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The Pickands dependence function characterizes an extreme value copula, a useful tool in
the modeling of multivariate extremes. A new estimator is presented along with its
convergence properties and performance through simulation.
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Introduction

Tail dependence is an important issue in several areas like finance, environment,
engineering, among others, given the concern on the impact of the occurrence of
joint extreme events. The copula concept provides a margin-free tool to describe
the dependence structure of a random vector. Focusing on the bivariate case from
now on, given a random pair (X, Y) with joint distribution function (df) H, then it
may be represented as

H(xy)=C(F(x).G(y))
for all x,y € R, where F and G are the marginal df's of X and Y, respectively. We
always assume that F and G are continuous and thus copula C is unique (Sklar,

1959). Considering U = F(X) and V = G(Y), we may also write

C(u,v)=P(U <u,V <v)

for all u,v € [0, 1]. Extreme-value copulas arise in the limit of an increasing
sample length of copulas of componentwise maxima of independent or strongly
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mixing stationary sequences (Deheuvels, 1984; Hsing, 1989). Extreme-value
copulas are completely determined by the Pickands dependence function,
A: [0,1] - [1/2,1], which is convex and satisfies tv (1-t) < A{) <1,
vt € [0, 1], where x V' y = max(x, y). More precisely, forall 0 < u,v <1,

c(u,v) =exp[log(uv)A(MB 1)

log(uv)

Modeling applications of extreme-value copulas can be seen in Tawn (1988),
Ghoudi, Khoudraji, and Rivest (1998), Frees and Valdez (1998), Coles, Heffernan,
and Tawn (1999), Cebrian, Denuit, and Lambert (2003), McNeil, Frey, and
Embrechts (2005), Salvadori, De Michele, Kottegoda, and Rosso (2007), amongst
others. For instance, in volatile and bear markets, a dependence measure often
used in lieu of Pearson's correlation to account for extreme events dependence is
the so-called tail dependence coefficient (TDC) introduced in Sibuya (1960),
usually denoted A, which corresponds to 2(1 — A(0.5)). The TDC ranges in [0, 1].
The null boundary case corresponds to asymptotic tail independence, a very
important topic in the statistics of extremes. Indeed, this case may not correspond
to perfect independence but to a “residual" one that must be taken into account in
order to avoid misleading risk estimates. See, e.g., Beirlant, Goegebeur, Segers,
and Teugels (2004) and references therein.

Other representations than (1) may be considered, e.g., based on the stable
tail dependence function, I: [0, 0)? — [0,00), which is convex, homogeneous of
order one (i.e., l(ax, ay) = al(x,y) for a>0), satisfies x vy <I(x,y) <x+y,
vx,y =0, and I(x, y) = (x + y)A(y/(x + y)), thus leading to

C(u,v)= exp(—l (~log(u),~log (v)))
Representation (1) can also be formulated as
C(WH,W‘) =wA®

and thus, as well,
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Therefore, statistical inference on a bivariate extreme-value copula can be
reduced to the estimation of a univariate Pickands dependence function (or a
bivariate stable tail dependence function, although they are related).

Several parametric and non-parametric estimators of the Pickands
dependence function are found in the literature. A wide survey on this topic is
presented in Beirlant et al. (2004). Nonparametric estimation has been essentially
based on the Pickands estimator (Pickands, 1981) and on the Capéraa-Fougéres-
Genest (CFG) estimator (Capéraa, Fougeres, & Genest, 1997). Further
modifications of the former can be seen in Deheuvels (1991) and Hall and Tajvidi
(2000), while the latter can be found in Jiménez, Villa-Diharce, and Flores (2001),
Zhang, Wells, and Peng (2008), and Gudendorf and Segers (2011); for both, see
Segers (2007). All these approaches assume known margins, which is rather
unrealistic in practice. Nonparametric versions of the Pickands and CFG
estimators based on unknown margins are addressed in Abdous and Ghoudi
(2005), Genest and Segers (2009), and Gudendorf and Segers (2012).

