 

(1985) noted “Interaction is not a meaningful consideration when one variable is 

nested within another” (p. 52). For an interaction effect to be measured, all factors 

in all levels would need to contain all factors of all other levels. However, nesting 

is advantageous in order to control for unique effects of a specific level of a nest 

on another level (e.g., schools on curriculum). 

There are also more sophisticated multi-level and longitudinal models based 

on these basic layouts (Heck, Thomas, & Tabata, 2010). However, there has been 

little discussion in the literature regarding the impact on the inflation of 

experiment-wise Type I error rates due to the hierarchical testing of treatment 

effects. For example, Kanji (1999) did not address the issue of conducting 

multiple F tests following the results obtained in Table 2 above. If each test is set 

at α = 0.05, then in reality there will be an approximate experiment-wise Type I 

error rate of 0.10. Similarly, Winer’s (1971) presentation of the different types of 

nested designs (2 Factors, Partial, and 3 or more Factors) was not accompanied by 

a discussion on the experiment-wise Type I error rate. 

Methodology 

Design 

A two-factor nested layout or hierarchical classification layout was used. This 

design assumed errors would be normally distributed, with the magnitudes of 
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those errors being independent from either of the two factors. Specifically, the 

hypothetical layout pertained to an analysis of difference of means between 

classes taught by different teachers, with teachers in turn being nested within 

different schools. In this layout, student test scores were simulated for three 

teachers (or classrooms) per each of four schools, as noted in the table below. 

Nested designs are almost always conducted through the use of multiple 

ANOVA tests. Others, such as the t test, are generally not found, because rarely 

are such studies conducted on two schools with two teachers per school (e.g., 

Kanji, 1999; Winer, 1971). Therefore, when a nested layout is found in the 

literature, generally the ANOVA test is required. 

Sampling Plan 

A pseudo-random number generator was used to simulate student test scores. The 

data were generated through Roguewave’s (2012) subroutine libraries for the 

theoretical distributions. Data were simulated to follow the Gaussian, uniform, 

exponential, t (df = 3), and Chi-squared (df = 2) distributions. Variates from the 

Gaussian (i.e., normal) distribution were used to demonstrate the veracity of the 

Fortran coding. Deviates from non-normal distributions are commonly used in 

Monte Carlo studies to illustrate robustness properties with respect to Type I 

errors for departure from population normality. 

Samples were also obtained from real data sets (Micceri, 1989) via the 

Realpops 2.0 subroutine library (Sawilowsky & Fahoome, 2003); Realpops 2.0 is 

a Fortran 90 updated version of the Fortran 77 subroutine library by Sawilowsky, 

Blair, and Micceri (1990). For details on the real data sets, see Micceri (1989) and 

Sawilowsky and Blair (1992). The real data sets to be sampled were the smooth 

symmetric (achievement scores), digit preference (achievement scores), multi-

modal lumpy (achievement scores), and extreme asymmetry (psychometric 

scores). 

Sample sizes were set to n = 2, 10, 30, 45, and 120. Samples of size n = 2 

and n = 120 were selected to represent the theoretical minimum and a reasonable 

maximum study parameter, as is customarily done in Monte Carlo studies. 

Samples of size n = 10, 30, and 45 were selected to represent small, medium and 

large classrooms, respectively. Under the truth of the null hypothesis (and 

homoscedasticity as modeled in this study), unbalanced layouts (i.e., unequal 

sample sizes per teacher or unequal teachers per school) have no impact on Type I 

errors and are therefore not modeled. One million repetitions were executed for 

each combination of study parameters. 
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Table 3. Expected Type I error rates for normal and selected non-normal data at α = 0.05 

and α = 0.01 
 

Distribution / Dataset Resulting alpha (0.05) Resulting alpha (0.01) 

Normal 0.050 0.010 

Exponential1 0.040 0.004 

Uniform1 0.051 0.010 

Digit preference2 0.050 0.012 

Extreme asymmetric2 0.047 0.009 

Multi-modal lumpy2 0.052 0.012 

Smooth symmetric2 0.050 0.010 
 

Note: 1Glass, Peckham, and Sanders (1972, p. 250); 2Sawilowsky and Blair (1992, pp. 356-358); these results 

are for different numbers of repetitions and are based generally on the balanced layout of samples sizes 
n1 = n2 = 20; increasing the number of repetitions and sample sizes will give Type I errors closer to nominal 

alpha 

Analysis 

The appropriate analysis for the nested design in Table 1 above is a series of two 

F tests. Initially, the F test was conducted to determine if there are teacher 

differences. Under ideal conditions, the intent is to fail to reject the null 

hypothesis. This is because it is assumed that the teachers have similar 

qualifications (e.g., certification, experience) in order to be named the instructor 

of record. 

