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The aim of this study was to investigate the performance of the Fisher, Feldt, Bonner, and 
Hakstian and Whalen (HW) confidence intervals methods for the non-parametric 
reliability estimate, ordinal alpha. All methods yielded unacceptably low coverage rates 
and potentially increased Type-I error rates. 
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Introduction 

Reliability is an estimate of the consistency of results from a measurement 

(Crocker & Algina, 2008; Cronbach, 1951) and an essential component to 

establish validity of a scale (Allen & Yen, 1979, 2002). Social scientists often 

measure attitudes and opinions with ordinal Likert-type ratings. The individual 

options on the scale are assumed to be discrete realizations of an underlying 

continuously-scaled construct (Flora & Curran, 2004). Nevertheless, researchers 

often treat ordinally-scaled data as continuous by using statistical methods that 

assume continuity of data. This causes an empirical mismatch with the data 

analyzed (Gadermann, Guhn, & Zumbo, 2012; Schmitt, 1996; Sijtsma, 2009; 

Streiner, 2003), underestimation of sample coefficient alpha, and may lead 

researchers to incorrect conclusions (Duhachek & Iacobucci, 2004; Flora & 

Curran, 2004; Gadermann et al., 2012; Maydeu-Olivares, Coffman, & Hartmann, 

2007; Zumbo, Gadermann, & Zeisser, 2007).  
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One strategy to overcome the violation of continuity is to use ordinal 

coefficient alpha, which uses polychoric correlations instead of Pearson 

correlations (Gadermann et al., 2012; Zumbo et al., 2007). Although ordinal 

coefficient alpha has been shown to be a more appropriate measure of reliability 

for ordinal data, it is still just a point estimate. Fan and Thompson (2001) 

emphasized the need to report confidence intervals for coefficient alpha as a 

method for assessing the relative stability of the statistic as opposed to invoking 

rigid cutoff decisions about whether a value is large enough or not. For instance, 

an alpha coefficient value of 0.8 is generally considered acceptable (Cronbach & 

Shavelson, 2004). A 95% confidence interval is expected to contain the true value 

of the statistical estimate 95% of the time when resampled. This resampling is 

often hypothetical. Confidence intervals are a function of the standard error of the 

statistic and their coverage rates indicate Type-I error rate. The probability of 

Type-I error increases when the coverage rate of confidence intervals is less than 

expected. Therefore, it is important to examine the performance of confidence 

intervals for statistical estimates. One such diagnostic is coverage rate. Coverage 

rate is defined as the percentage of confidence intervals that contain the true value. 

In empirical research we do not know what the true value is. However, in 

simulation the true value is known. Comparing the coverage rate to confidence 

level through simulation helps us verify if the confidence interval given by the 

theoretical formulas are accurate.  

There are several confidence interval approaches for conventional 

coefficient alpha (e.g. Bonett, 2002; Feldt, 1965; Fisher, 1950; Hakstian & 

Whalen, 1976). Various confidence interval methods were investigated for 

conventional coefficient alpha (Bonett, 2002; Cui & Li, 2012; Duhachek & 

Iacobucci, 2004; Feldt, 1965; Fisher, 1950; Hakstian & Whalen, 1976; Maydeu-

Olivares et al., 2007; Padilla, Divers, & Newton, 2012; van Zyl, Neudecker, & 

Nel, 2000; Yuan & Bentler, 2002). However, the confidence intervals have not 

been investigated for ordinal coefficient alpha. Given the widespread use of 

Likert-type data in educational and behavioral research and the increased 

emphasis on reporting and interpreting confidence intervals of estimates (Cohen, 

1994; Cumming, 2012; Cumming & Fidler, 2009; Finch, Cumming, & Thomason, 

2001; Thompson, 2006a, 2006b; Wilkinson & APA Task Force on Statistical 

Inference, 1999), there is a need to evaluate the performance of currently 

available confidence interval methods for the ordinal coefficient alpha.  

The purpose of this study is to investigate the coverage rates, widths, and 

biases of the four types of confidence intervals (Bonnet, Feldt, Fisher, and 

Hakstian Whalen), and the accuracy of the ordinal alpha point estimates under 
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varying data conditions. Sample size, the number of items on an instrument, 

skewness of the responses, and population alpha were chosen as the data  

conditions because these have known to have an impact on the confidence 

intervals of alpha (Cui & Li, 2012; Duhachek & Iacobucci, 2004; Romano, 

Kromrey, Owens, & Scott, 2011).  

