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A Comparison Of Equivalence Testing In Combination 
With Hypothesis Testing And Effect Sizes 

 
Christopher J. Mecklin 

Department of Mathematics and Statistics   
Murray State University 

 
 
Equivalence testing, an alternative to testing for statistical significance, is little used in educational 
research. Equivalence testing is useful in situations where the researcher wishes to show that two means 
are not significantly different. A simulation study assessed the relationships between effect size, sample 
size, statistical significance, and statistical equivalence. 
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Introduction 
 
The use of statistical inference, particularly via 
null hypothesis significance testing, is an 
extremely common but contentious practice in 
educational research. Both the pros and the cons 
of hypothesis testing have been argued in the 
literature for several decades. A recent 
monograph edited by Harlow, Mulaik, and 
Steiger (1997) was devoted to these arguments. 
Some classic references criticizing standard 
hypothesis testing include Boring (1919), 
Berkson (1938, 1942), Rozeboom (1960), Meehl 
(1967, 1978), and Carver (1978). More recently, 
some support the continued usage of 
significance testing (Abelson, 1997; Hagan, 
1997, 1998; Harris, 1997; McLean & Ernest, 
1998), while others desire a greater reliance on 
alternatives such as confidence intervals or 
effect sizes (Cohen, 1992, 1994; Knapp, 1998, 
2002; Meehl, 1997; Serlin, 2002; Thompson, 
1998, 2001; Vacha-Haase, 2001), and still others 
advocate an outright ban on significance testing 
(Carver, 1993; Falk, 1998; Hunter, 1997; Nix & 
Barnette, 1998; Schmidt & Hunter, 1997). 
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The references included here are by no 
means close to an exhaustive list. This debate is 
not limited to educational research and the social 
sciences; for instance, it is also being argued in 
ecology (McBride, 1999; Anderson, Burnham, 
& Thompson, 2000). Many in the statistical 
community outside of the niche of educational 
and psychological research, though, are either 
unaware of this debate or feel that it is trivial 
(Krantz, 1999). 

The objective of this paper is not to 
continue this heated argument, but rather to 
borrow the method of equivalence testing from 
biostatistics, as suggested by Bartko (1991), and 
using it in conjunction with standard hypothesis 
testing in educational research. Lehmann (1959) 
anticipated the need for interval testing in his 
classic volume on the theory of hypothesis 
testing. Many of the currently employed 
methods of equivalence testing were developed 
in the 1970’s and 1980’s to address biostatistical 
and pharmaceutical problems (Westlake, 1976, 
1979; Schuirmann, 1981, 1987; Anderson & 
Hauck, 1983; Patel & Gupta, 1984). Rogers, 
Howard, and Vessey (1993) introduced the use 
of equivalence testing methods to the social 
sciences. Serlin (1993) essentially suggested 
equivalence testing when he suggested the use of 
range, rather than point, null hypotheses. 
 

Methodology 
 
Standard null hypothesis significance testing 
dates back to the pioneering theoretical work of 
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Fisher, Neyman, and Pearson. Hypothesis 
testing can be found in almost every textbook of 
statistical methods and thus will not be further 
elaborated on here. Equivalence testing, on the 
other hand, is a newer technique and one that is 
unfamiliar to most researchers in education and 
the social sciences. 

Equivalence testing was developed in 
biostatistics to address the situation where the 
goal is not to show that the mean of one group is 
greater than the mean of another group (i.e. the 
superiority of one treatment to another), but 
rather to establish that two methods are equal to 
one another. A common application of this idea 
in biostatistics is to show that a less expensive 
“generic” medication is as effective as the more 
expensive “brand-name” medication. In 
equivalence testing, the null hypothesis is that 
the two groups are not equivalent to one another, 
and hence rejection of the null indicates that the 
two groups are equivalent. This differs from 
standard significance testing where the null 
hypothesis states that the group means are equal 
and rejection of the null indicates that the two 
groups are statistically different. A common 
methodological mistake in research is to 
conclude that the null hypothesis is true (i.e. two 
groups have equal means) based on the failure to 
reject it. This action fails to recognize that the 
failure to reject the null is often merely a Type II 
error, especially when the sample sizes are small 
and the power of the test is low. 