The more important test was then conducted. This is an F test for effects, 

which in this case is for the difference in means between schools. When the null 

hypothesis was false, it meant the new curriculum administered in at least one 

school statistically significantly changed student scores. The F test should reject 

this null hypothesis. 

In the current study, the truth of the null hypothesis is based on the 

generation of pseudo-random numbers. There was an expected Type I error rate 

for each of the component tests. The experiment-wise Type I error rate will be 

determined by the sum of those two Type I error rates. 

This will be accomplished in two ways. The first is unconditional; meaning 

the test for effects (i.e., between schools) will be conducted regardless of the 

results of the test for nesting (i.e., between teachers). The second is conditional; 

meaning the test for effects will only be conducted if and only if a nesting effect is 

non-null. 

Differentiating between unconditional and conditional testing is advisable if 

the general purpose for conducting an intervention study is to determine if there is 

a difference between schools where students did or did not receive an intervention. 
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The impact of teacher differences should be negligible. In other words, the school 

effect should only be tested when it can be first shown there was no teacher effect. 

In order to increase generality of results, the F tests invoked in the Monte 

Carlo simulation were conducted at both the nominal α = 0.05 and 0.01 levels. 

Error Isolation 

The Monte Carlo simulation was conducted using parametric or normal 

theory tests. However, data were also drawn from non-normal distributions. 

Therefore, the issue arises as to where potential results are originating. If the Type 

I error rates do inflate, it is important to determine whether these results are due to 

experiment-wise Type I error inflation or if they are caused by violating the 

assumption of normality. Typical Type I error rates are listed in Table 3. 

Results 

Unconditional 

The test for the nest and the treatment effect are both conducted in this model of 

analysis. Although it does not matter which test is conducted first, for consistency, 

the test for the nest was conducted prior to the test of the effect. A series of tabled 

results are presented, arranged by distribution or dataset type. The entries inside 

each table represent the Type I error rate for the study conditions. 

As predicted by theory (Marascuilo & Serlin, 1988), the results in Tables 4 

and 5 demonstrate that conducting a series of two statistical tests unconditionally, 

regardless of the nature of those tests, produces an experiment-wise Type I error 

rate of approximately twice nominal alpha. Tables 4 and 5 contain a compilation 

of those results. 

In Tables 6 and 7, the Type I error rates are averaged as in the previous two 

tables, except the test for the factor (i.e., School) is conducted conditionally 

subsequent to a significant test of the nesting effect. In order to understand these 

results, consider Bradley’s (1968) definition for two levels of robustness. The 

conservative definition is met when the Type I error rate is within the bounded 

interval [0.5α, 1.5α] inclusive, and the liberal definition is met when the Type I 

error rate is within the bounded interval [0.9α, 1.1α] inclusive. The results for the 

factor (School) are ultra-conservative, falling far below 0.025 when the test is 

conducted at the 0.05 nominal alpha level, and below 0.005 when the test is 

conducted at the 0.01 nominal alpha level. In addition, the impact of being ultra 

conservative means the test for the factor (School) greatly lacks statistical power. 
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Table 4. Summary of average Type I error rates for various distributions/datasets, 

unconditional, α = 0.05 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.050039 0.050070 0.100109 

Chi-square (df=3) 0.050073 0.049391 0.099464 

Exponential 0.050012 0.049008 0.099019 

t (df=3) 0.045460 0.045810 0.091269 

Uniform 0.051215 0.050653 0.101868 

Digit preference 0.050246 0.050201 0.100446 

Extreme asymmetric 0.052485 0.050207 0.102693 

Multi-modal lumpy 0.052758 0.050786 0.103544 

Smooth symmetric 0.050241 0.050236 0.100477 

 
Table 5. Summary of average Type I error rates for various distributions/datasets, 

unconditional, α = 0.01 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.010042 0.010006 0.020048 

