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Effectively Comparing Differences in 
Proportions 

Lonnie Turpin 
McNeese State University 

Lake Charles, LA 

 

 
A single framework of developing and implementing tests about proportions is outlined. It 
avoids some of the pitfalls of methods commonly put forward in an introductory data 
analysis course. 
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Introduction 

Proportions derived from binary variables are simple predominantly due to the 

nature of the variables involved. Because of this, the logic behind the methods are 

able to be grasped, as opposed to resorting to memorizing formulas. However, 

confusion arises when making a connection within the equations between a 

Bernoulli random variable X and the associated estimator p̂  of the sample 

proportion p. A way to mitigate this confusion will be shown where only a basic 

knowledge of descriptive/inferential statistics and linear combinations are required. 

With all necessary formulations included, this study is essentially self-contained 

and aimed at analysts (practitioners and teachers focusing on applications who need 

a quick guide for analyzing proportions). 

A subject can represent any object of analysis (people, products, etc.) and the 

method refers to the two examples used to illustrate proportions, not the statistical 

technique used in analysis. A single framework of developing and implementing 

tests about proportions will be outlined, which avoids some of the pitfalls of 

methods commonly put forward in introductory classes. The methods will entail 

using the simple two-way probability table to easily calculate confidence intervals 

and Z-scores while accounting for the correlation between the proportions. The key 

contributions are: 1) to make use of this simple two-way table as an easy way to 
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compute the correlation (which is often ignored in intro level treatments); and 2) to 

motivate the methods in a way that makes use of the student’s intuition about how 

sample means relate to population means. This study was motivated by experience 

teaching graduate-level applied business statistics courses. Common points of 

confusion are highlighted as remarks. For theoretical expositions on the topics 

presented, Brownlee (1965) and Bickel and Doksum (2015) are recommended. 

Comparing Proportions 

Begin with an example that involves comparing the effectiveness of two different 

methods of testing a product in order to provide a single method of comparing two 

proportions. An illustrative example concerns comparing the effectiveness of two 

methods. The methods are denoted as M1 (a chosen method 1) and M2 (a chosen 

method 2 that is different from method 1). It is a loose assumption that there exists 

an initial method of comparison (M0) with a known statistical measure of 

effectiveness. However, it is not necessary for the comparison of the test methods 

(M1 and M2), and this is therefore omitted for the remainder of the paper. Both of 

these methods will be given to a group of n test subjects. For a classic example of 

comparing two proportions from an identical survey, see Scott and Seber (1983) 

and Wild and Seber (1993). 

Procedure 

Assumption 1:  To control for the potential individual-specific factors, each 

subject in the test group is given both methods. Practical outlets for this assumption 

are in clinical trials where each subject receives both the treatment and the control 

(Senn, 2002). 

For each subject i, define 1M

iX   if method M is successful and 0 otherwise. 

Prior to beginning the experiment, it is important to note that M

iX  is a random 

variable, since we do not know in advance whether the method will work for any 

given subject. 

 

Assumption 2:  Outcomes for different subjects are independent and 

identically distributed (i.i.d.). 

Given this assumption, and based on the nature of the variables, we let the 

distribution of each variable expressed in terms of p as 
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  ~ Bernoulli i.i.d.M M

iX p   (1) 

 

where pM is the familiar probability  Pr 1M

iX   representing the success of a given 

method for the ith subject. Let ˆ Mp  be the fraction of subjects for which method M 

is successful. For dummy variables, let 

 

 
1

1
ˆ

n
M M

i

i

p X
n 

    (2) 

 

be the estimator for pM, representing the sample proportion of ones contained in the 

data set. 

 

Assumption 3:  The sample size n is large enough to follow the Central Limit 

Theorem, thus define the sampling distribution of ˆ Mp  as 

 

 
 1

ˆ ~ N ,

M M

M M
p p

p p
n

 
 
 
 

  (3) 

 

For effective techniques in working with smaller data sets (especially in teaching 

the logic behind these techniques), see Agresti and Caffo (2000). 