Literature Review 

The reliability of a composite score may be estimated in a factor model as the 

ratio of item variances to total variances. The factor analytic representation of 

classical test theory is expressed as  

 

 1,2, , ,i i iX u i p    (1) 

 

where X
i
 denotes the observed scores on the ith item, λ

i
 denotes the factor pattern 

coefficient of the ith item, ξ is the true score common factor, and u
i
 is the 

uniqueness or random error up to p number of items. Novick and Lewis (1967) 

derived coefficient alpha as an unbiased estimate when the factor coefficients of 

each variable are equal to the common factor. Coefficient alpha can be calculated 

in a factor model as 
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where var(e)
ii
 is the error variance of the ith item in a factor analytic model. 

Generally score reliability increases as coefficient alpha approaches a value of 

one.  

Ordinal Coefficient Alpha 

Gadermann et al. (2012) recommended using a non-parametric estimate of 

reliability coefficients for ordinal data, especially when there are few item 

response categories and skewed response distributions. Ordinal alpha is analogous 

to coefficient alpha, only differing by the type of correlation matrix used for 

computation. While coefficient alpha uses the Pearson correlation matrix and 
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assumes data are continuously scaled, ordinal alpha uses the polychoric 

correlation matrix.  

Polychoric correlation estimates the linear relationship between two 

ordinally scaled variables as the correlation between their respective underlying 

latent variable distributions (Jöreskog, 1990). By not assuming normality for the 

underlying distribution, the thresholds are allowed to be unequally spaced. The 

observed ordinal response y
j
 for item j with C response categories, where the 

response option c = 0, 1, 2, …, C − 1 is defined as 

 

 
*

1,  if ,j c j cy c y      (3) 

 

where τ
c
, τ

c+1
 are the thresholds on the underlying continuum y

j
* and satisfy the 

constraint 

 

 0 1 1 .C C          (4) 

 

The polychoric correlation, Ф, between two ordinal items y
i
 and y

j
 is given 

by the Pearson product-moment correlation between their corresponding 

underlying latent variables y
i
* and y

j
*, respectively. By treating the observed item’s 

responses in this manner, ordinal alpha is a nonparametric reliability estimate. 

The formula for ordinal alpha is expressed as 
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where αordinal is ordinal alpha, k is the number of items, λ2 is the squared factor 

pattern coefficient, h2 is the communality where for a 1-factor model h2 = λ2, μ is 

uniqueness (μ2 = 1 − h2). Theoretically, ordinal alpha equals the true reliability 

when the items are tau-equivalent and fit a one-factor model with equal factor 

pattern coefficients (Maydeu-Olivares et al., 2007; Zumbo et al., 2007). 

Confidence Intervals 

Authors should report a reliability coefficient even when the focus is not 

psychometric because it is a critical component to interpreting observed effects 

(Wilkinson and APA Task Force, 1999). Cronbach and Shavelson (2004) 
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suggested that researchers report a reliability coefficient for their specific study 

and not rely on published psychometrics, due to sampling and random errors. As 

with any point estimate, reliability coefficients are estimates of population 

parameters and tend to vary from sample to sample. This point is explicitly 

highlighted in reliability generalization studies that examine reliability fluctuation 

across studies (Vacha-Haase, Henson, & Caruso, 2002; Vacha-Haase & 

Thompson, 2011). Therefore, estimating the standard error of reliability 

coefficients with confidence intervals is critical. 

A confidence interval (CI) provides information about the standard error of 

sample statistics and estimated range of values that most likely capture the true 

parameter (Cumming, 2012; Cumming & Finch, 2005). Larger standard errors 

and wider CIs are associated with low score reliability. The nominal width of a CI 

quantifies uncertainty and provides information regarding the precision of a point 

estimate (Cumming & Fidler, 2009). The standard error for the sample reliability 

coefficient is sensitive to sample size, the number of items, inter-item correlations, 

and homogeneity of variance (Duhachek & Iacobucci, 2004).  

The sampling distribution for coefficient alpha follows a typical F 

distribution for large sample sizes (Feldt, 1965; Kristof, 1963). The sampling 

distribution of ordinal coefficient alpha can be conceived as having similar 

properties as coefficient alpha (B. Zumbo, personal communication, December 13, 

2013). The reasoning is that ordinal alpha is simply coefficient alpha on the latent 

response distribution. The computation for ordinal alpha remains the same as that 

for coefficient alpha, except ordinal alpha is computed on the underlying latent 

continuous variable whereas coefficient alpha is computed on the measured 

continuous variable. From this point of view, the polychoric methods can be 

thought of as classes of complex transformations so that any property of 

coefficient alpha will likely hold for ordinal alpha. Therefore, the sampling 

distribution of ordinal alpha is highly likely to follow that of coefficient alpha. A 

natural question that follows is whether the methods for confidence intervals of 

coefficient alpha are appropriate to be used with ordinal alpha. 

