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When running a confirmatory factor analysis (CFA), users specify and interpret the pattern 
(loading) matrix. It has been recommended that the structure coefficients, indicating the 
factors’ correlation with the observed indicators, should also be reported when the factors 
are correlated (Graham, Guthrie, & Thompson, 2003; Thompson, 1997). The aims of this 

article are: (1) to note the structure coefficient should be interpreted with caution if the 
factors are specified to correlate. Because the structure coefficient is a zero-order 
correlation, it may be partially or entirely a reflection of factor correlations. This is 
elucidated by the matrix algebra of the structure coefficients based on the example in 
Graham et al. (2003). (2) The second aim is to introduce the method of Pratt’s (1987) 
importance measures to be used in a CFA. The method uses the information in the structure 
coefficients, along with the pattern coefficients, into unique measures that are not 

confounded by the factor correlations. These importance measures indicate the proportions 
of the variation in an observed indicator that are attributable to the factors – an 
interpretation analogous to the effect size measure of eta-squared. The importance 
measures can further be transformed to eta correlations, a measure of unique directional 
correlation of a factor with an observed indicator. This is illustrated with a real data 
example. 
 

Keywords: Variable importance ordering, Pratt’s importance measures, pattern 
coefficient, structure coefficient, D matrix, eta correlation, coefficient of determination, 
confirmatory factor analysis, factor interpretation, multidimensional factor analysis, 
oblique factors 

 

Introduction 

When running a confirmatory factor analysis (CFA), users specify the pattern 

(loading) matrix and interpret the results. It has been recommended that the 

https://doi.org/10.22237/jmasm/1509494700
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structure coefficients, which represent the factors’ correlation with the observed 

indicators, should be reported in addition to the loading matrix when the factors 

are allowed to be correlated (Graham et al., 2003; Thompson, 1997). This 

recommendation was made based on the argument that ignoring the structure 

coefficient is an omission of important information and leads to misinterpretation 

of CFA results. 

It is important to attend to the information in the structure coefficient. In 

addition, the first aim of this study is to show the structure coefficient can be partly 

or entirely a reflection of the inter-factor correlations depending on the loading 

specification and the extent to which the factors are correlated. Therefore, structure 

coefficients should be interpreted with caution. In particular, there is a higher 

chance of misinterpretation when the two conditions coexist, namely; a model that 

has moderate or high correlations between factors and also few observed indicators 

cross-load on factors. 

The second aim is to show how the directional and unique relationship, un-

confounded by factor correlation, can be revealed by adapting Pratt’s importance 

measures for factor analysis (Pratt, 1987). In doing so, we show that the structure 

coefficients, along with their corresponding pattern coefficients, can be 

transformed to importance measures in terms of variance explained. Thus, structure 

coefficients can be used to order the importance of the factors. The importance 

measures can further be transformed into unique, directional correlation 

coefficients (i.e., eta correlation) to aid in interpreting a CFA with correlated factors.  

CFA Pattern and Structure Coefficients of Correlated 
Factors 

In using a CFA, there should be a firm expectation of the underlying factor structure 

based on theoretical and/or empirical grounds (Church & Burke, 1994; Floyd & 

Widaman, 1995; Henson & Roberts, 2006). CFA requires a priori model 

specification regarding four elements of the factor structure: the number of factors, 

factor correlations, the pattern coefficients (referred to as “loadings” when the 

factor solution is unidimensional or orthogonal), and if necessary the residual 

correlations; see Jöreskog and Sörbom (1999) for the single group case and Wu, Li, 

and Zumbo (2007) for the multi-group case. In statistical terms, a CFA constrains 

a subset of the model parameters to some fixed values (typically zeros or ones) 

according to the investigator's hypothesis. For this reason, CFA is also referred to 

as restricted factor analysis in contrast to unrestricted factor analysis for exploratory 
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factor analysis (EFA) (Ferrando & Lorenzo-Seva, 2000; Jöreskog & Sörbom, 1999). 

Typically, the interest is in specifying the factor correlation(s) and the pattern 

coefficients. 