Pickands Dependence Function: Estimators and Properties

Let (X, Y) be a random pair with joint df H and continuous marginal df's F and G,
respectively, such that, U = F(X) and V = G(Y). Let C be a bivariate extreme-value
copula, i.e. of the form (1), characterizing the dependence between X and Y. Thus
C is the df of the random pair (U, V).

Consider S = —log(U), T = —log(V) and

&(O)zli_t/\%,0<t<1

with £(0) =S and (1) = T. The random variables (rv's) S and T are Exponential
with unit mean value and &(t) is also exponentially distributed with mean values

E(&(1)) =ﬁ and  E(log(&(t)))=—log(A(t))-7

where vy denotes the Euler's constant Iowlog(x)e’xdx ~0.577. These relations are

the bases of, respectively, the Pickands and the CFG estimators by considering the
empirical counterparts. More precisely, for a random sample (X1, Y1),..., (Xn, Yn)
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dlstrlbuted as (X, Y) such that Uij=F(Xi) and Vi= G(Yi), Si=—log(Ui) = &i(0),
= —log(Vi) = &i(1) foralli=1,..., n, with

gi(t):li/\%,0<t<l

we have

and

Iog(ACFG )-—y——Zlog( )

Whenever the margins F and G are unknown, the natural approach is to consider
the respective marginal empirical df's F, and G, and take

A G, (Y. 1 &
RIS L SR

n+1 n+143

~ nFR (X,
Ui

n+1 n+1
where I is the indicator function. The replacement of U; and V; everywhere in the
expressions above by, respectively, Ui and \/I , leads now to

1 1.
~ t) =Hi§,§i (t)
and
Iog(AfFG (t)) = —y—%glog(éi (t))

In order to satisfy the endpoint constraints A(0) = A(1) =1, endpoint
corrected versions were considered, namely,
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and
log (A% (1)) =log(A;™ (1)) - (1-t)log (A5 (0))-tlog (A5 (1))

Further developments on this topic can be found in Segers (2007). Similar
procedures can be applied to the case of unknown marginal estimators and thus

derive A7 (t) and AS™ (t), although they are asymptotically equivalent to the
respective uncorrected A (t) and AS™(t), as shown in Genest and Segers

(2009). Another correction of the Pickands estimator based on Hall and Tajvidi
(2000) is to consider

with

+
'I'.=—Iog(\7.)=2°;i 1), i=1,..., n. We have A"(0)=A"(1)=1 and also

(
AT (t)>tv(1-t) for all 0<t<1. Relation A’ (t)=A”(t)/A”(0) means that
AT (t) and A”(t) are asymptotically equivalent, too.

The asymptotic properties of estimators A’ (t) and AS™ (t), derived in
Genest and Segers (2009), are based on the empirical copula

1 n

C,(uv)= ﬁ;ﬂ{uisw}sv} ,Vu,ve[0,1]

More precisely, Genest and Segers’ Lemma 3.1 states that, for all t € [0, 1],
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1 1 _J':Cn(u“,u‘)du
i aw) ¥
VA (1og A% (t) - log A(1)) IOC”EU,OQ’;‘ Jau @

where C, is the empirical copula process Jﬁ(én—c). Now consider

a, =+/n(C,~C), with

1 n
C, (U'V) = H;H{UiSUMSV} , VU,ve [O'l]

The classical theory of empirical processes states that the weak limit o of the
process a, =+/n (C,—C) isa centered Gaussian process with covariance

cov(a(u,v),a(u,v))=C(uav,u’Av')—C(u,v)C(u,V'), vu,v,u’,v' €[0,1]

The weak limit C of the process C, = \/ﬁ(én—C) is closely related to a, namely,
C(u,v)=a(u,v)-

%a(u,l)_%a@v)» v(u.v)e [0’1]2

If A is twice continuously differentiable on (0, 1) and supgo<t<ut(1-—
t)A"(t) < oo, then the following weak convergence results hold, as n — oo, in the
space C([0, 1]) of continuous and real-valued functions on [0, 1] equipped with

the topology of uniform convergence:

1((2(u“,ut)du

A% = (A2 (1)~ A1) A7 (1) =—A2 (1) [} . (5)

and
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A% = Jn(ASS (1) - A(t)) > AT (1) = A(t) fu 6)

u
o ulog(u)

See Genest and Segers (2009, Theorem 3.2) and Gudendorf and Segers (2012,
Theorem 1).