Consider the following four CI methods developed initially for coefficient 

alpha: Feldt (1965), Fisher (1950), Bonett (2002), and Hakstian and Whalen 

(1976). The differences between the methods are procedural transformations of 

sample coefficient alpha and the computation of variance. The formulae for the 

Feldt (1965) interval computations are 

 

     1 2/2 , ,
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where ̂  is the sample reliability coefficient, γ is the specified level of 

significance, F represents the values at γ and γ/2 levels, n is the sample size with k 

items where df
1
 = (n – 1) and df

2
 = (n – 2)(k – 1). 

Several methods transform sample coefficient alpha so confidence intervals 

may be computed within a normal theory framework. First, Fisher (1950) 

normalized a product moment correlation, such that 
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where Fisher’s z is the transformed parameter estimate and ̂  is the sample 

reliability coefficient. The z critical value (crit
z
) is determined by the level of 

confidence where 95% has a value of 1.96. The standard error of z is estimated as 
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  (9) 

 

and applied to the lower and upper bounds of CI respectively as 

exp(2 × (Fisherz ± critzSEz)) – 1 / exp(2 × (Fisherz ± critzSEz)) + 1. The transformed z statistic can 

be appropriately computed within a normal theory framework for a confidence 

interval and transformed back into the original units (Romano et al., 2011). Bonett 

(2002) extended Fisher’s z (1950) as 

 

 Bonett’s  ˆln 1 | | ,z    (10) 

 

where Bonett’s z statistic is closely normally distributed compared to that of 

sample coefficient alpha. The variances of Fisher’s (1950) and Bonett (2002) z 

statistics are the same, yielding the lower and upper limits of CI respectively as 

1 − exp(Bonettz ± critzSEz). Hakstian and Whalen (1976) suggested another 

transformation of alpha, such that: 

 

  
1
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where the resulting z statistic is normally distributed with a variance, σ2 of  
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The lower and upper limits of CI respectively are 
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Hakstian and Whalen (1976) argued their method is generally less biased 

than that of Fisher’s (1950) z transformation, because they used the correction 

term  
1
3ˆ1   as an estimate of  

1
31  . There are notable performance 

differences among these CI methods as noted in the literature. 

Recent Developments 

Although several simulation studies have analyzed the performance of various 

methods for confidence intervals for coefficient alpha (Cui & Li, 2012; Iacobucci 

& Duhachek, 2003; Padilla et al., 2012; Romano et al., 2011), no known 

published study has analyzed confidence intervals for ordinal alpha.  Romano et 

al. (2011) found negligible differences between the following eight confidence 

interval methods, with respect to bias, coverage, and precision for coefficient 

alpha computed for ordinal data: (a) Maydeu-Oliveres et al. (2007) asymptotic 

distribution free (ADF), (b) Bonett (2002), (c) Feldt (1965), (d) Fisher (1950), (e) 

Hakstian and Whalen (1976), (f) Duhachek and Iacobucci (2004), (g) Koning and 

Franses asymptotic (2003), and (h) Koning and Franses exact (2003) method. The 

findings suggest the ADF method was the least accurate for small sample sizes, 

and little was gained from departing from the Fisher approach. This finding is 

especially noteworthy because many other simulation studies suggested that ADF 

method outperformed other normal theory approaches, and that the Fisher 

approach yielded low coverage rates (Duhachek & Iacobucci, 2004; Hakstian & 

Whalen, 1976; Maydeu-Olivares et al., 2007). Romano et al. (2011) provided 

evidence that sophisticated CI methodology does not necessarily yield better 
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performance. However, Romano et al. (2011) computed alpha coefficient for 

ordinal data based on Pearson and not polychoric correlations. 

Romano et al.’s (2011) findings are important because advancements of 

ADF methods were considered the most robust in skewed distributions and small 

sample sizes. van Zyl et al. (2000) derived an asymptotic (i.e. large sample) 

distribution for sample coefficient alpha, only assuming a multivariate normal 

distribution and positive-definite matrix (Maydeu-Olivares, et al., 2007). 

Although van Zyl et al.’s (2000) intervals have been shown to yield the most 

narrow intervals, they often have undercoverage (Cui & Li, 2012).  

Duhachek and Iacobucci (2004) extended van Zyl et al.’s (2000) method 

and presented statistics for coefficient alpha’s standard error and computed an 

ADF-based CI. They found ADF intervals repeatedly outperformed other normal 

theory based intervals, including Feldt (1965) and Hakstian and Whalen (1976). 