Notice that in Assumption 3, the sampling distribution of ˆ Mp  depends on the 

unknown parameter pM. With a large n, by equation (2), rewrite equation (3) in the 

form 

 

 
 ˆ ˆ1

ˆ ˆN ,

M M

M M
p p

p p
n

 
 
 
 

  (4) 

 

Replace p with p̂  in the equations to follow with the understanding that p̂ p  by 

Assumption 3 and equation (4). Then, define the mean and variance of M

iX  in 

terms of pM and ˆ Mp  as 

 

 
E

ˆ

M M

i

M

X p

p

   


  (5) 
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and 

 

 
 

 

V 1

ˆ ˆ1

M M M

i

M M

X p p

p p

    

 
  (6) 

 

Now, figure out which of the two methods is more effective. That is, the goal is to 

find and explain the difference pM1 – pM2. To do this, think about the two methods 

together. Considering the potential unique nature of the subjects highlighted by 

Assumption 1, the following assumption is introduced: 

 

Assumption 4:  Although it was assumed the outcomes are i.i.d. across 

different subjects, do not assume the two outcomes 1M

iX  and 2M

iX  are independent 

for the same subject. Because there is no assumption that the two methods are 

independent, the question arises how strongly they are related. Use the familiar 

covariance formula 

 

 
   

 1 2

1 2

1 2 1 1 2 2

, 0,1

Cov ,

Pr , E E
M M
i i

M M

i i

M M M M M M

i i i i i i

X X

X X

X X X X X X


  

        
  (7) 

 

where the weights  1 2Pr ,M M

i iX X  are the joint probabilities easily derived using 

the two-way Table 1. In Appendix B, the numerical example is used to show a 

connection between covariance and the assumption of independence via Bayes' 

Rule. 
 
 
Table 1. Two-way joint probability table 

 

  

M

i
X

1
 

  

  0 1 
 M

i
X

2
Pr  

M

i
X

2
 0 Pr(0, 0) Pr(1, 0) 1 – pM2 

 1 Pr(0, 1) Pr(1, 1) pM2 

  M

i
X

1
Pr  1 – pM1 pM1  
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Table 2. Two-way joint probability table with ˆ M
p  estimators 

 

  

M

i
X

1
 

  

  0 1  M

i
X

2
Pr  

M

i
X

2
 0  Pr 0,0   Pr 1,0  ˆ M

p
2

1-  

 1  Pr 0,1   Pr 1,1  ˆ M
p

2
 

  M

i
X

1
Pr  ˆ M

p
1

1-  ˆ M
p

1
 

 

 
 

Replace the unknown pM1, pM2, and  1 2Pr ,M M

i iX X  Table 1 with the 

estimators 1ˆ Mp , 2ˆ Mp , and  1 2Pr ,M M

i iX X  in the modified Table 2. 

As with equation (5) and equation (6), rewrite equation (7) in terms of p as 

 

 

   
 

   
 

   
 
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1 2

1 2

1 2

1 2 1 1 2 2

, 0,1

1 2 1 1 2 2

, 0,1

1 2 1 1 2 2
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Pr , E E

Pr ,

ˆ ˆPr ,

M M
i i

M M
i i

M M
i i

M M

i i

M M M M M M

i i i i i i

X X

M M M M M M

i i i i

X X

M M M M M M

i i i i

X X

X X

X X X X X X

X X X p X p

X X X p X p







  

        

  

  







  (8) 

 

where  1 2Pr ,M M

i iX X  and 
1 2Cov ,M M

i iX X    are estimates for  1 2Pr ,M M

i iX X  and 

1 2Cov ,M M

i iX X   , respectively. 

 

Remark 1: The covariance of the methods are represented in the familiar 

probabilistic form as Cov[M1, M2] = σM1,M2. Let 
1 2

1, 2Cov ,M M

i i M MX X     . Like 

pM1 and pM2, treat σM1,M2 as an unknown parameter. 