In the case of known margins, the results (3) and (4) hold with Cn replaced
by Cn and thus C replaced by an, as well as process C replaced by a in (5) and (6).
These were already proved in Segers (2007).

The new estimator can be stated for the Pickands dependence function based
on Ferreira and Ferreira (2012), and will be denoted FF. Define

n(t) —U 1(1-t) VVJJt

with n(0) = U and n(1) = V. By Proposition 3.1 of Ferreira and Ferreira (2012),
we have

By an analogous reasoning used above, let
n (1) =U" v, 0<t<l

with 1i(0) = Uj and ni(1) = Vi, i = 1,..., n. Thus, in the case of known margins we
derive

Z—Zm

(1+AFF (t)) n

and, for unknown margins,
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A () =0 v, o<t<l

with U, and V, as defined in (2). Because

13 1G,, 1S 1&Gy: 18 i 1
—_ n. O = — U:— n. 1 = — .= — = —
nizﬂ:n'( ) nizﬂ: ' n;“-() n; nzll 2
the estimator already satisfies the constraints A7 (0)=A"(1)=1. The following

statements are direct adaptations of the results above concerning Pickands and
CFG estimators.

Proposition 1: For all t € [0, 1],
1 1 ! It ot
n ~ — =1 C (u,u )du 7
J_[1+A§F(t) 1+A(t)J Io ”( ) @
Proof: Observe that

Py T W TR ¥ TR TR KA G LY

Proposition 2: If A is twice continuously differentiable on (0, 1) such that
SUpo <t<1t(1 — t)A"(t) < oo, we have

AT = (AT (1) -A(1)) SAF (1) =—(A()+1) [[C(uu)du  (8)

in C([0, 1]) equipped with the topology of uniform convergence.

Proof: Considering u = e—® in the integral of (7),
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Jﬁ[l+A1:§F (t) 1+i(t)j =], Co(e™ e )n(s)ds (9

with h(s) = e—s. The proof of the convergence of the integral in (9) towards
J‘:C(e’s(l’t),e‘“)h(s)ds runs as the one of Theorem 1 in Gudendorf and Segers

(2012). Now the assertion follows by applying the functional delta method (van
der Vaart & Wellner, 1996).

For the case of known margins, replace f:n by Cn, Cn by an, and C by a,

respectively, in (7) and (8). See Gudendorf and Segers (2012) and references
therein. Furthermore, Propositions 1 and 2 are extensible to the d-variate case for
d > 2 as stated, respectively, in Lemma 1 and Theorem 1 of Gudendorf and Segers
(2012).

Simulations

Consider the most interesting case for practical purposes of unknown margins,
where the performance of the new estimator is examined through simulation and
compared with the corrected version of CFG and Hall and Tajvidi estimators.
Specifically, 1000 random samples of size n=100, and of n=1000 were
generated for each of the following models: logistic, asymmetric logistic, Husler-
Reiss, negative logistic, asymmetric negative logistic, bilogistic, negative
bilogistic, Dirichlet, and asymmetric mixed. A description of the latter can be
found in Beirlant et al. (2004).