The pattern coefficients are the slope coefficients, i.e., the partial regression 

weights estimated for the factors to yield the prediction of the observed indicators. 

These slope coefficients reflect the unique directional effect, that is, the amount of 

change in the observed score per unit change in the factor score taking into account 

the overlapping relationships among the factors when the factor solution allows for 

the factors to be correlated. In addition to the pattern coefficients, the structure 

coefficients may provide useful information that aid in interpreting the factor 

solution. The structure coefficients are the zero-order correlations between the 

observed indicators and the factors representing the non-directional relationship. 

The structure coefficients are analogous to the zero-order bivariate Pearson 

correlations without isolating the overlapping relationships among the factors 

(Graham et al., 2003; Thompson, 1997). 

The matrix of the pattern coefficients is often denoted as P, the matrix of the 

structure coefficients as S, and matrix of the factor correlations as R. Both P and S 

are of size q × p and R is of size p × p, where q is the number of observed indicators 

and p is the number of factors. The relationship between P, S, and R is given as 

 

 q p q p p p  S P R   (1) 

 

Note when factors are uncorrelated the R is an identity matrix and in this case 

S = P. When the factors are uncorrelated, the zero-order bivariate correlation also 

represents the unique directional effect. This is because the factors contain no 

overlapping information to be isolated. In this case, the pattern coefficients are 

equal to the structure coefficients and are indistinctly referred to as factor loadings. 

The structure correlation is by definition non-directional. It is inconsequential 

whether the factor or the observed indicator comes first in the pair when estimating 

the correlation. Also, the structure coefficient is a zero-order correlation 

representing a relationship without controlling for the confounding relationships 

with other variable(s). This is necessary to understand why the structure coefficient 

can be a reflection of confounding relationships with the factor correlation. The 

level of confounding depends on the loading specification and the extent to which 

the factors are correlated. Equation (1) will be used to demonstrate that a structure 

coefficient can be misleading in a CFA due to these specifications. 
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Table 1. CFA results for Graham et al.’s (2003) example and the Pratt’s measures 

 

 P  S  L  PS  PS     D 

  F1 F2   F1 F2   F1 F2   F1 F2   F1 F2   h2   F1 F2 

A 0.849(g) 0.000(h)  0.849(i) 0.580(j)  0.836 0.000  0.721 0.000  0.849 0.000  0.721  1.000 0.000 

B 0.726 0.000  0.726 0.495  0.721 0.000  0.527 0.000  0.726 0.000  0.527  1.000 0.000 

C 0.817 0.000  0.817 0.557  0.836 0.000  0.667 0.000  0.817 0.000  0.667  1.000 0.000 

D 0.000 0.875  0.597 0.875  0.000 0.855  0.000 0.766  0.000 0.875  0.766  0.000 1.000 

E 0.000 0.774  0.528 0.774  0.000 0.777  0.000 0.599  0.000 0.774  0.599  0.000 1.000 

F 0.000 0.808  0.552 0.808  0.000 0.794  0.000 0.653  0.000 0.808  0.653  0.000 1.000 

                    

  R                  

F1 1.000(k) 0.680(l)                  

F2 0.680(m) 1.000(n)                                   
 

Note: P: pattern matrix; S: structure matrix; L: loading matrix; PS: a matrix of which the elements are the products of a given pattern coefficient and its 

corresponding structure coefficients, i.e., the unstandardized Pratt’s measures, they are analogous to the coefficient of determination η2 (eta-squared); PS : the 

square root of PS, i.e., η (eta) correlation; h2: Communality; D: a matrix of communality-standardized Pratt’s measure matrix; R: factor correlation matrix. 
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Caveats to Interpreting Structure Coefficients in CFA 

Graham et al. (2003) and Thompson (1997) called for the reporting of the structure 

coefficients in CFA. Their recommendation was based on the argument that 

constraining a factor’s pattern coefficient to be zero does not automatically 

constrain its corresponding structure coefficient to be zero. Hence, the structure 

coefficients should not be ignored. These earlier works suggested that, to properly 

interpret CFA results, the structure coefficients should be juxtaposed and 

interpreted along with the pattern coefficients; otherwise, the interpretation may be 

problematic. 

