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We generalize Lyles et al.’s (2000) random regression models for longitudinal data, accounting for both 
undetectable values and informative drop-outs in the distribution assumptions. Our models are 
constructed on the generalized multivariate theory which is based on the Elliptically Contoured 
Distribution (ECD). The estimation of the fixed parameters in the random regression models are invariant 
under the normal or the ECD assumptions. For the Human Immunodeficiency Virus Epidemiology 
Research Study data, ECD models fit the data better than classical normal models according to the Akaike 
(1974) Information Criterion. We also note that both univariate distributions of the random intercept and 
random slope and their joint distribution are non-normal short-tailed ECDs, and that the error term is 
distributed as a non-normal long-tailed ECD if we don’t use the low undetectable limit or half of it to 
replace the undetectable values. Instead, we use the ECD cumulative distribution function to calculate the 
contribution to the likelihood due to the undetectable values. 
 
Key words: Generalized multivariate analysis, power exponential distributions, Gamma distributions, 
maximum likelihood functions, censoring, informative drop-outs, empirical Bayes 
 
 

Introduction 
 
In clinical studies of human immunodeficiency 
virus (HIV) infection the number of copies of 
HIV ribonucleic acid (RNA) per milliliter of 
plasma is often used to measure the progression 
of the disease. When the number of copies per 
milliliter is below or equal to 500, the 
observation is considered as undetectable, 
missing, or left-censored, since the copy 
numbers below 500 are not quantifiable. 
 
 
Correspondence regarding this article should be 
emailed to Alfred A. Bartolucci: 
albartol@uab.edu. The authors acknowledge 
assistance from Robert H. Lyles with SAS and 
S-Plus programming; and the HERS Study 
Group for providing the Human 
Immunodeficiency Virus (HIV) Epidemiology 
Research Study data. 
 
 
 

On the other hand, illness or death 
caused by an early drop-out is known as an 
informative drop-out. If either a left-censored or  
an informative drop-out is present, as Lyles et al. 
(2000) pointed out, random effects linear models 
(Laird & Ware, 1982) and generalized 
estimating equations (GEE) (Liang & Zeger, 
1986) produce biased estimates of key 
parameters, such as the population average HIV 
RNA slope and intercept. Louis (1982) used 
asymptotic approximation methods to deal with 
the problem of left-censored and informative 
drop-out data. Both Hughes (1999) and 
Schluchter (1992) implemented Maximum 
Likelihood (ML) estimation via Expectation and 
Maximization (EM) algorithm to handle the 
problem of left-censored and informative drop-
out data. Lyles et al. (2000) combined the 
approaches of Hughes (1999) and Schluchter 
(1992) into a single likelihood integrating 
subject-specific random slopes and intercepts 
which took both informative drop-out and 
undetectable data into account. Then, they 
maximized the likelihood function with respect 
to fixed effects and other variables. Our 
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approach follows Lyles et al. (2000) and we 
extend their normal distribution assumptions to 
the ECD assumptions since when the number of 
undetectable observations exceeds a certain 
number, or when the random intercept and 
random slope have a bell shaped and long-tailed 
or short-tailed distribution the ECD distribution 
improves the fit of the data over the normal 
distribution. 

We used the data from the study of 
Lyles et al. in this paper. From April 1993 to 
June 1998 there were 528 HIV-infected women 
(16-55 years old) in the HIV Epidemiology 
Research Study (HERS) and 1,864 RNA 
measurements were collected. Overall, there 
were 25 (4.7%) drop-out events which resulted 
in 77 informative drop-out observations, 
according to Lyles et al.’s (2000) definition. 

We used δ as an indicator which was set 
to 1 if an observation was an informative drop-
out and to 0 otherwise. For these 25 individuals 
the time on study was set as the minimum of the 
time from the base-line to death or the time from 
the base-line to 3 months beyond the last visit. 
For other non-informative drop-out women the 
censored time was set equal to the time from the 
base-line to the last visit date. Overall, 745 
(40%) out of 1,864 HIV RNA observations were 
undetectable or left-censored (below 500 copies 
per milliliter). 
 