An explanation of the theory of 
equivalence testing can be found in Berger and 
Hsu (1996); Blair and Cole (2002) give a less 
technical explanation. Here, we will merely 
review the most commonly implemented method 
used for establishing the equivalence of two 
population means for an additive model, where 
the difference of means is considered. The 
multiplicative model, which looks at the ratio of 
means, will not be considered further in this 
paper. The commonly used procedure in 
biostatistics for this problem is to use the “two 
one-sided tests” procedure, or TOST (Westlake, 
1976, 1979; Schuirmann, 1981, 1987). With the 
TOST, the researcher will consider two groups 
equivalent if he can show that they differ by less 
than some constant τ , the equivalence bound, in 
both directions. The constant τ  is often chosen 
to be a percentage (such as 10% or 20%) of the 

mean of the control group, although τ  can also 
be chosen to be a constant that is the smallest 
absolute difference between two means that is 
large enough to be practically important. 

The null hypothesis (i.e. the means are 

different) for the TOST is 0 1 2H µ µ τ:| − |≥ . 
The alternative hypothesis (i.e. the means are 

equivalent) is 1 1 2H µ µ τ:| − |< . 
The first one-sided test seeks to reject 

the null hypothesis that the difference between 
two means is less than or equal to τ− ; similarly, 
the second one-sided test seeks to reject the null 
hypothesis that the difference in the means is 
greater than or equal to τ . If the one-sided test 
with the larger p-value leads to rejection, then 
the two groups are considered to be equivalent. 

For the first one-sided test, we compute 
the test statistic 
 

1 2 2
1

1 21 1p

x x xt
s n n

τ− +
=

/ + /  

where ps  is the pooled standard deviation of the 
two samples and compute the p-value as  
 

1 1( )p P t tν= >  
where tν  is a random variable from the t-

distribution with 1 2 2n nν = + −  degrees of 
freedom.  

The second one-sided test is similar to 
the first. The test statistic is 
 

1 2 2
2

1 21 1p

x x xt
s n n

τ− −
=

/ + /  
 
and the p-value is 
 

2 2( )p P t tν= < . 
 

If we let 1 2max( )p p p= , , then the null 
hypothesis of nonequivalence is rejected if 
p α< . 

The choice of τ  is a difficult choice that 
is up to the researcher. This choice is analogous 
to the selection of an appropriate alpha level in 
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standard significance testing, an appropriate 
level of confidence in interval estimation, or a 
sufficiently large effect size, and should be made 
carefully. Knowledge of the situation at hand 
should be used to specify the maximum 
difference between population means that would 
be considered clinically trivial. Researchers in 
biostatistics typically have the choice made for 
them by government regulation. 

As in standard hypothesis testing, an 
equivalency confidence interval can also be 
constructed. If the entire confidence interval is 

within ( )τ τ− , , then equivalence between the 
groups is indicated. If the entire confidence 

interval is within either ( 0)τ− ,  or (0 )τ,  (i.e. 

zero is not in the interval), then we would reject 
the null hypotheses of both a significance and an 
equivalence test. In that case, we could make the 
somewhat discomforting conclusion that the 
difference of means was both statistically 
significant and equivalent. 

It is important to note that the 
equivalency confidence interval is expressed at 

the 100(1 2 )%α−  level of confidence. Rogers 
et al. (1993) noted that if one performs both a 
standard significance test and an equivalence 
test on the same data set, making either a 
“reject” or “fail to reject” decision, that there are 
four possibilities. These four conditions are 
given in Table 1. 

 
Table 1. Possible Combinations of Significance and Equivalence Testing 

 
Significance Test Equivalence Test Term 
Fail to reject Reject Equivalent 
Reject Reject Equivalent and Different 
Reject Fail to reject Different 
Fail to reject Fail to reject Equivocal 

 
The second condition “equivalent and 

different”, a simultaneous rejection of both 
inferential procedures, could happen in a 
situation where large samples provide “too much 
power”, resulting in a trivial difference in means 
being statistically significant. The equivalence 
test (and the effect size) should detect the small 
magnitude of these mean differences. The fourth 
condition indicates that there is insufficient 
evidence to conclude that the groups are either 
equivalent or different. This would most likely 
occur when the samples are very small and/or 
the group variances are very large. 