The first data set generated by Graham et al. (2003) was re-analyzed; based 

on which they highlighted that the structure coefficients were not zero when the 

pattern coefficients were specified to be zeros. For that data set, two factors that 

correlate at 0.68 were hypothesized to be underlying six observed indicators, as 

shown in Table 1, the P and S matrices reported by Graham et al. The second and 

third columns (under the heading P) show that the first factor (F1) only had partial 

effects on the first three observed indicators; the second factor (F2) only had partial 

effects on the last three observed indicators; all the other pattern effects were fixed 

to be zeros indicating no factorial complexities (e.g., no cross-loadings). This 

example is an ideal representation of simple structure, which is often a common 

and preferred configure for CFA specification. Graham et al.’s point was: despite 

the zero constraint on the pattern coefficients, the corresponding structure 

coefficients still yielded substantial values as highlighted in bold face in Table 1 

under the heading of S. For example, although the pattern coefficient of F2 on 

indicator A was constrained to be zero, its corresponding structure coefficient of 

0.58 was salient enough and should not be ignored. Using the examples in Table 1, 

Graham et al. raised the concern of missing out on important information if the 

structure coefficient is not interpreted. 

Ignoring the structural relationship may omit important information; however, 

they should be interpreted with careful consideration. Below is an explanation for 

why a structure coefficient can be misleading in a CFA with correlated factors when 

accompanied by a zero pattern coefficient, as in the case for all six indicators in 

Table 1. 
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Numerical Calculations to Demonstrate How Structure Coefficients 

Can Be Misleading 

The structure coefficient in Table 1 can be misleading because the estimated 

correlation of 0.58 between F2 and indicator A is a result of factor correlation 

between F1 and F2. The correlation between F2 and indicator A is due to indicator 

A’s correlation with F1, which in turn correlates with F2. That is, both F2 and 

indicator A are correlated with F1. The substantial zero-order bivariate correlation 

between F2 and indicator A would turn to zero once the factor correlation between 

F1 and F2 is controlled for. Hence, the substantial correlation between F2 and 

indicator A, as indicated by the structure coefficient, is simply a result of factor 

correlation. Interpreting the structure relationship while neglecting the factor 

correlation can mislead the conclusions.  

The matrix algebra multiplication in equation (1) demonstrates the above 

account. Plugging the information in Table 1 into equation (1), the resulting 

structure coefficient of 0.58 between F2 and indicator A, denoted as (j) in Table 1, 

is the sum of two product terms calculated by the values in cells denoted as (g), (l), 

(h), and (n) such that 

 

 

 

       

   

   

j 0.58

g l h n

pattern of F1 on A corr. between F1 & F2

pattern of F2 on A corr. between F1 & F2

0.849 0.68 0 1



   

 

 

   

  

 

Because the second product term is equal to zero due to the zero constraint on 

the pattern coefficient of F2 on indicator A, the structure coefficient (j) between F2 

and indicator A is entirely attributable to the first product term. The first product 

term is the partial effect of F1 on indicator A (0.849) times the correlation between 

F1 and F2 (0.68). This product term, however, has nothing to do with any 

relationships between F2 and indicator A. Demonstrating the calculation of the 

structure coefficient (j) clearly shows that, when the corresponding pattern 

coefficient is constrained to be zero, the moderately high structural relationship of 

0.58 between F2 and indicator A is simply a result of the correlation between F1 

and F2. 