Power Exponential Distributions and Models 

The power exponential distributions can 
be used to model both light and heavy tailed, 
symmetric and unimodal continuous data sets. 
Gomez et al. (1998) generalized the Univariate 
Power Exponential (UPE) distribution, which 
was established by Subbotin (1923), to the 
Multivariate Power Exponential (MPE) 
distribution. Both Johnson (1979) and Gomez et 
al. (1998) discussed the relationship between the 
UPE distribution and a Gamma distribution. 
Gomez et al. (1998) studied the properties of 
MPE intensively, including the stochastic 
representation, the moments, the characteristic 
function and the marginal and conditional 
distributions and asymmetry and kurtosis 
coefficients. Obviously, the family of MPE 
distribution is a subset of the class of ECDs. 
Gomez et al. (1998) defined the MPE 
distribution as follows: 
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where -∞< µ< ∞, Σ > 0, 0 < β < ∞.  If y is 
distributed as an MPE distribution with 
parameters µ, Σ and β, we write y ~ MPE (µ, Σ, 
β) and we write y~ UPE (µ, σ, β) if n=1. The 
parameter β is called the shape parameter. 

We use the following linear random-
effects regression model (LRRM): 
 

( ) . ijijiiij etbay ++++= βα        (2) 
 
We take the response yij to be the base 10 
logarithm of HIV RNA measured at the jth time 
point tij ( j = 1,2,…, ni)  for the ith woman (i = 
1,…,528, 1 ≤  ni  ≤ 5 for our data set). We 
assume that the error terms ei j are distributed as 
UPE  (µ, σ2, ν1), the random intercept deviations 
ai are distributed as UPE (µ, σ1

2, ν2) and the 
random slope deviations bi are distributed as 
UPE (µ, σ2

2, ν2) with cov(ai,bi)=cσ12 where c is 
the correction coefficient and v2 is a shape 
parameter. The joint distribution of ai and bi is 
MPE2 (0, Σ2, ν2), where Σ2 = (σij). Based on the 
trivariate normal distribution model (Schluchter, 
1992) we assume the 3-dimensional random 
vector (ai,bi,Ti

0)  distributed as trivariate power 
exponential, i.e. 
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The joint pdf of (ai,bi,Ti

0)  is given as 
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where Ti

0 is the natural logarithm of the 
“survival” time for subject i. 
 
Maximum Likelihood Functions 

In this section we utilize general 
integrated likelihood expressions given by Lyles 
et al. (2000), in order to facilitate estimation and 
inference for the ECD case. 

(a) The Maximum Likelihood (ML) 
function without accounting for undetects and 
informative drop-outs: By the conditional 
probability formulae the ML function without 
accounting for undetects and informative drop-
outs is given by 
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where θ = (α, β, σ1

2, σ2
2 , σ12 , σ2)  , Y is a vector 

consisting of Yij, T is a vector consisting of tij 
and 
 

( )[ ]
, 

2
1exp

2
2
11

1),|(

1

12
11

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ +++−
Σ−

⎟
⎠
⎞

⎜
⎝
⎛ +Γ

=
⎟
⎠
⎞

⎜
⎝
⎛ +

v
ijiiij

iiij

tbaY

baYf

σ
βα

νσ
ν  

( ) ( ) .,,
2
1exp

211

1),()()|(

2

2

1
2

11

2
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ′Σ−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ΓΣ

==

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

ν

π

iiii

v

iiiii

baba

v

bafbfbaf
 

 
(b) The ML function accounting for 

undetectable values only:  
We use d to denote the operable limit of 
detection. We assume that the first ni1 
measurements are detectable values and there 
are ni - ni1 undetectable values for subject i. We 

use the probability distribution function (pdf) to 
calculate the contribution to the likelihood due 
to the observed values for subject i. On the other 
hand we use the cumulative distribution function 
(cdf) to calculate the contribution to the 
likelihood due to the undetectable values. 
Therefore, the complete-data likelihood function 
is given by 
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where f(Yij|ai,bi) and f(ai|bi)f(bi) are given in (3) 
and 
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where b = yi - [α + ai + (β + bi)ti], yi is the 

censored value for subject i and ⎟⎟
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(c) The ML function accounting for 
informative drop-outs only: 
We use Ti

0 to denote the natural logarithm of the 
“survival” time for subject i and ci to denote the 
natural logarithm of the time from the base-line 
to the study end. Let Ti = min (Ti

0 , ci). 
i) If subject i did not drop out early we 

have δi = 0 and use 1 - FT(ci|ai,bi) to compute the 
contribution to the likelihood due to the right 
censored values, where F is the cdf of T given ai 
and bi. That is 
 