Chi-square (df=3) 0.010618 0.010236 0.020854 

Exponential 0.011089 0.010254 0.021343 

t (df=3) 0.008624 0.008728 0.017353 

Uniform 0.010595 0.010286 0.020881 

Digit preference 0.010117 0.010093 0.020210 

Extreme asymmetric 0.012795 0.011150 0.023944 

Multi-modal lumpy 0.011357 0.010315 0.021672 

Smooth symmetric 0.010106 0.010142 0.020247 

 
 
Table 6. Summary of average Type I error rates for various distributions/datasets, 

conditional, α = 0.05 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.050039 0.000357 0.050397 

Chi-square (df=3) 0.050073 0.000472 0.050545 

Exponential 0.050012 0.000489 0.050500 

t (df=3) 0.045460 0.000304 0.045763 

Uniform 0.051215 0.000563 0.051777 

Digit preference 0.050246 0.000425 0.050671 

Extreme asymmetric 0.052485 0.000770 0.053256 

Multi-modal lumpy 0.052758 0.000609 0.053367 

Smooth symmetric 0.050241 0.000411 0.050652 
 

Note: Values in italics are nonrobust according to Bradley’s (1968) liberal definition 
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Table 7. Summary of average Type I error rates for various distributions/datasets, 

conditional, α = 0.01 
 

Distribution/Dataset Nest (Teacher) Factor (School) Experiment-wise 

Normal 0.010042 0.000020 0.010062 

Chi-square (df=3) 0.010618 0.000014 0.010632 

Exponential 0.011089 0.000012 0.011101 

t (df=3) 0.008624 0.000000 0.008624 

Uniform 0.010595 0.000016 0.010612 

Digit preference 0.010117 0.000000 0.010117 

Extreme asymmetric 0.012795 0.000050 0.012845 

Multi-modal lumpy 0.011357 0.000000 0.011357 

Smooth symmetric 0.010106 0.000000 0.010106 
 

Note: Values in italics are nonrobust according to Bradley’s (1968) liberal definition 

Statistical Power Projections 

As previously noted, conducting the test of the factor (i.e., School) conditionally 

will create a lack of statistical power due to the ultra-conservative nature of being 

the second in sequence in a series of two tests. Although it is beyond the scope of 

the current study to conduct a full-scale power spectrum analysis, in an attempt to 

explain the impact on statistical power, a treatment alternative of shift in location 

parameter was introduced. 

The study parameters for this brief power study included setting nominal 

α = 0.05. Data were sampled from the Gaussian distribution, the sample size was 

set at n = 2, and both unconditional and conditional testing were conducted. The 

treatment was modeled by the addition of a constant equal to 0.5σ, where σ = 1 

when the referent distribution is normal, to create an effect size of Cohen’s 

d = 0.5. The magnitude of this effect size is considered moderate (Cohen, 1988). 

The treatment conditions were set in two studies as follows. For Study 1, an 

effect size of 0.5 was added to a single teacher per school. This created a 

difference among the twelve teachers, while leaving the schools equal. For Study 

2, all teachers in a single school were simulated to receive the treatment, creating 

a difference between both the teachers and the schools. Due to the layout of 

nested designs, in this case with teachers contained within the school where they 

work, it is impossible to simulate a change between schools only. The results are 

compiled in Table 8. 

As noted, with the given study parameters, the unconditional and 

conditional power for the test of the nest effect (Teacher) was 0.194. In the 

unconditional layout, the expected Type I error rate of approximately 0.05 was 
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obtained; however, in the conditional, the Type I error rate was ultra-conservative 

at 0.011. The loss in power becomes apparent in Study 2. Although the power was 

approximately the same for the treatment effect (0.121 and 0.114, respectively) 

for the conditional layout, the power obtained for the effect (school) was reduced 

to from 0.141 to 0.089, which is a severe loss in power of approximately 22%. 

Restating and expanding on Kreft and De Leeuw (1998): 

 

Hierarchical data structures are very common in the social and 

behavioral sciences… Once you know that hierarchies exist, you see 

them everywhere… Examples include students nested within schools, 

employees nested within firms, or repeated measurements nested 

within persons. (p. 1) 

 

Similarly, Gonzales (2009) indicated when the “factors are not crossed… we 

cannot use the machinery of the factorial analysis of variance” (p. 313). The 

proposed solution is to turn to nested designs, which are “now a major area of 

research in social science statistics” (p. 314). Gonzales concluded: “Multilevel 

modeling techniques permit simultaneous modeling of all the levels that are 

accounted for in the design” (p. 315). 