This finding was consistent across all study conditions, but their study was not 

generalizable to Likert-type data. Maydeu-Olivares et al. (2007) found that the 

empirical coverage rate of the ADF intervals for coefficient alpha outperforms 

that of normal theory intervals, regardless of observed skewness and kurtosis of 

item distributions (Cui & Li, 2012; Romano et al., 2011). These results are 

significant because researchers are no longer bound by normality assumptions (i.e. 

normal theory) that were often violated when analyzing Likert-type data. Padilla 

et al. (2012) found that the normal theory bootstrap method had the most 

acceptable coverage rate followed by Bonett, and normal theory for non-normal 

data. Fisher method yielded unacceptably high variability, except when the scale 

had more than 15 items.  

In sum, there is a need to evaluate the performance of the confidence 

intervals of ordinal alpha because Likert-type data is very commonly used in 

educational and behavioral research. Therefore, the present study investigated the 

coverage rates, widths, and biases of the four types of CIs (Bonnet, Feldt, Fisher, 

and Hakstian Whalen), and the accuracy of the ordinal alpha point estimates. 

Sample size, the number of items, skewness of the responses, and population 

alpha were varied. 

Method 

The program code was written using R (Version 3.0.2) using the R Studio 

interface (Version 0.98.976). The code was executed in a Windows-based 

environment (Version 8). Based on Maydeu-Olivares et al. (2007) and Hakstian 



TURNER ET AL. 

165 

and Whalen (1976) we generated the data from the factor analytic classical test 

theory model, assuming the parallel items model as follows: 

 

a) For a given condition, generate a population of 1 million subjects by 

k number of items, with p population alphas, c response categories, 

and s skewness.  

b) For a given sample size n, generate a n × k theoretical ability matrix 

θ* such that θ* ~ N(0,1). 

c) Generate a n × k random error matrix U such that U ~ MVN(0,σ) 

where  

 

.25 0 0

0 .25
.

.25 0

0 0 .25



 
 
 
 
 
 

 

 
d) Calculate the n × k matrix X* such that x

ik
 = λθ

ik
 + u

ik
 where λ values 

are specified below. 

e) Categorize the scores in the item response distributions in X* by 

applying rigid thresholds, τ (Muthén & Kaplan, 1985; Zumbo et al., 

2007) to generate a skewed and symmetric distribution. The exact 

threshold values are provided in Table 1. 

Design Factors  

Population alphas (a). Three population alphas were specified at .6, .8, 

and .9 as used in previous simulation studies (Cui & Li, 2012; Padilla et al., 2012; 

Romano et al., 2011; Zumbo et al., 2007). Factor pattern coefficients values (λs) 

were based on Zumbo et al. (2007) with values of .311, .471, and .625 for 

population ordinal coefficient alphas of .6, .8, and .9, respectively. 

 

Sample size (n).  The design conditions included four levels of 

sample size (20, 50, 100, 200). The sample sizes were selected based on previous 

studies and represent sample sizes often noted in applied research (Cui & Li, 

2012; Duhachek & Iacobucci, 2004; Maydeu-Olivares et al., 2007; Padilla et al., 

2012; Romano et al., 2011; Yuan & Bentler, 2002; Zumbo et al., 2007). While 
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large sample sizes are always desirable, they are not always realistic. Duhachek 

and Iacobucci (2004) indicated that sample sizes beyond 200 have diminishing 

returns for coefficient alpha, given a sufficient number of items and strong inter-

item correlations. Therefore, they were not simulated in the present study. 

Similarly, we considered sample sizes as small as 20 because this is not an 

uncommon sample size in educational research and has therefore been included as 

a data condition in other similar simulation studies (e.g. Natesan & Thompson, 

2007). Moreover, considering a sample size as low as 20 helps the researcher 

understand a possible lower bound of sample size necessary for estimating ordinal 

alpha. 

 

Number of items (k).  The number of items chosen were k = 5, 10, 25,and 

40. Previous studies have simulated between two and 40 items, which also reflects 

the test widths of interest to applied researchers (Cui & Li, 2012; Duhachek & 

Iacobucci, 2004; Maydeu-Olivares et al., 2007; Padilla et al., 2012; Romano et al., 

2011; Yuan & Bentler, 2002; Zumbo et al., 2007). It is not uncommon to consider 

5 and 10 Likert-type items per factor in simulation studies (e.g. Ankemann & 

Stone, 1992; Kieftenbeld & Natesan, 2012; Reise & Yu, 1990). Forty items were 

considered as the upper bound of test length.  

 

Skewness (s).   Two types of observed item response distributions 

were selected: s = 0, −1.217. These values were selected to demonstrate the 

impact of symmetry on precision of confidence intervals for ordinal coefficient 

alpha (Zumbo et al., 2007). Threshold values are used to categorically score the 

individual item’s value computed in steps (a) through (e) described above. The 

following thresholds for the two item response distributions and relative response 

categories are based on the works of Zumbo et al. (2007) and specified in Table 1. 