RANDOM REGRESSION MODELS  362 

( ) ( )

( )
,

,
2
1

,,,,
2
1

exp

2
2
31

11
2
3

2
3

),|(

2

2

2

1

2
212

12
2
1

1

3

2
1

2
3

2
2

dz

b
a

ba

zbazba

bacF

ic

i

i
ii

tiitii

iiiT

∫
∑

∞− −

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎥
⎦

⎤
⎢
⎣

⎡ ′
−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ΓΣ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ΓΣ⎟

⎠
⎞

⎜
⎝
⎛Γ

=

ν

ν

ν

σσ
σσ

µµ

ν
π

ν

 (5) 

 
where Σ2 , Σ3 and v2 were defined in LRRM. 

(ii) If subject i dropped out early we 
have δi =1 and Ti = Ti

0 and use the pdf  f(Ti
0 | ai 

,bi) to compute the contribution to the likelihood 
due to the informative drop-out values. 
Therefore, the likelihood function accounting for 
informative drop-outs and the right censored 
data is given by 
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where θ = (α, β, σ1

2, σ2
2 , σ12 , σ2, µt, σat, σbt, σt

2 ) . 
Thus, the complete ML function is given by 
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Computing Empirical Bayes Estimates of 
Random Intercepts & Random Slopes 

In this section we discuss the calculation 
of empirical Bayes estimates of random 
intercepts and random slopes in the presence of 
drop-outs and undetectable values based on the 
ECD assumptions. Specifically, we calculate the 
estimate of the random intercept ai and random 
slope bi by substituting the ML estimators of θ 
based on the ML function (7) developed in the 
last section into the analytic expressions for the 
posterior means given the observed data (Yi, Ti). 

Specifically, the empirical Bayes estimates of 
the random intercept ai and slope bi for subject i 
are given, respectively, by 
 

,),(),,(),|(ˆ 1*
iiiiaiiiiii dbdabagTYfTYaEa ∫ ∫

∞

∞−

∞

∞−

−== θ  

 
where  
 

),()|(),|(),|(

),(
*

iiiiiiiiii

iia

bfbafbaTfbaYfa

bag =
 

  
,),(),,(

),|(ˆ

1*
iiiibii

iiii

dbdabagTYf

TYbEb

∫ ∫
∞

∞−

∞

∞−

−

==

θ
 

 
where  
 

).()|(),|(),|(

),(
*

iiiiiiiiii

iib

bfbafbaTfbaYfb

bag =
 

 
The above empirical Bayes estimates were given 
by Lyles et al., (2000). Note that f*(Yi|ai,bi) is 
different from f(Yi|ai,bi), the one with asterisk 
indicates that the data vector Yi may include one 
or more undetectable values. 
 
Computation 

The software package we have used to 
obtain the ML estimates of variance components 
and fixed effects corresponding to models 
discussed in this chapter is SAS PROC IML. 
The ML function is constructed within PROC 
IML first. The initial parameter estimates are 
obtained from Lyles et al. (2000). The ML 
function is maximized through the NLPQN 
routine in IML with respect to the parameters 
stated in this paper. The double integration was 
computed by quadrature for each subject. The 
Hessian matrix (the dispersion matrix of the 
estimated parameters) was found through the 
NLPFDD routine in IML. There are no built-in 
generic non-normal ECD functions in SAS. We 
used the theorems of relationship between a 
UPE and a Gamma distribution developed in 
another paper to compute the probability of UPE 
distribution below or above a certain point. 
However, this method can not be used to deal 
with MPE distribution or the conditional and 
marginal MPE distributions since there is no 
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existing useful relationship between an MPE and 
a Gamma distribution and the conditional or the 
marginal distributions of an MPE are not 
necessarily MPEs, which can be much more 
complicated ECD distributions. We used 
approximation methods to integrate such 
integrands. The Simpson’s rule has been adopted 
which requires much less computing time and 
can reach highly accurate results. S-Plus and 
SAS PROC IML were used to obtain the 
empirical Bayes estimates of the random 
intercept and random slope for each subject and 
the critical values of UPE distribution and the 
Simpson’s rule has also been used for non-
normal situations. 
 