The above account was not meant to negate the information in the structure 

coefficients. It has been shown that ice cream sales and drowning rate are highly 
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correlated. Indeed, there is some useful information embedded in this correlation 

and should not be simply ignored. However, once controlling for both ice cream 

sales and drowning rates are also highly correlated to temperature, there may be 

little to no relationship between ice cream sale and drowning rate. The intention is 

to bring the users of CFA to this realization when interpreting the structure 

coefficients. This caveat for interpreting the structure coefficient is heightened in 

the case of dealing with latent variables (the example of ice cream sales, drowning 

rates, and temperature consists of only observed variables). The latent variables are 

mathematical creations that do not have inherent meaning. This makes 

interpretation even more prone to confounding factors than the already confounded 

case of the observed variables for ice cream sales and drowning rate. The 

substantive meanings of the factors are inferred from the indicators. In turn, the 

indicators’ relationships with the factors, through the structure coefficients, are 

being estimated and interpreted at the same time. This circularity makes the 

interpretation the zero-order structure coefficients even more subtle. 

Historical Method to Sidestep the Problem 

Because of factor correlation, the structure coefficients can be confounded and can 

sometimes point to different conclusions from those of the pattern coefficients. This 

can lead to difficulty in drawing conclusions. Conventionally, the interpretation 

difficulties arising from factor correlation are often avoided by constraining the 

factors to be uncorrelated. This is because, as shown above, when factor 

correlations are zero, estimates of the pattern and the structure coefficients will be 

identical and synonymously called loadings. They represent both a factor’s 

correlations with as well as a factor’s partial effects on an observed indicator. In 

this case, the structure coefficient does indeed represent the unique relationship 

with an observed variable because it is not confounded by that factor’s correlation 

with other factors. 

In addition, resorting to factor orthogonality lends to the additive property in 

terms of variance explained by the factors. When factors are uncorrelated, the 

square of a loading represents the amount of variance in an observed indicator that 

is accounted for by a factor. Hence, the sum of the squared loadings across the 

factors will add up to the communality of an observed indicator – in CFA terms, 

this is the R-squared of a regression equation for an observed indicator variable. 

This additive property makes the interpretation very straightforward. Unfortunately, 

due to factor correlation, correlated factor models do not hold this additive property 

for straightforward interpretation.  
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Although resorting to orthogonal factors avoids the interpretational 

difficulties arising from factor correlation, it may lead to the problem of an incorrect 

model because the factors may indeed be correlated in the population. We fit the 

orthogonal model to the data for Table 1, which were generated by an oblique 

model with a correlation of 0.68. The problem of model misspecification was 

evidenced by the poor fit indices: the χ2
(df=9) = 130.519, p < 0.001, CFI = 0.865, and 

RMSEA = 0.190 (90% CI: 0.172 – 0.206) as a result of fitting the incorrect 

orthogonal model. In contrast, fitting a correlated factor model dramatically 

improved the fit with only one degree of freedom difference. The fit indices were 

almost perfect when an oblique model with a simple structure shown in Table 1 

was specified; viz., χ2
(df=8) = 2.792, p = 0.904, CFI = 1.00, and RMSEA = 0.000 

(90% CI: 0.000 – 0.000). This almost perfect fit was a consequence of recovering 

the model that generated the data. The problem of model misspecification due to 

fixing the inter-factor correlation to zero also led to biased estimates of loadings. 

These biases can be seen in Table 1 by comparing the estimated loadings reported 

as in the L matrix to the corresponding pattern coefficients in the P matrix (i.e., 

loadings estimated by the model that generated the data. Biases are the evident 

differences in comparing the orthogonal loading estimates to those of 

corresponding oblique loading estimates, rather than to the population parameters).  

Resorting to uncorrelated factors to avoid the interpretation difficulties due to 

factor correlation often contradicts the rationale for using a CFA if the factors are 

a priori hypothesized to be correlated. Many constructs in the social, behavioural, 

and health sciences are by their very nature assumed to be not entirely distinct. 

Frequently, allowing factor correlation for better theoretical and statistical fit 

occurs, leading to potential difficulties in interpreting the results (inconsistent 

conclusions based between the pattern and the structure coefficients). Still, an 

orthogonal model may be chosen over a correlated factor model for its 

interpretational simplicity, even when the factors are theoretically or empirically 

shown to be otherwise (Conway & Huffcutt, 2003; Fabrigar, Wegener, MacCallum, 

& Strahan, 1999; Henson & Robert, 2006; Kieffer, 1998; Preacher & MacCallum, 

2003). 