 

Response categories (C). Two scales of response categories (C) were 

selected: the five-point and seven-point scales. Duhachek and Iacobucci (2004) 

demonstrated that confidence interval performance does not improve beyond 

seven response categories. Therefore, simulating more than seven response 

categories was not deemed necessary. A five-point Likert scale is commonly used 

in behavioral research. The resulting design is a fully-crossed 

2(s) × 2(C) × 3(α) × 4(n) × 4(k) factorial design with 192 conditions. 
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Table 1. Likert Scale Thresholds  

 

  
Five-point Scale 

 
Seven-point Scale 

  Skewness 
0 -1.217  0 -1.217 

yj   

1 yj
* ≤ −1.8 yj

* > 1.8 
 

yj
* ≤ −2.14 yj

* > 2.4 

2 −1.8 < yj
* ≤ −0.6 1.8 ≥ yj

* > 1.34 
 

−2.14 < yj
* ≤ −1.29 2.4 ≥ yj

* > 1.95 

3 −0.6 < yj
* ≤ 0.6 1.34 ≥ yj

* > 0.77 
 

−1.29 < yj
* ≤ −0.43 1.95 ≥ yj

* > 1.42 

4 40.6 < yj
* ≤ 1.8 0.77 ≥ yj

* > 0.05 
 

−0.43 < yj
* ≤ 0.43 1.42 ≥ yj

* > 0.99 

5 51.8 < yj
* 0.05 ≥ yj

* 
 

−0.43 < yj
* ≤ 0.43 0.99 ≥ yj

* > 0.47 

6 NA NA 
 

0.43 < yj
* ≤ 2.14 0.47 ≥ yj

* > −0.2 

7 NA NA   2.14 < yj
* −0.2 ≥ yj

* 

 

Diagnostics 

Coverage rates were computed as, 

 

  coverage rate = (A/B) × 100%, (14) 

 

where A is the frequency of intervals which contain the true population parameter, 

and B is the total number of intervals. Coverage rate should have a value close to 

the nominal level but are not a sufficient diagnostic, particularly when the 

skewness of the sampling distribution is not provided or unknown (Jennings, 

1987; Schall, 2012; Zhang, Gutiérrez Rojas, & Cuervo, 2010). In addition to 

coverage rate, positive and negative bias of intervals that do not contain the true 

value must be reported. Among the (B – A) intervals that did not contain the true 

value, the number of intervals which were below and above the true value when 

expressed as percentage of the total number of intervals indicate negative and 

positive bias of CI, respectively. An imbalance in these biases indicate possible 

systematic bias in the estimation (Natesan, 2015). An unbiased interval is equally 

likely to be above or below the true value. Therefore an unbiased CI estimate 

would have roughly equal number of negatively and positively biased intervals. 

CI width is the difference between the upper and lower limits of the CI. Following 

Zhang et al. (2010), mean and variance of CI widths were computed. A highly 

variable CI width indicates poor precision for the interval estimate method.  
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Precision of point estimates.  Bias and RMSE of ordinal alpha were 

computed. Bias is the difference between the true population parameter value and 

the sample estimate. RMSE across N replications is computed as 

 

 
 

2

1 ,

N

ii
x

RMSE
N








 (15) 

 

where μ is the true population parameter value, x
i
 is the estimate of ordinal alpha 

in the ith replication. To determine whether a confidence interval is unacceptably 

wide, the empirical standard error (SE) of ordinal alpha was computed. The 

empirical SE is the standard deviation of all sample ordinal alpha estimates for a 

given condition. 

Data Analysis 

Following the simulation, η2 effect sizes were examined for separate ANOVAs to 

understand the variance in the simulation diagnostics explained by the data 

conditions. The independent variables were population alphas, sample size, 

number of items, skewness, and response categories. The dependent variables 

were coverage rates, CI width, variance of CI width, RMSE, and bias of ordinal 

alpha. Both main effects and all higher order interactions were examined. 

Following Cohen (1988), 1%, 6%, and 14% were considered small, medium, and 

large effect sizes for η2. Only large main and higher order interaction effects are 

interpreted and discussed.  

Results 

Practical Computation Issues 

To minimize the standard error of the simulation, 1,000 samples were drawn for 

each condition (Fan & SAS Institute, 2002; Wang & Thompson, 2007). The 

Appendix includes a list of 25 conditions (of the 192 conditions) that did not 

execute due to repeated crashing. The error message stated that a “not positive-

definite matrix” was computed which caused computations to stop. This error 

occurred when there was a large number of items (e.g. 25 or 40 items) with a 

small sample size (e.g. n = 20). The rigid thresholds set for the 5-point and 7-

point Likert scales removed important differences between the available response 

options (1, 2, … 5 or 1, 2, … .7). Ultimately, there simply was not enough 



TURNER ET AL. 