The effect size for the difference of 
means is the standardized difference between the 
groups (Fan, 2001). We will use the parameter 
 

1 2µ µδ
σ
−

=
 

 
to represent the effect size of the population, 

where 1µ  and 2µ  are the population means and 
2σ  is the common variance. 

 Of course, δ  is typically unknown and 

needs to be estimated. Cohen’s d (1988) is a 
statistic often used for this purpose. The effect 
size (ES) is found with 
 

1 2

pooled

x xd
s
−

=
 

 
where 
 

2 2
1 1 2 2

1 2

( 1) ( 1)
2pooled

n s n ss
n n

− + −
=

+ −  
 
is the pooled standard deviation of the two 
samples. We stress that Cohen’s d is a sample 
statistic and has a sampling distribution like 
other estimates. 

Cohen (1988) gave some suggestions for 
interpreting d. An effect size of d=0.2 is deemed 
“small”, d=0.5 is “medium”, and d=0.8 is 
“large”. It is becoming, rather regrettably in our 
opinion, common for researchers to rigidly apply 
Cohen’s suggestions. Absolute reliance on 
Cohen’s rule of thumb is as misguided as blind 
adherence to a particular level of significance 
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(e.g. 0 05α = . ). As Thompson (2001) said, “we 
would merely be being stupid in another 
metric.” 
 

Results 
 
Rogers et al. (1993) provided empirical 
examples of the application of equivalence 
testing on data from the psychological literature. 
We will do the same with an example from the 
educational research literature. This will 
demonstrate that there often exist situations 
where a statistically significant difference 
between groups coincides with the groups being 
statistically equivalent. This is the “equivalent 
and different” condition that is typically 
associated with a small to moderate effect size, 
as opposed to the strong effect sizes that 
typically occur with the “different” condition 
and the weak effect sizes that occur with the 
“equivalent” condition. 

Benson (1989), in a study concerning 
statistical test anxiety, presented means and 
variances for a sample of 94 males and 123 
females on seven variables. Using standard 
hypothesis testing methods (i.e. t-tests), 
significant group differences were found for: 
prior math courses, math self-concept, self-

efficacy, and statistical test anxiety. However, 
after calculating Cohen’s d as an effect size (ES) 
measure and the use of the TOST equivalence 
test, we see that only prior math courses and 
statistical test anxiety are “different” between 
males and females. Not surprisingly, the two 
largest effect sizes are found for these two 
variables. Table 2 shows results of both 
traditional significance and equivalence tests for 
the Benson data. 

Statistical significance was defined as a 

rejection of 0H  with 0 05α = .  and equivalence 

was defined as a rejection of 0H  with 
0 10α = . . The reason for the two different 

significance levels is because while a traditional 
significance test at level α  corresponds to a 
100(1 )%α−  confidence interval, an 
equivalence test at level α  corresponds to a 
100(1 2 )%α−  equivalence interval. We 
selected 0 2τ = .  (i.e. 20% of the mean of the 
female group). This choice was arbitrary and by 
no means should be taken as a choice 
recommended for all equivalence problems. The 
results could differ with different choices for τ . 

 
Table 2. Comparing Significance and Equivalence Testing for the Benson Data 

 
 Descriptive Statistics  
 Males      

(N=94) 
Females 
(N=123) 

  

Variable M SD M SD Effect 
Size 

Sig. p-
value 

Equiv. p-
value 

 Category 

GPA 3.05 0.44 3.16 0.47  -0.24 0.040 <0.001 Equiv. & 
Diff. 

Prior Math 
Courses 

3.45 2.14 2.20 2.01   0.60 <0.001 0.998  Different 

Math Self-
Concept 

25.77 5.96 23.20 7.05 0.39 0.002 0.012 Equiv. & 
Diff. 

Self-efficacy 12.68 1.77 11.62 2.30 0.51 <0.001 <0.001 Equiv. & 
Diff. 

General Test 
Anxiety 

36.38      0.49 40.62 12.25 -0.37 0.004 0.007   Equiv. & 
Diff. 