Pratt’s Importance Measures in CFA 

Pratt’s relative importance measures transform the information in the structure and 

pattern coefficients into unique measures that are readily attributable to the factors 

despite factor correlation. Pratt’s relative importance measures were initially 

developed for use in multiple regression (Pratt, 1987; Thomas, Hughes, & Zumbo, 
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1998). This method was adapted to EFA (Wu, 2008; Wu,  Zumbo, & Marshall, 

2014) by considering factor analysis as a form of multiple regression such that a 

factor analysis simultaneously regresses the q observed indicators (i.e., dependent 

variables) onto the p common factors (i.e., predictor variables) (Gorsuch, 1983; Wu 

et al., 2014). In this paper, we will explain the use of Pratt’s importance measures 

in CFA. 

Pratt’s Importance Measures 

It is sometimes recommended the importance of a set of p independent variables 

can be order by the absolute value of ˆ
p , the standardized partial regression 

coefficient. It is believed that ˆ
p  is a standardized measure that circumvents the 

issues of incomparability; namely, the incomparability due to the unstandardized 

regression coefficients being estimated for the independent variables and having 

different units of measurement. This suggestion is problematic because it ignores 

the fact that the partial regression coefficient, whether it be standardized or not, is 

a measure of relationship between a specific predictor variable with the outcome 

variable controlling for the relationships with the rest of the (p – 1) predictor 

variables. However, for different predictor variables, the set of (p – 1) controlled 

relationships will be different, and hence their importance is not directly 

comparable. This problem was resolved by Pratt (1987). 

Pratt (1987) showed that this unique measure of the importance of an 

predictor variable could be expressed as the product of ˆ ˆ
p p   where ˆ

p  denotes the 

estimate of Pearson’s product moment correlation between the predictor and the 

dependent variable, and ˆ
p  denotes the standardized regression coefficient. The 

standardized Pratt’s measure, dp for the relative importance of the pth predictor 

variable is given by 

 

 
2

ˆ ˆ
d

p p

p
R

 
   (2) 

 

Because 

 

 
2

1

ˆ ˆ
w

p p

p

r R
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it follows that 

 

 
2

1

ˆ ˆ
1

w
p p

p

r

R





   

 

hence 

 

 
1

d 1
w

p

p

   

 

a result that was shown by Thomas et al.’s (1998) geometric derivation. 

Accordingly, the importance of the predictor variables then can be ordered by dp. 

The essential feature of Pratt’s importance measures is the additive property such 

that the sum of the unstandardized Pratt’s measures is equal to the R2 and the sum 

of the standardized Pratt’s measures is equal to one. See Table 1 in Wu et al. (2014, 

p. 99) for an example of multiple regression. 

Pratt’s Importance Measures in CFA 

Consider factor analysis as a form of q simultaneous regression analyses wherein 

one regresses each of the q observed indicators onto the p common factors. From 

this framework, Pratt’s importance measures can be easily applied to 

multidimensional factor analysis. The outcome of applying Pratt’s measures in a 

factor analysis is the Pratt’s measure matrix, referred to as the D matrix. The 

elements of the D matrix are the Pratt’s measure of the pth factor for the qth observed 

indicator. The three building blocks for producing the D matrix in factor analysis 

are the pattern matrix P, the structure matrix S, as well as the vector of the 

communalities h2, in which the elements are the equivalent to the R-squared values 

in a multiple regression. Using matrix algebra, the D matrix is expressed as 

 

  D P S   (3) 

 

where P and S are defined above, and ⊗ denotes the Hadamard product of matrices 

of the same order. The Hadamard product expresses the elementwise product of 

matrices (Rao & Rao, 1998; Styan, 1973). Because it is seldom used, the Hadamard 

product is not available in widely used statistical software. However, it can be easily 

handled in a spreadsheet such as Excel. To obtain the unstandardized Pratt’s 
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measure of the pth factor (predictor variable) for the qth indicator (dependent 

variable), simply multiply the pattern coefficient by its corresponding structure 

coefficient. One can complete the computation of the D matrix by repeating the 

same procedures for all q indicators. The corresponding standardized Pratt measure 

can then be obtained by dividing the unstandardized value by the communality of 

the qth indicator. See Wu (2008) and Wu et al. (2014) for a full explanation the D 

matrix and more examples for its calculation. 