Following Remark 1, for a particular subject i, define the mean and variance 

of 1M

iX  and 2M

iX  in two steps just as 
1 2Cov ,M M

i iX X    in equation (7) and 

equation (8). First, use the linear formulas to write 1 2E M M

i iX X    and 
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1 2V M M

i iX X    in terms of the means, variances, and the covariance of 1M

iX  and 

2M

iX  as 

 

 1 2 1 2E E EM M M M

i i i iX X X X               (9) 

 

and 

 

  1 2 1 2 1 2V V V 2 Cov ,M M M M M M

i i i i i iX X X X X X                    (10) 

 

Then, figure out what each mean, variance, and covariance is in terms of pM1, pM2, 

and σM1,M2 as 

 

 

1 2 1 2

1 2

1 2

E E E

ˆ ˆ

M M M M

i i i i

M M

M M

X X X X

p p

p p

            

 

 

  (11) 

 

and 

 

 

 
   

   

1 2 1 2 1 2

1 1 2 2

1, 2

1 1 2 2

1, 2

V V V 2 Cov ,

1 1 2

ˆ ˆ ˆ ˆ1 1 2

M M M M M M

i i i i i i

M M M M

M M

M M M M

M M

X X X X X X

p p p p

p p p p





                 

    

    

  (12) 

 

This leads to estimating the mean and variance of 1 2ˆ ˆM Mp p . The mean tends to 

cause less confusion than the variance since a very simple connection can be made 

in the form of the average difference 

 

  1 2 1 2

1

1
ˆ ˆ

n
M M M M

i i

i

p p X X
n 

     (13) 

 

 

Remark 2: The benefit of equation (13) is that it follows from a bit of basic 

algebra, so a formal proof is not needed. The analyst only needs to recall that the 

expected difference in two variables is the difference in expected values. For the 
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variance, it is important to recall the connection between the variance of averages 

and individual values. 

To achieve Remark 2, recognize that the average simply equals 1 / n times the 

sum. Therefore, 1 / n acts as a constant. When a random variable is multiplied by a 

constant, the mean gets multiplied by the same constant and the variance gets 

multiplied by that constant squared. 

 

 

 1 2 1 2

1

2

1 2

1 2

1
ˆ ˆV V

1
V

V

n
M M M M

i i

i

M M

i i

M M

i i

p p X X
n

n X X
n

X X

n



 
     

 

 
     

 

  



  (14) 

 

Then, the difference in means can be estimated as 

 

 

1 2 1 2

1 2

1 2

ˆ ˆ ˆ ˆE E E

ˆ ˆ

M M M M

M M

M M

p p p p

p p

p p

            

 

 

  (15) 

 

and the variance as 

 

 
   

1 2

1 2

1 1 2 2

1, 2

V
ˆ ˆV

ˆ ˆ ˆ ˆ1 1 2

M M

i iM M

M M M M

M M

X X
p p

n

p p p p

n



     

   


  (16) 

 

Remark 3: pM1, pM2, or 1 2Cov ,M M

i iX X    is not known, and the values of 
1ˆ Mp , 

2ˆ Mp , and 
1 2Cov ,M M

i iX X    are just approximations even though the sample size n 

is such that 
1 1ˆ M Mp p  and 

2 2ˆ M Mp p  by Assumption 3. 
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Testing 

Suppose the intent is test the null hypothesis H0: pM1 = pM2, which says the two 

methods are equally effective. To clarify this point, another way to write the null 

hypothesis is H0: pM1 – pM2 = 0. However, the consequence of Remark 3 is there is 

no guarantee of the equivalency 1 2 1 2ˆ ˆM M M Mp p p p   . By all preceding logic, at 

best 1 2 1 2ˆ ˆM M M Mp p p p   , which still leaves unknown values for pM1 and pM2. 

Therefore, construct a 95% confidence interval for the difference pM1 – pM2 as 

 

  1 2 1 2ˆ ˆ ˆ ˆ1.96 VM M M Mp p p p       (17) 

 

which follows from considerations about the weight in the tails of the standard 

normal distribution. Two may be used instead of the usual 1.96 in equation (17). If 

the interval does not contain 0, the null hypothesis is rejected at the usual 5% level 

(Bickel & Doksum, 2015). 

The hypothesis could also be tested using the Z-score 

 

 
1 2

1 2

ˆ ˆ

ˆ ˆV

M M

M M

p p
Z

p p




  

  (18) 

 

where Z represents the number of standard errors, 
1 2ˆ ˆV M Mp p   , the estimate, 

1 2ˆ ˆM Mp p , and the null, 0, are from each other. In the event that | Z | > 1.96, then 

based on the data, there is evidence that one method is more effective than the other. 