Achievement 32.56      5.68 32.26 7.55 0.04 0.374 <0.001  Equivalent 
Statistical 
Test Anxiety 

32.65    12.57 41.84 14.83 -0.66 <0.001 0.663  Different 
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For a test of statistical significance, 

power is the probability of rejecting the null 
hypothesis that the population means are equal 
when they are in fact not equal.  The power of 
an equivalence test is the probability of rejecting 
that the means are different by at least some 
equivalence bound τ  when the means are in fact 
equivalent (i.e. differ by less than τ ).  
 Of interest to us is the probability of 
rejecting both the null hypotheses (of non-
significance and non-equivalence) 
simultaneously. We designed a small simulation 
study to assess the power of simultaneously 
concluding that two means are both statistically 
different and equivalent. 

As is always the case with Monte Carlo 
studies, the choices of simulation parameters are 
difficult to make and are somewhat arbitrary. 
We endeavored to simulate situations that were 
likely to be encountered in actual quantitative 
data analysis. We also made some simplifying 
assumptions to keep the number of simulations 
and associated tables and figures to a reasonable 
level.  

We assumed that both of our 
populations were always normally distributed 
with a common variance 2 1σ = . Six different 
sample sizes per group 
(n=10,20,50,100,200,500) were chosen; only 
equally sized groups were used in this study. Six 
different values for the effect size parameter 
( 0,0.1,0.2,0.3,0.4,0.5δ = ) were used, 
reflecting situations from no effect (i.e. 
equivalent population means) to a “medium” 
effect size (i.e. population means that differ by 

one half of a standard deviation). Three different 
equivalence bounds ( 0.1,0.2,0.4τ = ) were 
used, defining the minimum difference between 
means that is practically important (i.e. non-
equivalent) to be 10%, 20% or 40% of 1µ . 

Hence, we have a fully crossed design 
with 6 X 6 X 3 = 108 cells. Within each cell (i.e. 
combination of sample size, effect size, and 
equivalence bound), 10000 simulations were 
run. The R statistical computing environment 
was used to conduct the simulations. Each 
simulation consisted of generating n random 
normal variates with mean 0 δ+  and variance 1 
and a second, independent set of n random 
normal variates with mean 0 and variance 1. The 
independent samples t-test and the TOST with 
equivalence bound τ was conducted for each 
simulation, and the number of rejections of each 
test, along with the number of simultaneous 
rejections of both procedures and the number of 
failures to reject either procedure, were noted. 

Tables 3 through 8 show the number of 
rejections of the null hypotheses of the 
equivalence test, both tests, the significance test, 
and neither test. Columns involving the 
equivalence test are in italics; columns involving 
the significance test are in boldface. Note that 
the power of the equivalence test for each 
situation can be found by dividing the sum of the 
italicized columns by 10000. Similarly, the 
power of the significance test is obtained by 
dividing the sum of the columns in boldface by 
10000. 
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Table 3. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0δ =  
 

  Number of Rejections (10000 Simulations) 
Equivalence Bound τ  Sample Size 

N Equivalent Both Different Neither
0.1 10 0 0 506 9494

 20 0 0 500 9500
 50 0 0 476 9524
 100 0 0 535 9465
 200 0 0 504 9496
 500 2337 0 511 7152

0.2 10 0 0 496 9504
 20 0 0 507 9493
 50 0 0 485 9515
 100 1063 0 546 8391
 200 5121 0 514 4365
 500 9386 3 490 121

0.4 10 10 0 486 9504
 20 370 0 469 9161
 50 5279 0 481 4240
 100 8757 0 457 786
 200 9493 444 63 0
 500 9483 517 0 0

 
Table 4. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.1δ =  

 
  Number of Rejections (10000 Simulations) 

Equivalence Bound τ  Sample Size 
N Equivalent Both Different Neither

0.1 10 0 0 535 9494
 20 0 0 606 9500
 50 0 0 817 9524
 100 0 0 1118 9465
 200 0 0 1652 9496
 500 709 0 3366 7152

0.2 10 0 0 521 9504
 20 0 0 605 9493
 50 1 0 786 9515
 100 793 0 1090 8391
 200 3452 0 1687 4365
 500 6192 15 3486 121

0.4 10 11 0 565 9424
 20 347 0 622 9031
 50 4759 0 772 4469
 100 7902 0 1044 1054
 200 8361 1196 443 0
 500 6521 3475 4 0
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Table 5. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.2δ =  
 

  Number of Rejections (10000 Simulations) 
Equivalence Bound τ  Sample Size 

N Equivalent Both Different Neither
0.1 10 0 0 727 9273

 20 0 0 962 9038
 50 0 0 1727 8273
 100 0 0 2865 7135
 200 0 0 5193 4807
 500 16 0 8880 1104