Real Data Illustration 

The application of Pratt’s measures will be illustrated in a CFA with real data. The 

data consists of 314 participants’ responses to 13 items measuring the two 

dimensions (knowledge and action) of health self-care reported on a 4-point Likert-

type scale. Accordingly, a two correlated factor model was fit to the data. Based on 

the previous results from EFA, items 1 to 7 were specified to indicate only the first 

factor, items 10 to 13 to indicate only the second factor; however, items 8 and 9 

were specified to indicate both factors. This is an example of two factorial 

complexities (i.e., factor cross-loading on item 8 and 9). The estimates of the pattern 

and structure coefficients are shown in Table 2 under the headings of P and S. 

 

Pratt’s Importance Measures with Cross-Loadings: 

 

In Table 2, the observed items of V8 and V9 were in bold face to highlight the 

cross-loading specification as shown by the pattern coefficients. The products of 

pattern coefficients and their corresponding structure coefficients are under the 

heading of “PS.” These are the unstandardized Pratt’s measures indicating the 

amount of variance of an item explained by each of the two factors. Take item 8 

(V8) for example, the unstandardized Pratt’s measure of 0.388 for Factor 1 (F1) 

was obtained by 0.544 × 0.714, and the unstandardized Pratt’s measure of 0.136 

for Factor 2 (F2) was obtained by 0.208 × 0.653. These unstandardized Pratt’s 

importance measures are equivalently to the concepts of coefficient of 

determination or eta-squared (η2), and can be interpreted as the unique contribution 

of a factor to an item’s observed variation. 

Each value under the heading of “ PS” in Table 2 (i.e., the square roots 

of PS) is the unique directional correlation between a given factor and an item by 

taking into account the factor correlation. Their interpretation is analogous to the η 

(eta) correlation in ANOVA except that, in this case, the factors in this application 

are continuous latent variables instead of observed grouping variables in an  
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Table 2. Real data demonstration of the use of Pratt’s measures in an oblique CFA 

 

 P  S  PS  PS     D 

  F1 F2   F1 F2   F1 F2   F1 F2   h2   F1 F2 

V1 0.773 0.000  0.773 0.632  0.598 0.000  0.773 0.000  0.598  1.000 0.000 

V2 0.801 0.000  0.801 0.655  0.642 0.000  0.801 0.000  0.641  1.000 0.000 

V3 0.771 0.000  0.771 0.631  0.594 0.000  0.771 0.000  0.595  1.000 0.000 

V4 0.752 0.000  0.752 0.615  0.566 0.000  0.752 0.000  0.566  1.000 0.000 

V5 0.785 0.000  0.785 0.642  0.616 0.000  0.785 0.000  0.617  1.000 0.000 

V6 0.837 0.000  0.837 0.685  0.701 0.000  0.837 0.000  0.701  1.000 0.000 

V7 0.842 0.000  0.842 0.689  0.709 0.000  0.842 0.000  0.710  1.000 0.000 

V8 0.544 0.208  0.714 0.653  0.388 0.136  0.623 0.369  0.524  0.740 0.260 

V9 0.273 0.551  0.724 0.774  0.198 0.427  0.444 0.653  0.624  0.320 0.680 

V10 0.000 0.843  0.690 0.843  0.000 0.711  0.000 0.843  0.710  0.000 1.000 

V11 0.000 0.883  0.722 0.883  0.000 0.780  0.000 0.883  0.781  0.000 1.000 

V12 0.000 0.800  0.654 0.800  0.000 0.640  0.000 0.800  0.639  0.000 1.000 

V13 0.000 0.661  0.541 0.661  0.000 0.437  0.000 0.661  0.437  0.000 1.000 

                 