Results 
 
We used the Akaike (1974) Information 
Criterion (AIC) which was used by Lindsey 
(1999) and among others to compare the 
classical multivariate normal model and the 
multivariate power exponential model. In 
version 8 of SAS/STAT software AIC is defined 
as ’smaller-is-better’. Specifically, AIC=2l + 2d, 
where l denotes the maximum value of the log 
likelihood, d denotes the dimension of the 
model, i.e., the number of parameters estimated 
in the ML function. Six models were considered: 

Model 1 (M1): In this model we 
assumed the normal distributions. There were 
six parameters (α, β, σ1

2, σ2
2, σ12, σ2) estimated in 

the ML function accounting for undetectable 
values which were constructed as in equation (2) 
of Lyles et al. (2000, p.488).  

Model 2 (M2): As in model M1, the 
normal distributions were assumed. There were 
ten parameters (α, β, σ1

2, σ2
2, σ12, σ2, µt, σat, σbt, 

σt
2) estimated in the ML function accounting for 

both undetects and informative drop-outs which 
were constructed as in equation (5) of Lyles et 
al. (2000, p.489). 

Model 3 (M3): ECDs were assumed in 
this model. This model accounts for 
undetectable values only. Furthermore we 
assumed that two shape parameters were equal, 
i.e., v1 = v2. There were seven parameters (α, β, 
σ1

2, σ2
2, σ12, σ2, ν1) estimated using the ML 

function.  
Model 4 (M4): This model is the same 

as M3 except that we don’t assume v1= v2. 

Model 5 (M5): ECDs were assumed in this 
model. Undetectable, informative drop-out and 
right censored values were considered at the 
same time in this model. Also, we assume v1= 
v2. 

Model 6 (M6): This model is the same 
as M5 except that we don’t assume v1 = v2.  

Next, we summarize what we have 
found from the HERS data analysis. 

(1). ECDs fit the data much better than 
the classical normal distributions. 
Among models M1, M3 and M4 we account for 
undetectable values only. Model M1 is based on 
the normal distribution assumptions while model 
M3 and M4 are based on ECD assumptions. The 
value of AIC changes from 3932.216 to 
3928.101 when the model, M3, is used whereas 
the value reduces to 3908.833 using the model, 
M4. Overall, model M4 is the best according to 
the AIC standard if we consider undetectable 
values only in our analysis.  

Among models M2, M5 and M6 we 
treat undetects, informative drop-outs and right 
censored observations simultaneously. Model 
M2 is based on the normal distribution 
assumptions, but model M5 and M6 are based 
on the ECD assumptions. Model M5 reduces 
AIC from 4083.556 of M2 to 4079.746 (see 
Table 2). Overall, model M6 (4064.791) is the 
best by AIC standard if we consider all possible 
situations. 

(2). The dispersion matrix of an MPE 
random vector is proportional to ∑ as defined in 
section 2. Hence, multiplying the ML estimate 
Σ̂ by a coefficient we transformed Σ̂ to the 
estimated dispersion matrix whose elements are 
listed in Table 1. As expected, variance and 
covariance estimates are very close under the six 
different models. This proportional relationship 
provides us a short cut to gain the ML estimates. 
That is, we can get the ML estimate of the 
dispersion matrix under the normal distribution 
assumption first and then utilize this estimated 
dispersion matrix to estimate the shape 
parameters. This method is very useful and 
effective, especially when we have a large 
number of parameters to estimate or when we 
deal with a very large data set where computing 
CPU time and memory space are prohibiting. 
The estimates of the fixed intercept and the fixed 
slope for all subjects are almost exactly the same 
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under the six different models. This is because 
that α̂ and β̂ only involve the data set which is 
given and the dispersion matrices of random 
effects and error terms which are invariant under 
the normal distribution assumptions and the 
ECD assumptions as we discussed. 

(3). The estimates of the shape 
parameters in Table 2 strongly suggest that we 
should make the power exponential distribution 
assumptions instead of classical normal 
distribution assumptions since our simulations 
revealed that less than 0.94 or greater than 1.15 
shape parameters indicate the distribution 
departs significantly from the normal 
distribution at α = 0.05 level. The shape 
parameter estimates ν̂ =0.6574 (S.E.=0.116) 
under model M3 and ν̂ =0.6997 (S.E.=0.099) 
under model M5 indicate that 40% undetects 
contribute to a long tailed non-normal 
distribution. In model M4 and M6 we don’t 
assume v1= v2. The estimate of the second shape 
parameter is 2ν̂ =1.8089 (S.E.= 0.490) in model 
M4 and 2ν̂ =1.3706 (S.E.=0.215) in model M6. 
The shape parameter estimate 2ν̂  in both models 
M4 and model M6 are much larger than 1 which 
shows that both univariate distributions of the 
random intercept and the random slope and their 
joint distribution are non-normal. They are thin-
tailed ECDs, concentrated around 0 means. 
 