The empirical mean integrated squared error,

1/ A 2
I\/IISE:E(J‘O(An (t)—A(t)) dt), was computed for each estimator and the

obtained values are reported in Tables 1-3 (the numbers in brackets correspond to
standard errors). The values of the parameters of each model were chosen in order
to have the TDC (1 = 2(1 — A(0.5))) approximately 0.5 and the boundary cases 0
and 1, corresponding to Tables 1, 2, and 3, respectively. In the unit bound case in
Table 3, i.e., A=1, the considered asymmetric versions coincide with the
respective symmetric models and thus omitted. Also, in the asymmetric mixed
model, the largest value achieved by A correspond to 0.5 already reported in Table
1. Observe that the unit TDC scenario presents the smallest errors. Note the FF
estimator has an overall good performance, particularly in the boundary cases of
asymptotic tail independence (1~ 0) and A =~ 1 (see Tables 2 and 3).
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Table 1. Empirical MISE values obtained for estimators CFG, HT and FF of the Pickands
dependence function where the considered parameters for each model are such that

A=05
n = 1000 CFG HT FF
Log 4.070x10°  (3.011x10°) 5.607x10°  (5.607x10%) 4.569x10°  (4.569x10°)
Alog  8.383x10*  (6.200x10°) 8.403x10%  (6.199x10%) 8.496x10%  (6.268x10°)

HR  3.587x10°  (3.046x10°) 4.840x10°  (4.170x10°) 3.947x10°  (3.364x10%)
Neglog 4.181x10°  (3.306x10°%) 5.560x10°  (4.444x10%) 4.609x10°  (3.669x10°)
Aneglog  6.809x10°  (3.952x10°) 8.318x10°  (4.819x10%) 6.858x10°  (3.995x10°)
Bilog 5.032x10*  (3.897x10°) 5.221x10*  (3.942x10%) 5.115x10*  (3.948x10%)
Negbilog ~ 1.063x10*  (6.854x10%) 1.200x10%  (7.558x10°) 1.123x10%  (7.204x10°)
Dir  4.114x10%  (3.114x10%) 4.342x10*  (3.205x10°) 4.191x10*  (3.150x10%)

Amix  4.156x10°  (3.063x10%) 5.621x10°  (4.319x10%) 4.604x10°  (3.401x10°)

n =100 CFG HT FF
Log 2.890x10*  (2.861x10°) 4.181x10*  (4.140x10°) 3.656x10*  (3.323x10%)
Alog  1.289x10°  (7.866x10%) 1.436x10°  (8.335x10%) 1.403x10°  (8.386x10°%)

HR  3.544x10*  (3.035x10°%) 4595x10*  (4.011x10°) 4.043x10*  (3.385x10%)
Neglog 3.948x10*  (3.246x10%) 5.368x10*  (4.482x10%) 4584x10*  (3.713x10%)
Aneglog  6.150x10*  (3.735x10°) 7.542x10*  (4.435x10%) 6.787x10*  (4.027x10°)
Bilog  8.055x10*  (5.198x10°) 9.542x10*  (6.003x10%) 8.872x10*  (5.600x10%)
Negbilog ~ 4.231x10*  (3.147x10%) 5.505x10*  (4.182x10%) 4.786x10*  (3.489x10%)
Dir  7.399x10“  (4.869x10%) 8.956x10*  (5.916x10%) 8.117x10*  (5.214x10°)

Amix  4.249x10“  (3.462x10%) 5.617x10*  (4.730x10%) 4.748x10*  (3.752x10%)

Note: Numbers in brackets correspond to standard errors

Table 2. Empirical MISE values obtained for estimators CFG, HT and FF of the Pickands
dependence function, in the case of asymptotic tail independence (A = 0)

n = 1000 CFG HT FF
Log 1.020x10*  (5.090x10°) 1.997x10*  (1.017x10°) 7.133x10°  (3.616x10%)

Alog  9.932x10°  (4.885x10°) 2.103x10*  (1.042x10%) 6.230x10°  (3.007x10°)