0.2 10 0 0 699 9301
 20 0 0 950 9050
 50 0 0 1678 8322
 100 408 0 2908 6684
 200 951 0 5207 3842
 500 915 7 8924 154

0.4 10 8 0 734 9258
 20 296 0 967 8737
 50 3397 0 1677 4926
 100 5485 0 2890 1625
 200 4886 2800 2314 0
 500 1167 8534 299 0

 
Table 6. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.3δ =  

 
  Number of Rejections (10000 Simulations) 

Equivalence Bound τ  Sample Size 
N Equivalent Both Different Neither

0.1 10 0 0 947 9053
 20 0 0 1540 8460
 50 0 0 3144 6856
 100 0 0 5594 4406
 200 0 0 8482 1518
 500 0 0 9973 27

0.2 10 0 0 985 9015
 20 0 0 1501 8499
 50 0 0 3203 6797
 100 104 0 5681 4215
 200 95 0 8524 1381
 500 19 1 9973 7

0.4 10 11 0 991 8998
 20 225 0 1563 8212
 50 2061 0 3133 4806
 100 2796 0 5602 1602
 200 1516 2374 6110 2167
 500 23 6115 3862 0
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Table 7. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.4δ =  
 

  Number of Rejections (10000 Simulations) 
Equivalence Bound τ  Sample Size 

N Equivalent Both Different Neither
0.1 10 0 0 1335 8665

 20 0 0 2333 7667
 50 0 0 5015 4985
 100 0 0 8069 1931
 200 0 0 9769 231
 500 0 0 10000 0

0.2 10 0 0 1344 8656
 20 0 0 2341 7659
 50 0 0 5077 4923
 100 23 0 8110 1867
 200 1 0 9784 215
 500 0 0 10000 0

0.4 10 9 0 1402 8589
 20 164 0 2346 7490
 50 933 0 5099 3968
 100 932 0 8075 993
 200 232 806 8962 0
 500 0 1025 8975 0

 
Table 8. Simulated Power of the Tests of Statistical Equivalence and Significance, Effect Size 0.5δ =  

 
  Number of Rejections (10000 Simulations) 

Equivalence Bound τ  Sample Size 
N Equivalent Both Different Neither

0.1 10 0 0 1897 8103
 20 0 0 3383 6617
 50 0 0 6981 3019
 100 0 0 9428 572
 200 0 0 9985 15
 500 0 0 10000 0

0.2 10 0 0 1804 8196
 20 0 0 3437 6563
 50 0 0 6905 3095
 100 1 0 9429 570
 200 0 0 9987 13
 500 0 0 10000 0

0.4 10 7 0 1866 8127
 20 117 0 3425 6458
 50 370 0 6936 2692
 100 236 0 9378 386
 200 13 108 9879 0
 500 0 28 9972 0
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Conclusion 
 
The data originally collected and analyzed with 
traditional significance tests by Benson (1989) 
showed a statistically significant difference 
between the means of male and female statistics 
students on six variables (GPA, number of prior 
math courses, math self-concept, self-efficacy, 
general test anxiety, and statistical test anxiety) 
and failed to find a significance for only one 
variable (achievement). We computed Cohen’s d 
as an effect size. Not surprisingly, the smallest 
absolute effect size of 0.04 was found for the 
non-significant variable, while the absolute 
effect sizes of the six significant variables 
ranged from 0.24 to 0.66. 

We then re-analyzed Benson’s data 
using the TOST procedure for testing for 
statistical equivalence. This analysis showed that 
only two variables, number of prior math 
courses and statistical test anxiety, were 
“different” (i.e. significant and not equivalent). 
Not coincidentally, these were the two variables 
with the strongest absolute effect sizes of 0.60 
and 0.66. The non-significant variable 
(achievement) was found to be statistically 
equivalent, and the absolute effect size was 
virtually zero. Four of the variables (GPA, math 
self-concept, self-efficacy, and general test 
anxiety) yielded conflicting results of 
“equivalent and different” since they rejected the 
null hypotheses of both the statistical and 
equivalence tests. It is likely that the difference 
in the means of these four variables, while 
statistically significant, is trivial. The absolute 
effect sizes of these four variables ranged from 
0.24 to 0.51. This encompasses a range of effect 
sizes that is often classified as “small” to 
“medium” (Cohen, 1988), notwithstanding 
Lenth’s (2001) warnings against using “canned” 
effect sizes. 