169 

sampling variability generated across each repetition and the variables became 

constant (e.g. all responses were scored “3”). When no variability was generated 

either across items or subjects, the covariance and standard deviation are 

essentially zero. When this occurs, estimation stops because one cannot divide by 

a standard deviation of zero to compute polychoric correlation. The issues related 

to the lack of variance generated seem to be an artifact of restricted range with the 

ordinal data. The resulting dataset contained 167,000 replications (167 workable 

conditions × 1,000 samples each). The total time elapsed was approximately 691 

computing hours. The simulations were executed on a Dell Precision T3600 Intel 

(R) Xeon (R) CPU E5-1620 3.60 GHz Windows 8 machine.  

Coverage rate and CI bias.  

Overall, coverage rates were much lower than the 95% nominal rate as seen in 

Figure 1, ranging from 46% (Feldt) to 62% (Fisher). Feldt method had the lowest 

coverage rate due to the confounding impact of several independent variables 

summarized in Table 2. ANOVA results show that skewness explained most of 

the variance in mean coverage rates (23.651% to 62.915%) except for the Feldt 

method. Interaction effects have a dominating presence, especially for the Feldt 

method where η2 = 64.968%. 
 
 

 
 
Figure 1. Coverage rates by confidence interval method across N = 167,000 replications 
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Table 2. η2 (%) by confidence interval method for coverage rates 

 

Independent variable Fisher Feldt Bonett HW 

population alpha (α) 0.422 0.252 0.110 0.381 

sample size (n) 4.122 7.453 4.692 7.085 

items (k) 1.934 2.722 5.312 6.116 

skewness (s) 62.915 23.651 55.108 46.769 

response categories (C) 2.157 0.322 0.997 1.034 

Interactionsa 27.197 64.968 32.756 37.590 

     
α × s 9.375 13.129 13.165 16.919 

α × n 4.764 6.705 6.307 5.371 

α × n × k 
 

6.430 
  

α × n × k × C   8.979     
 

Note. a Interactions includes all possible 2nd, 3rd, 4th, and 5th order interactions; only η2 (%) values greater 

than 4% are reported for the interaction terms 

 
 

The largest two-way interaction effect, population alpha by skewness, is 

shown in Figure 2. Two-way mean interaction plots of population alpha by 

skewness effects. As population alpha increased from .6 to .9, the estimated 

marginal means (EMMs) of captured coverage rates increased for skewed 

distributions. Coverage rates increased due to the joint influence of population 

alpha levels and skewness. Coverage rates were higher in skewed data except for 

the Feldt method, when population alpha levels were .6. The CIs that did not 

contain the true value more often underestimated ordinal alpha for all methods. 

That is, negatively biased intervals (35-38%) occurred more frequently than 

positively biased intervals (4-17%) as shown in Figure 2.  
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Figure 2. Two-way mean interaction plots of population alpha by skewness effects on 

coverage rates. 

 

 
 

CI widths.   The boxplot shown in Figure 3 depicts the 

interquartile ranges of the 95% CI width for the four confidence interval methods. 

The Fisher confidence intervals consistently yielded the narrowest intervals, while 

Bonett intervals were the widest across all conditions. Table 3 shows that all 

intervals became narrower with increase in sample size and population alpha with 

one exception. The exception occured with the Feldt interval when n = 200 and 

the population alpha increased from .8 to .9. 
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Figure 3. Boxplot of 95% CI widths for four estimation methods 

 

 
 
Table 3. Mean confidence interval width (SD) at study condition level 
 

  
Sample Size 

Method 
Population 

alpha 
20 50 100 200 

Fisher 

0.6 .654 (.073) .286 (.032) .184 (.017) .133 (.010) 

0.8 .573 (.082) .223 (.029) .140 (.015) .091 (.008) 

0.9 .510 (.077) .184 (.024) .108 (.014) .060 (.007) 

Feldt 

0.6 .673 (.125) .254 (.041) .153 (.019) .100 (.001) 

0.8 .524 (.114) .178 (.029) .103 (.014) .071 (.008) 

0.9 .499 (.107) .162 (.026) .094 (.014) .073 (.008) 

Bonett 

0.6 .742 (.140) .281 (.045) .172 (.022) .126 (.013) 

0.8 .610 (.135) .202 (.033) .126 (.017) .080 (.009) 

0.9 .516 (.112) .165 (.027) .093 (.013) .050 (.006) 

HW 

0.6 .665 (.125) .270 (.043) .168 (.021) .125 (.013) 

0.8 .547 (.121) .194 (.031) .123 (.017) .079 (.009) 

0.9 .463 (.100) .158 (.026) .091 (.013) .050 (.006) 

 
 

Shown in Figures 4 through 6, the CIs became narrower with increase in 

both sample size and the number of items simultaneously for all methods. The 
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intervals became quite narrow when sample size = 200 and the number of 

items = 40. There are no striking visual differences in the confidence interval 

widths between the Fisher, Feldt, Bonett, and HW methods across various levels 

of population alpha because the patterns are similar for all methods.  
 