  R               

F1 1.000 0.818               

F2 0.818 1.000                             
 

Note: P: pattern matrix; S: structure matrix; PS: a matrix of which the elements are the products of a given pattern coefficient and its corresponding structure 

coefficients, i.e., the unstandardized Pratt’s measures, they are analogous to the coefficient of determination η2 (eta-squared); PS : the square root of PS, i.e., η 

(eta) correlation; h2: Communality; D: a matrix of communality-standardized Pratt’s measure matrix; R: factor correlation matrix 
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ANOVA. This eta correlation was also referred to as correlation ratio by Pearson 

(1905); refer to Huberty (2002) for a historical review. For V8, the unique eta 

correlation with F1 of .623 and with F2 of .369, as indicated by the PS , were 

noticeably smaller than the structural correlation of 0.714 and 0.653 as shown in 

Table 2. This is because the structural correlations did not take into account the 

factor correlation of 0.818. That is, the structure coefficient is a confounded 

measure of unique correlation between a factor and an observed item. 

To compute the standardized Pratt measures, the values in the PS matrix were 

further divided by the item’s communality value. This communality-

standardization resulted in proportions that add up to one across the factors for each 

item. For V8, dividing the two values 0.388 and 0.136 by the communality 0.524 

yields the standardized Pratt’s measures of 0.74 and 0.26. They are reported in the 

matrix under the heading of D. The interpretations are as follows: The two 

standardized Pratt’s measures indicate the proportion of communality of V8 that 

was accounted for by each of the two factors, respectively. Namely, F1 accounted 

for 74% and F2 accounted for 26% of the communality of V8. In other words, 

Pratt’s measures partitioned the communality (R-squared) of an item into two 

additive parts that could be readily attributable to the two factors despite the high 

factor correlation of 0.818 between the two factors. The standardized Pratt’s 

measures are particularly useful in ordering the relative importance of a greater 

number of factors because of their additive property. This is the case despite the 

complex correlation pattern among factors. 

 

Pratt’s Measures Without Cross-Loading 

 

V8 was chosen as an example because of the cross-loading specification, i.e., 

neither the pattern coefficient for F1 nor for F2 was constrained to be zero. One of 

the key points of this paper is to demonstrate what happens to the values in PS (η2), 

PS ( η), and D when the factors do not cross-load, i.e., the pattern coefficient of 

one of the two factors was constrained to be zero. Note the no-cross-loading 

specification is the same as that for all the six indicators in Table 1 taken from 

Graham et al.’s (2003) paper. 

For example, if the focus is on item one (V1) in Table 2, the value in the 

matrix PS shows that F1 accounted for 59.8% (that is all) of the observed variance 

(i.e., 100% of the communality), whereas F2 accounted for 0.0% of the observed 

variance (0% of the communality)! The reason that F2 explained none of the 

observed variance in V1 was that the structure coefficient of .632 shown in Table 
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2 was multiplied by the pattern coefficient of zero which had been a priori specified 

by the authors. Once the factor correlation was accounted for by the application of 

Pratt’s method, the unique correlation, PS , between V1 and F2 turned out to be 

zero. This indicates that F2 was not uniquely related with V1 and was unable to 

explain any variance of V1. For the same reason, the values of PS, PS , and D 

were all zero in Table 2 where the pattern coefficients were constrained to be zero 

(V1 to V7 for F2 and V10 to V13 for F1); Conclusions of CFA based on these fairly 

large face values of the structure coefficients (at least 0.615 among the no-cross-

loadings items in Table 2) without realizing that they are merely a reflection of the 

factor correlation. This is the same as the example in Table 1 wherein all the values 

for PS, PS , and D are also equal to zero where the pattern coefficients were 

constrained to zero after the factor correlation was taken into account by Pratt’s 

measures. 

Conclusion 

In CFA, be warned that the size of structure coefficients is confounded with the 

level of the factor correlations and should be interpreted with caution. The manner 

and the extent of the confounding depend on the following conditions. When factor 

cross-loading is allowed, a structure coefficient over-represents a factor’s unique 

correlation with an observed indicator to the extent that the factors inter-correlate. 