We noticed that whenever the effect size 
δ  is less than the equivalence bound τ , then 
the power of the equivalence test was 
approaching unity as n increased. This 
convergence was slow when δ  was nearly equal 
to τ . Essentially, if the effect size parameter is 
less than the minimum difference that the 
researcher considers to be practically important 
(i.e. the minimum difference between means 

large enough to matter), we will reject the null 
of the TOST and conclude equivalence with 
power increasing to unity with larger sample 
sizes. 

If δ τ> , the power of the significance 
test approaches unity and the power of the 
equivalence test approaches zero as the sample 
size increases. This is the situation where the 
effect size parameter exceeds the specified 
maximum for practical importance; we will 
reject the t-test and conclude statistical 
significance with power increasing to unity as 
the sample size increases. 

When δ τ= , then the power of the 
equivalence test will approach twice the nominal 
alpha level. This occurs because the effect size 
parameter happens to coincide with the specified 
equivalence bound. Rejecting the TOST (i.e. 
concluding equivalence) is a type I error, made 
with probability 2α . The probability is twice 
the nominal α  since an equivalence test at level 
α  corresponds to a 100(1 2 )%α−  equivalence 
interval.  

When 0 δ τ< < , then the power of 
both the significance and equivalence tests 
approaches unity (often slowly) as n increases. 
This is the situation where the null hypothesis of 
a significance test is false (i.e. the difference of 
means is not equal to zero), but the true 
difference is too small to be considered 
practically significant, where τ  is the minimum 
difference between means that is considered 
important. 

It appears to be somewhat common with 
real data to have situations where the tests of 
statistical significance and equivalence are 
simultaneously rejected for reasonable choices 
of significance level α  and equivalence bound 
τ . Our re-analysis of the Benson (1989) data 
yielded 4 simultaneous rejections out of 7 
variables. 

The simulated power of simultaneous 
rejection showed that the probability of 
simultaneous rejection was low when the 
assumptions of the inferential tests (i.e. 
normality, equal variances, equal sample sizes 
between groups) were true except when both n 
and τ  were large. It is possible that 
“simultaneous rejection” will be more likely 
with real data than (at least our) simulated data 
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because real data will surely violate the 
normality and homoscedasticity assumptions. 
We speculate that simultaneous rejection will be 
more common, and thus potentially more 
problematic for the researcher using equivalence 
testing in conjunction with standard hypothesis 
testing, when the data is non-normal and 
heteroscedastic. 

Sawilowsky and Yoon (2002) 
demonstrated that large effect sizes could be 
found in situations where the results of a 
hypothesis test are ‘not significant’ (i.e. p>.05). 
Similarly, we found the magnitude of effect 
sizes obtained from the statistical re-analysis of 
typical educational research data to be troubling. 
Benson’s data was of a decent size (groups of 94 
and 123 subjects), but an effect size as large as 
0.51 yielded both statistical significance 
(rejecting that the male mean was equal to the 
female mean) and equivalence (rejecting that the 
absolute difference of the male and female 
means were within a constant τ ). We make the 
conjecture that the effect size conventions of 
Cohen (i.e. 0.2 is small, 0.5 is medium, 0.8 is 
large) might not be large enough. It is even 
possible that making any recommendation about 
the desired magnitude of an effect size 
independent of the sample sizes and variability 
of the populations might be futile (Lenth, 2001). 

It would be desirable to extend the 
simulation study to consider several scenarios 
ignored here. In particular, more attention needs 
to be given to situations where one or more of 
the following conditions are true:  

 
1. The populations are non-normal 
2. The variances are not equal 
3. The sample sizes of the groups are not 

equal. 
 

It would also be desirable to analytically 
determine the power function for simultaneous 
rejection of the significance and equivalence 
tests, if possible. We will continue to strive for a 
greater understanding of the link between the 
effect size and the results of the significance and 
equivalence tests. It appears that sole reliance on 
any standard methodology, be it hypothesis 
testing, confidence intervals, effect sizes, or 
equivalence testing is ill advised. 
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