For an example of the power of the traditional Z-test in comparing Bernoulli 

proportions, see Suissa and Shuster (1984). An advantage of these tests is that the 

confidence interval is always consistent with the hypothesis test decision for a two-

tailed test. A formal connection is provided in Appendix A. 

 

Remark 4: Although the method of examining the overlap between two 

confidence intervals is a recognized technique, avoid using this method in formal 

significance testing; for justification, see Schenker and Gentleman (2001). This is 

highlighted the following example: 
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Example 

Suppose the success of two types of nail polish removal methods are tested on 

n = 100 people. Each participant has the exact type of nail polish on each testable 

finger. For each subject i, define 1 1M

iX   if method M is successful (that is, 

reducing the target amount of polish on the applied nail within a given timeframe) 

and 0 otherwise. As the aim of this article is for statistical clarity more than method 

content, for brevity assume this can be nail polish remover of any type (acetone-

based vs. acetone-free, remover strips vs. soaking, etc.). The uniqueness of people 

helps make clear Assumptions 1 and 4. To satisfy Assumption 1, we can apply 

Method 1 (M1) to any right-hand finger and Method 2 (M2) to the corresponding 

finger on the left hand simultaneously. The data on each of the 100 participants, 

including Excel functions, is shown in the supplementary material. Initially, use the 

logic of Table 2 to complete Table 3. 

The mean values given in equation (5) for each variable are shown in the table 

and, by equation (1), note  1 ~ Bernoulli 0.65M

iX  and  2 ~ Bernoulli 0.49M

iX . 

The corresponding variances given in equation (6) are derived as 

 1 1ˆ ˆ1 0.2275M Mp p   and  2 2ˆ ˆ1 0.2499M Mp p  . Notice this is multiplying the 

two marginal probabilities    Pr 1 Pr 0M M

i iX X    for each method M. By 

equation (8), calculate the covariance as 

 

 
       

       

1 2Cov ,

Pr 0,0 0 0.65 0 0.49 Pr 1,0 1 0.65 0 0.49

Pr 0,1 0 0.65 1 0.49 Pr 1,1 1 0.65 1 0.49

0.0615

M M

i iX X  

     

     



  (19) 

 
 
Table 3. Two-way joint probability table for the persuasion example 

 

  

M

i
X
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  0 1 
 M

i
X

2
Pr  

M

i
X

2
 0  Pr 0,0 = 0.24   Pr 1,0 = 0.27  ˆ M

p
2

1- = 0.51 

 1  Pr 0,1 = 0.11   Pr 1,1 = 0.38  ˆ M
p

2
= 0.49  

  M

i
X

1
Pr  ˆ M

p
1

1- = 0.35  ˆ M
p

1
= 0.65  
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Then, calculate the variance of the difference by equation (15) as 

 

 

     1 2
0.65 0.35 0.49 0.51 2 0.0615

ˆ ˆV
100

0.0035

M Mp p
 

   



  (20) 

 

Using equation (20), the interval (17) for the difference 1 2ˆ ˆM Mp p  is 

calculated to be (0.0409, 0.2791). Notice it does not contain 0, reject the null, and 

conclude the proportions are significantly different. In this case, M1 is more 

effective. 

To highlight Remark 4, consider the interval 

 

 
 ˆ ˆ1

ˆ 1.96

M M

M
p p

p
n


   (21) 

 

representing the 95% confidence interval for a single sample ˆ Mp . The interval in 

(21) is the familiar nominal 95% confidence interval shown in Brownlee (1965). 

Should Assumption 4 be violated, the covariance would be 0, thereby eliminating 

the covariance term in equation (16). This condition (via the assumption of 

independence) mirrors the calculation for 1 2ˆ ˆV M Mp p    in Brownlee, and is used 

to compare proportions discussed in Schenker and Gentleman (2001). Applying the 

interval (21) to the proportions 1ˆ Mp  and 2ˆ Mp  results in (0.5546, 0.7454) and 

(0.3900, 0.5899), respectively. By the overlap method, conclude that the 

proportions are not significantly different resulting in a contradiction with our 

preceding analysis. 