HR  1.054x10“  (5.203x10%) 2.212x10*  (1.068x10%) 7.121x10°  (3.499x10°)
Neglog 1.021x10*  (5.161x10%) 2.052x10*  (1.065x10%) 6.792x10°  (3.502x10°)
Aneglog  1.032x10*  (5.171x10°) 2.101x10*  (1.081x10%) 6.890x10°  (3.468x10°)
Bilog 1.025x10*  (5.413x10%) 2.093x10*  (1.145x10%) 7.438x10°  (4.023x10%)
Negbilog  1.042x10*  (5.279x10°%) 2.142x10*  (1.123x10%) 7.067x10°  (3.565x10°)
Dir 1.022x10*  (5.162x10%) 2.072x10*  (1.060x10%) 7.737x10°  (4.080x10%)

Amix  1.054x10*  (5.248x10%) 2.100x10*  (1.054x10%) 7.307x10°  (3.698x10%)

Note: Numbers in brackets correspond to standard errors
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Table 2, continued.

n =100 CFG HT FF
Log 1.404x103  (6.483x10°) 2.232x10°  (1.120x10%) 9.676x10*  (4.309x10°)

Alog  1.349x10°  (6.389x10°) 2.165x10°%  (1.107x10%) 9.250x10%  (4.308x10%)

HR  1.350x10°  (6.161x10%) 2.121x10°  (1.096x10%) 9.128x10*  (3.889x10%)
Neglog 1.344x10%  (6.274x10%) 2.181x10°  (1.128x10%) 8.938x10*  (3.966x10°%)
Aneglog  1.441x10°  (6.655x10°) 2.141x10°  (1.064x10%) 1.001x10*  (4.488x10°)
Bilog 1.339x10°  (6.351x10%) 2.123x10°  (1.052x10%) 9.496x10*  (4.462x10%)
Negbilog 1.236x10%  (5.570x10°) 1.989x10°  (1.035x10%) 8.316x10%  (3.542x10%)
Dir  1.345x10%  (6.343x10%) 2.087x10°%  (1.047x10%) 9.509x10*  (4.345x10%)

Amix  1.400x10%  (6.608x10%) 2.190x10°  (1.139x10%) 9.676x10*  (4.348x10%)

Note: Numbers in brackets correspond to standard errors

Table 3. Empirical MISE values obtained for estimators CFG, HT and FF of the Pickands
dependence function, inthe case A =1

n =100 CFG HT FF
Log 3.874x10° (2.394x107) 3.539x10° (2.262x107) 6.118x10%0 (3.926x10710)

HR 4.930%x101° (2.935x10°9) 4.413x10° (2.768x10°%) 5.571x101° (3.625x101°)
Neglog 4.001x10° (2.451x107) 3.709x10° (2.378x107) 5.826x10%0 (3.753x1010)
Bilog 3.913x107° (2.400%x10710) 3.610x10° (2.312x107) 6.220x10%0 (4.000%x10710)
Negbilog 4.131x10° (2.464x1079) 3.517x10° (2.276x10°%) 5.985x1010 (2.869x1071°)
Dir 2.890x10% (2.612x10%) 2.154x107 (3.900%x10) 8.186x10% (2.721x10%)

n =100 CFG HT FF
Log 1.530x107 (7.468x1078) 1.352x107 (7.366x108) 1.342x10°® (1.062x10°%)

HR 1.872x107 (9.113%x10%) 1.627x107 (8.760%x10%) 1.903%x10°® (1.487x10%9)
Neglog 1.492x107 (7.352x10%9) 1.348x107 (7.360%x10) 1.279%x10°8 (1.018x109)
Bilog 1.516x107 (7.519x108) 1.342x107 (7.256x108) 1.606x10® (1.035x10°%)
Negbilog 1.519x107 (7.513x10°8) 1.361x107 (7.457x108) 1.265x10°® (1.003x10°8)
Dir 2.074x10® (5.517x107) 2.033x10° (6.234x107) 1.250x10°® (4.285x107)

Note: Numbers in brackets correspond to standard errors

Conclusion

A new estimator for the Pickands dependence function, an important map in
generating extreme value copulas, was presented. It was found via simulation that
it may be used as an alternative to the well-known CFG estimator, especially in
the limiting situation of asymptotic tail independence. Thus, it may have a
promising performance in testing independence, a crucial issue in statistics of
extremes.
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