 

 
 
Figure 4. Mean confidence limits for population alpha = .6. Dashed line references 

population parameter. Bottom marker is the mean lower limit and top marker is the mean 
upper limit. Middle marker is the mean sample ordinal coefficient alpha. 
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Figure 5. Mean confidence limits for population alpha = .8. Dashed line references 

population parameter. Bottom marker is the mean lower limit and top marker is the mean 
upper limit. Middle marker is the mean sample ordinal coefficient alpha. 
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Figure 6. Mean confidence limits for population alpha = .9. Dashed line references 

population parameter. Bottom marker is the mean lower limit and top marker is the mean 
upper limit. Middle marker is the mean sample ordinal coefficient alpha. 
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Figure 7. Interaction of sample size by skewness on CI width 

 

 
 

As seen in Table 4, sample size explained the most variance in CI width 

across all methods. Specifically, the CI widths decreased with increase in sample 

size. Of the interaction effects, the largest amount of the interaction effects were 

explained by the sample size by skewness interaction. The sample size by 

skewness interactions ranged from 2.55% (Fisher) to 5.03% (Bonett). While the 

η2 values for both interactions may be considered “small,” (i.e., < 1%, Cohen, 

1988), the implications are meaningful. The CI widths were consistently smaller 

across all methods when sample size increased to 200 and skewness = 0 as shown 

in Figure 7. 
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Table 4. η2 (%) by confidence interval method for CI width 

 

Independent variable Fisher Feldt Bonett HW 

population alpha (α) 3.882 2.516 3.852 4.290 

sample size (n) 67.254 55.737 57.940 55.062 

items (k) 13.599 11.795 14.709 16.566 

skewness (s) 6.053 7.914 6.527 7.068 

Interactionsa 5.280 15.487 10.148 10.010 
 

Note. a Interactions includes all possible interactions. Response categories had η2 less than 1% 

 
 

Variance of CI widths.  Effect sizes summaries for variance CI widths for 

all CI methods are shown in Table 5. Sample size by number of items had the 

largest effect across the four confidence interval methods. The η2 values ranged 

from 2.140% (Fisher) to 10.394% (HW) with the mean plots provided below in 

Figure 8. All four methods followed the same pattern with variance of CI widths 

sharply decreasing as both sample size and the number of items increased. In 

summary, the joint influence of the number of items and sample size impacted the 

mean variance of CI width across all methods. 
 
 
Table 5. η2 (%) by confidence interval method for variance of CI width 

 

Independent variable Fisher Feldt Bonett HW 

population alpha (α) 0.144 0.500 0.738 0.829 

sample size (n) 83.358 63.538 67.264 66.409 

items (k) 2.821 5.989 7.285 7.915 

skewness (s) 0.254 3.011 2.257 2.492 

Interactionsa 12.780 26.866 22.378 22.276 
 

Note. a Interactions includes all possible 2nd, 3rd, 4th, and 5th order interactions; number of categories had 
η2 < 1% 

 
 

Point estimates.   Given the large η2 values of sample size (43.377%) 

and items (34.102%), further post-hoc analyses were conducted to see which 

levels of the independent contributed the most to the variance of RMSE as seen in 

Table 6. The RMSEs decreased from .083 to .022 as sample size increased from 

20 to 200. As the number of items increased from 5 to 40, the RMSE values 

decreased from .068 to .011. 

Overall, sample ordinal alpha was negatively biased (M = −.054, SD = .103, 

N = 167,000) ranging from −.69 to .328. The distribution of bias was negatively 
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skewed (−1.10, SE = .006) with a leptokurtic shape (1.940, SE = .012). Skewness 

levels (0, −1.217) had the largest impact on the bias of ordinal coefficient alpha. 

Sample size × skewness explained 5.36% of the variance in bias. The rest of the 

interactions explained less than 4% of the variance. Negative skewness resulted in 

a less biased estimate (EMM = .013, SE < .001) compared to no skewness 

(EMM = −.122, SE < .001). These results support the use of ordinal coefficient 

alpha when analyzing Likert-type or ordinal data because less bias is present 

when data are skewed. In summary, the precision of ordinal coefficient alpha, in 

terms of RMSE, is best explained by the main effects of sample size and the 

number of items. Bias is best explained by the main effect of skewness and a 

combination of small interaction effects. 
 