When factor cross-loading is restricted, for the factor of which the pattern 

coefficient is specified to be zero, the structure coefficient of that factor is merely 

a reflection of the factor correlation. 

The interpretation difficulties arising from factor correlation were 

traditionally avoided by constraining the factors to be orthogonal – i.e., 

uncorrelated. Factor orthogonality holds the additive property in terms of unique 

variance explained by the factors that is not confounded by factor correlation. Such 

a property makes the interpretation straightforward. Nonetheless, this approach 

raises many concerns with respect to theory and model misfit. Pratt’s measures 

applied to CFA restore the additive property distorted by factor correlation; hence 

it resolves the interpretational complexities arising from factor correlation without 

having to constrain factors to be uncorrelated. 

Pratt’s measures integrate the information in a pattern and a structure 

coefficient by transforming them into one single unique measure that is grounded 

on Pratt’s axioms and Thomas et al.’s geometry. The transformed measure 
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represents the proportion of variance that is uniquely attributable to a given factor 

despite its correlations with other factors. The interpretation is analogous to that of 

effect size measure, eta-squared. The communality-standardized version of a 

Pratt’s measure indicates the proportion of communality (R-squared) accounted for 

by each of the factors. They can be used to order the importance of the factors and 

help to enhance the interpretation of the results, in particular, when the solution 

allows for cross-loadings, is highly dimensional and correlated. In so doing, Pratt’s 

measures applied to factor analysis resolves a longstanding problem in the 

interpretation of factor analysis solutions with correlated factors. 

By taking the square root of an unstandardized Pratt’s measure, one can obtain 

a measure of which the meaning is analogous to the eta correlation. The eta 

correlation can be understood as a directional, unique, simple correlation between 

an observed indicator and a factor even in the case when the factors are correlated. 

When a factor cross-loads, the eta correlation downward adjusts the relationship of 

a factor with an observed indicator by removing the confounding with factor 

correlation. When a factor does not cross-load (the pattern coefficient being 

constrained to be zero), the Pratt’s measures method will yield an importance 

measure of zero, hence an eta correlation equals zero. In this case, even though a 

factor may have a notable zero-order relationship with an observed indicator as 

shown by the structure coefficient, it actually accounts for zero variation in the 

observed indicator. Interpretation of the structure coefficient should take this fact 

into account. 

Pratt’s measures can also be useful for Exploratory Factor Analysis (EFA). 

This is because EFA can be seen as a particular type of CFA specification where 

the all factors’ pattern relationships are estimated for all observed indicators (with 

no zero constrains at all; see Wu, 2008; Wu et al., 2014). 

It was shown how the unique directional correlation between factors and 

observed indicator, un-confounded by factor correlation, can be revealed by 

synthesizing the information in the structure and pattern coefficients via the method 

of Pratt’s importance measures. Following the simultaneous regression logic one 

may ask about the use of partial and semi-partial (part) correlations to handle the 

confounding effect arising from factor correlation. These nth order-controlled 

correlations (n = number of controlled variables) reflect non-directional 

relationship between two variables, as is the structure coefficient. They are the 

correlation between two scores that are residualized by the n variables. Indeed, they 

can be computed to indicate the un-confounded correlations. However, unlike 

Pratt’s measures, these measures are not comparable across the factors. The 

incomparability issue is the same as that of the standardized partial regression 
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coefficients in multiple regression and the pattern coefficients in factor analysis; 

such that the set of (p – 1) variables being controlled for are not the same. The 

ultimate advantages of Pratt’s measures over the partial and semi-partial measures 

are: (1) their intuitive meaning as proportion variance explained makes the 

interpretation very straightforward and (2) their additive property makes the 

comparison across the factors meaningful. 

There is no intent to negate the importance of the structure coefficients in 

CFA. In fact, recent recommendations that the information in the structure 

coefficients should not be ignored. Nonetheless, CFA users should note the 

structure coefficient should be interpreted cautiously knowing that they may be 

partially or entirely a reflection of factor correlation. Better still, consider applying 

Pratt’s easily computed measures. 
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