Possible Extensions 

First, power exponential distributions 
are just a member of larger ECD family. To 
extend the power exponential distribution 
assumptions for the models we have discussed is 
a challenging task and of great interest in both 
theory and practice. Second, we used 
approximation methods to compute probability 
distribution function values at a certain given 
point and the probability on some interval or 
within a certain given high dimension rectangle 
for the non-normal power exponential 
distributions. The CPU time and memory space 
required for this kind of task are prohibitive. 
This highly intensive computing problem will be 
eased if we could find an exact or asymptotic 
relationship between distributions (such as non-
normal MPEs and marginal or conditional 
distributions of a non-normal MPE). Third, we 

have used simulation methods to assess different 
distributions, like normal or non-normal 
characteristics as per the shape parameter. If we 
could construct a statistic related to the shape 
parameter and get an explicit, exact or 
asymptotic distribution of the statistic we could 
do a formal accurate hypothesis testing about the 
shape parameter of the distribution. This is 
another challenging task for future research. All 
source code provided in this paper is in SAS  
(Appendix). 
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Table 1. Results from HERS data: ML Estimates.  
 
 α β σ1

2 σ2
2 σ12 σ2 µt σat σbt σt

2 
M1 2.89  

(0.033) 
0.058 

(0.016) 
0.721 

(0.088) 
0.037 

(0.008)
0.061 

(0.022)
0.383 

(0.023)
- - - - 

M2 2.88 
(0.050) 

0.062 
(0.016) 

0.718 
(0.088) 

0.039 
(0.008)

0.060 
(0.022)

0.382 
(0.023)

2.32 
(0.158)

0.165 
(0.062) 

0.035 
(0.022)

0.298 
(0.096)

M3 2.91 
(0.057) 

0.058 
(0.017) 

0.747 
(0.149) 

0.040 
(0.009)

0.050 
(0.015)

0.387 
(0.076)

- - - - 

M4 2.89 
(0.002) 

0.050 
(0.001) 

0.695 
(0.417) 

0.044 
(0.028)

0.054 
(0.052)

0.410 
(0.023)

- - - - 

M5 2.90 
(0.053) 

0.062 
(0.017) 

0.833 
(0.137) 

0.047 
(0.008)

0.059 
(0.015)

0.383 
(0.068)

2.258 
(0.144)

0.173 
(0.036) 

0.042 
(0.010)

0.269 
(0.060)

M6 2.90 
(0.053) 

0.062 
(0.017) 

0.833 
(0.137) 

0.047 
(0.008)

0.059 
(0.015)

0.383 
(0.068)

2.258 
(0.144)

0.173 
(0.036) 

0.042 
(0.010)

0.269 
(0.060)

Note. Numbers in parentheses are Standard Errors of the corresponding estimates. 
 
 
Table 2. Results from HERS data: Shape parameter estimates and AIC. 
 
 ν1 ν2 d -2 log-likelihood AIC 
M1 - - 6 3920.216 3932.216
M2 - - 10 4063.556 4083.556
M3 0.6574 (0.116) - 7 3914.101 3928.101
M4 0.4694 (0.060) 1.8090 (0.490)  8 3892.833 3908.833
M5 0.6997 (0.099) - 11 4057.746 4079.746
M6 0.5173 (0.055) 1.3706 (0.215) 12 4040.791 4064.791
Note. Numbers in parentheses are Standard Errors of the corresponding estimates. 
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Appendix 
 