 

 
 
Figure 8. Interaction of samples size by number of items on CI width 
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Table 6. η2 (%)for RMSE and bias 

 

Source RMSE Bias 

population alpha (α) 5.295 2.811 

sample size (n) 42.377 10.376 

items (k) 34.102 1.600 

skewness (s) 10.094 41.754 

response categories (C) 0.036 2.166 

Interactionsa 8.084 19.085 

 

Conclusion 

The aim in this study was to evaluate the performance of Feldt, Fisher, Bonett, 

and HW confidence interval methods for ordinal coefficient alpha. The simulation 

findings are only applicable to study designs where the sample sizes range from 

20 to 200, the number of items range from five to 40, scores are categorized into 

symmetric and skewed item response distributions, with five or seven response 

categories.  None of the CI methods suggested for coefficient alpha have adequate 

coverage for ordinal alpha. Skewness had the largest impact on coverage rates. 

Mean coverage rates were 46% - 62%, low, and unacceptably low for all methods. 

This could lead to high type-I error rates. Moreover, for all methods the CIs that 

did not contain the true values were more negatively biased. Clearly these 

findings show the need for a new method that specifically formulates CI for 

ordinal alpha.  

CI widths were statistically significantly different across Feldt, Fisher, 

Bonett, and HW methods (p < .05). CI widths became narrower as population 

alphas increased and sample size increased. There are small, but notable 

differences observed with CI width between methods. The Feldt method is the 

only CI method that did not use any transformation of sample ordinal coefficient 

alpha, and was therefore, impacted differently than Fisher, Bonett, and HW. The 

Feldt CI width is determined as a function of the degrees of freedom based on 

sample size and number of items, and was therefore heavily impacted by the 

interactions of these conditions. The Fisher, Bonett, and HW methods apply 

logarithmic transformations of sample ordinal alpha and were therefore more 

easily explained by varying sample size and the number of items.  

Sample size and number of items best explained the precision of ordinal 

alpha. Interestingly, the number of response categories is a strong predictor of 

coefficient alpha, but not necessarily for ordinal coefficient alpha (Zumbo et al., 
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2007). EMMs of RMSE were statistically significant across all levels of sample 

size and number of items. The practical implications suggest keeping an 

instrument, with Likert-type data, between 10-25 items, while striving for at least 

50 participants. However, researchers should not use any of the CI formulae 

tested in the present study to compute confidence interval for ordinal alpha. 

Bias was best explained by skewness, and sample size by skewness 

interaction effect. Overall, bias is persistently negative across all design levels 

except for skewed data. Bias approached zero when n = 200. This shows that 

regardless of the method, when the estimate is more biased the coverage rate will 

be lower. Again, very little confidence should be placed on confidence intervals 

methods for ordinal alpha. 

As with any simulation study, the results are limited to the conditions 

specified. The conditions were justified with previous research to portray 

scenarios in applied research. The conclusions hold for the study conditions 

specified; therefore, a number of opportunities exist to extend the current research. 

First, a confidence interval method specifically for ordinal alpha which improves 

coverage rates closer to the nominal rate needs to be developed. Additionally, the 

contiguous points between 10 and 25 items may be explored to determine the 

optimal point of precision of ordinal alpha for both RMSE and bias. 
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Appendix A: Non-Executable Conditions 

Obs num SimID 
Population 

ordinal 
coeff alpha 

Factor 
loading 

k items 
c response 
categories 

n sample 
size 

Skewness 

1 3 0.9 0.625 25 5 20 0.000 

2 4 0.6 0.311 40 5 20 0.000 

3 7 0.6 0.311 25 7 20 0.000 

4 8 0.8 0.471 40 7 20 0.000 

5 12 0.9 0.625 40 5 50 0.000 

6 35 0.8 0.471 25 5 20 -1.217 

7 36 0.9 0.625 40 5 20 -1.217 

8 39 0.9 0.625 25 7 20 -1.217 

9 40 0.6 0.311 40 7 20 -1.217 

10 67 0.6 0.311 25 5 20 0.000 

11 68 0.8 0.471 40 5 20 0.000 

12 71 0.8 0.471 25 7 20 0.000 

13 72 0.9 0.625 40 7 20 0.000 

14 99 0.9 0.625 25 5 20 0.000 

15 100 0.6 0.311 40 5 20 -1.217 

16 103 0.6 0.311 25 7 20 -1.217 

17 104 0.8 0.471 40 7 20 -1.217 

18 131 0.8 0.471 25 5 20 0.000 

19 132 0.9 0.625 40 5 20 0.000 

20 135 0.9 0.625 25 7 20 0.000 

21 136 0.6 0.311 40 7 20 0.000 

22 163 0.6 0.311 25 5 20 0.000 

23 164 0.8 0.471 40 5 20 -1.217 

24 167 0.8 0.471 25 7 20 -1.217 

25 168 0.9 0.625 40 7 20 -1.217 
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