Unfortunately, the observations of Kreft and De Leeuw and Gonzales 

overlooked the impact of conducting statistical tests in a hierarchical model in 

general and in nested designs in particular. Gonzales (2009) attempted to forestall 

the impact of multiple testing with the rhetorical question, “Aren’t we capitalizing 

on chance by making so many comparisons?” (p. 336). The first answer given 

was to make nested designs analogous to factorial ANOVA where there appears 

to be no concern in the statistical literature over the inflation of Type I error in 

testing main effects and interactions. However, as noted by Kromrey and 

Dickenson (1995), and discussed at length earlier in this article, this provides no 

safe haven from experiment-wise Type I error inflation. 
 
 
Table 8. Statistical power projections, normal distribution, α = 0.05, n = 2 

 

     
Power 

 
Study Parameters 

 
Unconditional 

 
Conditional 

Recipeint a ES Teacher ES School 
 

Teacher School   Teacher School 

Teacher 0.05 0.5 0.0 
 

0.194 0.054 
 

0.194 0.011 

Teacher and School 0.05 S1 = 0.5 S2-4 = 0.0   0.121 0.114   0.121 0.089 

 

Note: ES = effect size in standard deviations, S1 = School 1, S2-4 = Schools 2, 3, and 4 
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The second argument advanced by Gonzales (2009) to preclude issues of 

multiple testing in nested designs was, “Replication is the best way to deal with 

concerns about multiple tests and inflated Type I error rates” (p. 337). However, 

Sawilowsky (2007b) demonstrated in a Monte Carlo experiment that “replicating 

the same poor design has little chance of contributing accurate evidence for or 

against the effectiveness of a treatment, or for quantifying the magnitude of its 

effectiveness if it exists” (pp. 221-222). 

The third argument advanced by Gonzales (2009) was to apply a correction 

such as the Bonferroni-Dunn technique (p. 285). This is precisely the solution 

strategy previously proposed by Kromrey and Dickenson (1995). However, such 

methods always result in a reduction of statistical power and should be used as a 

last resort. 

Indeed, despite offering these three solution strategies, Gonzales (2009) 

concluded that experiment-wise Type I error rate inflation was something that 

researchers need not take seriously. However, to his credit, Gonzales’ final word 

on this issue was “We admit that we are in the minority among methodologists on 

this particular point” (p. 285). 

Hence, the purpose of this study was to explicate the impact of simple 

nesting designs on experiment-wise Type I error rates via a Monte Carlo exercise. 

Study parameters included popular population distributions and vetted large 

datasets to generate samples using common sample sizes and alpha levels for the 

single nested layout of three teachers per school for four schools. The tests for the 

nest and effect were conducted unconditionally and conditionally. 

Conclusion 

Prior to drawing a conclusion in resolving the issue of the impact of nesting on 

the inflation of experiment-wise Type I error rates, it should be mentioned that 

there are potentially other statistical techniques that could have been incorporated, 

such as the nonparametric Kruskal-Wallis and the rank transform tests. Neither 

test is a solution for the inflation of experiment-wise Type I errors, but it is not 

known if either would help recover some of the lost power. However, because 

neither the Kruskal-Wallis nor the rank transform tests have been developed 

specifically for nested layouts, they were not incorporated in the study. 

As Kromrey and Dickenson (1995) showed, the testing of multiple effects in 

a layout can be safely carried out via invoking a Bonferroni-Dunn or similar 

technique. However, as it stands, the statistical power available to the testing of 

the treatment effect conditional on a significant nested effect is already severely 
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reduced due to the procedure being ultra-conservative. The use of Bonferroni-

Dunn or related methods will only further reduce statistical power. When the 

same issue arose in analyzing the Solomon four-group design (Sawilowsky & 

Markman, 1990a, b; Sawilowsky, Kelley, Blair, & Markman, 1994), a solution 

based on an asymmetric Bonferroni-Dunn (i.e., disproportionate allocation of 

nominal alpha to constituent tests) was proposed by Sawilowsky (1996). 

Nevertheless, Heck et al. (2010) noted more sophisticated nested designs 

“are rapidly growing in their popularity and use” (p. 320), which will only 

exacerbate the issues outlined in this study. Hence, researchers should heavily 

weigh the trade-offs of experiment-wise Type I error inflation for unconditional 

and statistical power loss for conditional nested designs before utilizing them. 
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