SAS Program for Taking Left-censored into Account 
********************************************************************** 
Acknowledgments:  The following program was created originally by Dr. 
Robert H. Lyles. We have changed his distribution assumptions normal 
to ECD and added five nonlinear constraints. We really appreciate Dr. 
Lyles's providing this program.  
Description: Calculation of the ML estimates of the fixed effects and 
the variance matrix.  
We assume the underlying distributions are ECDs. Also, we take the 
undetectable observations into account under the model described by 
the likelihood equation (4) in this paper.       
********************************************************************** 
data test;    
infile '/herscens1.dat';        
input obsn  id time nondet response fail survtyrs logsurvt;  
*Compute ML estimates via PROC MIXED on complete data (which would not 
  be available in practice).  That is, using the actual values for the  
response and all 1864 measurements; 
   

proc mixed data=test method=ml;    
     class id;    
     model response=time / s ddfm=bw;    
     random intercept time /type=un subject=id;    
     title2 "ml estimates for full data set (unavailable in 
practice)"; run;    
    
data test2;    
  set test;     
if nondet=1 then do;    
  observed=0;    
end;      
else if nondet=0 then do;    
   observed=1;    
end;    
   label response="Base 10 log HIVRNA value"    
         time    ="time of measurement"    
         id      ="subject id"    
         observed="indicator for whether value was observed"    
         fail="indicator for whether subject dropped out"    
         survtyrs="Years to dropout"    
         logsurvt="Natural log of dropout time";    
    
* Compute ML estimates ignoring left censoring and drop-outs    
  using PROC MIXED with random intercept and slope.  These naive    
  estimates will be used as starting values for the six parameters    
  of the mixed effects model;    
      
proc mixed data=test2 method=ml;    
     class id;    
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     model response=time / s ddfm=bw;    
     random intercept time /type=un subject=id;    
     title2 "ml estimates ignoring left censoring and dropouts";    
run;    
       
***Create dataset to be read into IML for maximizing likelihood in    
Eqn. 2, accounting for left censoring: *;    
    
data test; set test;    
  if nondet=1 then do;    
   observed=0;    
 end;    
    
 else if nondet=0 then do;    
   observed=1;    
 end;  run;    
    
proc iml worksize=999216000 symsize=999999900;    
    
*******************************************************************    
* define IML function which will be used to maximize the likelihood    
*******************************************************************;    
    
start likeli1(parms);    
    
* lower and upper boundaries and stepsize for numerical integration;    
   nsteps=31;    
a_l   =-5;        
a_u   = 5;        
step_a=(a_u-a_l)/(nsteps-1);    
b_l   = -1.5;      
b_u   =  1.5;      
step_b=(b_u-b_l)/(nsteps-1);    
pi=2*arsin(1);    
    
* variables corresponding to input parameters from vector 'parms';    
   sigsq1  =parms[1];  * random intercept effect variance;    
sig12   =parms[2];  * covariance between random intercept and slope;    
sigsq2  =parms[3];  * random slope effect variance;    
sigsq   =parms[4];  * within subject variance;    
alpha   =parms[5];  * fixed effect intercept;    
beta    =parms[6];  * fixed effect slope;    
v       =parms[7];    
    
* determine number of subjects in dataset;    
use test;    
   read all var {id} into subjects;    
   close test;    
    
* compute number of subjects and create vector for each subjects    
  contribution to the likelihood;    
subjects=ncol(unique(subjects));    
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terms=j(subjects,1,.);    
    
* get vector of indicators for observed vs. censored responses for 
subject i;    
do i=1 to subjects;    
   use test;    
   read all var {observed} into d_i where (id=i);    
   close test;    
    
* number of observations, number of observed values, and number of 
censored    
  values, respectively, for subject i;    
   n_i=nrow(d_i);    
   o_i=sum(d_i);    
   c_i=n_i-o_i;    
    
* create vectors of censored values and the associated time of 
measurement;    
   if c_i>0 then do;    
      use test;    
      read all var {response} into cens_i where (id=i & observed=0);    
      read all var {time} into c_time_i where (id=i & observed=0);    
      close test;    
      end;    
    
* create vectors of observed values and the associated time of 
measurement;    
   if o_i>0 then do;    
      use test;    
      read all var {response} into y_i where (id=i & observed=1);    
      read all var {time} into time_i where (id=i & observed=1);    
      close test;    
      end;    
    
 * set initial value for likelihood contribution by subject i to zero;    
   func_i=0;    
    
* define quadrature points for numerical integration;    
   do a_i=a_l to a_u by step_a;    
   do b_i=b_l to b_u by step_b;    
    
      * contribution to likelihood due to observed values for subject 
i;    
      if o_i=0 then func_i1=1;    
         else do;    
         t_i1=(y_i-alpha-beta*time_i);    
         t_i2=(a_i+b_i*time_i);    
         func_i1=(1/(sqrt(sigsq)*gamma(1+0.5/v)*(2##(1+0.5/v)))**o_i)*    
                 exp(-0.5*sum(((t_i1-t_i2)##2/sigsq)##v));    
         end;    
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      * contribution to likelihood due to censored values for subject 
i;    
      func_i2=1;     
      if c_i>0 then      
       do j=1 to c_i;              
            b=cens_i[j,1]-alpha-a_i-beta*c_time_i[j,1]-
b_i*c_time_i[j,1];     
             if b >= 0 then 
temp_i2=0.5*(1+probgam(0.5*(b/sqrt(sigsq))**(2*v),(1/(2*v))));    
      else temp_i2=0.5*(1-probgam(0.5*(-
b/sqrt(sigsq))**(2*v),(1/(2*v))));    
         func_i2=func_i2*temp_i2;     
       end;     
 
      * compute correlation coefficient between intercept and  slope;    
      r=sig12/sqrt(sigsq1*sigsq2);    
          
      * compute joint distribution of intercept and slope;    
      w=(sigsq1||sig12)//(sig12||sigsq2);    
   u=det(w);    
      y=inv(w);    
   x_i=(a_i||b_i);    
    
      func_i3=(2/(pi*sqrt(u)*gamma(1+1/v)*(2##(1+1/v))))*    
                 exp(-0.5*(x_i*y*x_i`)##v);      
                      
      * compute contribution of subject 'i' to objective function;    
    
      func_i=func_i+(func_i1*func_i2*func_i3*step_a*step_b);    
      end;    
      end;    
    
* add subject i's contribution to vector of likelihood terms;    
    
   terms[i,1]=func_i;    
   end;    
    
* compute -2 log likelihood;    
    
   loglik2=-2*sum(log(terms));    
   return(loglik2);    
    
finish likeli1;    
    
 
**********************************************************************    
The following is the main body of the program (which calls the    
minimization function, computes the Hessian, etc.)    
**********************************************************************
;    
* initial estimates from preliminary analysis;   
parms={.24 -.012 .015 .201 3.21 .039 1.0};   
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* options vector for minimization function;    
* matrix of lower (row 1) and upper (row 2) bound contraints on 
parameters    
   (sigsq1 > 0, sig12 <> 0, sigsq2 > 0, sigsq > 0, alpha <> 0, beta <> 
0);    
/*  con={1E-5 . 1E-5 1E-5 . .,    
     . . . . . .}; */  
  
* The following are five non-linear restrictions; 
  
start c_h(parms);    
  c=j(5,1,0.);    
  c[1]=parms[1];    
  c[2]=parms[3];    
  c[3]=parms[4];    
  c[4]=parms[1]-(parms[2]##2/parms[3]);    
  c[5]=parms[7];    
    return(c);    
finish c_h;    
    
* call function minimizer in IML;   
optn=j(1,11,.); optn[1]=0; optn[2]=3; optn[10]=5; optn[11]=0;    
call nlpqn(rc, xres, "likeli1", parms, optn) nlc="c_h";    
    
* create vector of mle's computed using function minimizer;  
parms=xres`;    
 
* compute numerical value of Hessian (and covariance matrix) using    
  mle's calculated above;    
call NLPFDD(crit, grad, hess, "likeli1", parms);    
cov_mat=2*inv(hess);    
se_vec =sqrt(vecdiag(cov_mat));    
print cov_mat se_vec;  
 
*****************************************************; 
The following program is used to transform MLE of ECD Sigma matrix 
int the variance matrix; 
   
proc iml; 
sig1={ 0.221828 -0.014873 0.011839};  
sig = 0.141499; a = 2.906699; b = 0.057614; 
beta=0.657391;  
c1=2**(1/beta)*gamma(2/beta)/(2*gamma(1/beta)); 
c2=2**(1/beta)*gamma(1.5/beta)/(gamma(0.5/beta)); 
sig11=c1*sig1;  sig0=c2*sig; 
sigma=sig11||sig0||a||b; 
print sigma;    /* with ECD    */ 
sigmaOld={0.720710 -0.060955 0.037333 0.382976 2.886360 0.058335}; 
print sigmaOld; /* without ECD */ 
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