Conclusion 

Proportions are a key part of applied statistics and merit the attention of useful 

guides in clarifying common techniques. A classic technique was discussed for 

comparing proportions with a target audience of students and practitioners (and to 

a degree, teachers) dealing with statistics of everyday life. A step-by-step procedure 

was presented for analysis to mitigate the confusion of the audience when making 

a connection within the equations between a Bernoulli random variable X and the 

associated proportion p (as well as its respective estimator p̂ ). This procedure 

culminated with a basic example where we showed the connection between 
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confidence intervals and hypothesis testing and highlighted the deficiencies of 

relying on overlapping confidence intervals as a means of inference. This article 

should serve as a good secondary reference analysts who needs to not only apply 

statistical procedures to their research, but also to appreciate the basic connections 

within them. 
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Appendices 

In the following appendices, we first present a formal connection of confidence 

intervals and hypothesis tests; then, via Bayes' Rule, we show a connection between 

covariance and the assumption of independence. 

Appendix A 

The confidence interval and hypothesis test are two ways of saying what we think 

about the true value of the unknown difference pM1 – pM2. To make clear this notion, 

recall the formula for the 95% confidence interval in (17) expressed in its 

equivalency as 

 

  1 2ˆ ˆ 1.969 SEM Mp p    (A22) 

 

Now consider the formula for the test statistic in equation (18) in its comparative 

form 

 

 
1 2ˆ ˆ

SE

M Mp p
Z


   (A23) 

 

allowing us to compare two values for pM1 – pM2. These two values are the value 

we guessed, 0 (from H0: pM1 – pM2 = 0), and the value we actually estimated from 

our data, 1 2ˆ ˆM Mp p . The difference between the two values gets divided by the 

standard error 
1 2ˆ ˆV M Mp p   , labeled simply as SE. 

Just like with the single sample hypothesis test, we want to calculate the 

number of standard errors away from the null hypothesis value our estimate actually 

is. So if 
1 2ˆ ˆM Mp p  and 0 are more than 1.96 standard errors apart, we will get a Z-

score greater than 1.96 and will reject the null at the 5% level. Now, recall that the 

95% confidence interval contains all the values within 1.96 standard errors of 
1 2ˆ ˆM Mp p . If our guess, 0, lies outside the 95% confidence interval, we will reject 

the null.



EFFECTIVELY COMPARING DIFFERENCES IN PROPORTIONS 

198 

Appendix B 

There is a positive relationship between the two methods by the sign of the 

covariance 0.0615 calculated in equation (19). We can verify this by Bayes' Rule 

 

  
 

 

2 1

2 1

1

Pr ,
Pr |

Pr

M M

i iM M

i i M

i

X X
X X

X
   (B24) 

 

where  2 1Pr |M M

i iX X  represents the conditional distribution and  2 1Pr ,M M

i iX X  

and  1Pr M

iX  each represent the joint and marginal distributions discussed 

previously. We could also structure equation (B1) with respect to 2M

iX  by solving 

for  2 1Pr |M M

i iX X . Using the data from the supplemental material, we estimate 

 

 

 
 

 

2 1

2 1

1

Pr 1, 1
Pr 1| 1

Pr 1

0.38

0.65

0.5846

M M

i iM M

i i M

i

X X
X X

X

 
  







  (B25) 

 

With equation (B2) yielding 0.5846 ≈ 0.58, we can now compare the marginal 

distribution  2 ~ Bernoulli 0.49M

iX  to the conditional distribution 

 2 1| ~ Bernoulli 0.58M M

i iX X . Notice that we didn't really need to calculate 

 2 1Pr 0 | 1M M

i iX X   since 

 

    2 1 2 1Pr 1| 1 Pr 0 | 1 1M M M M

i i i iX X X X        

 

by the definition of a distribution. Thus, the marginal distribution  2Pr M

iX  and 

the conditional distribution  2 1Pr | 1M M

i iX X   are not the same. The distribution 

of 2M

iX  depends on what we observe for 1M

iX . Therefore, they are not independent, 

validating Assumption 4. 

Given 
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    2 2 1Pr Pr | 1M M M

i i iX X X    

 

it is easily inferred that 

 

    2 2 1Pr Pr | 0M M M

i i iX X X    

 

Thus, the conditional distributions  2 1Pr | 1M M

i iX X   and  2 1Pr | 0M M

i iX X   are 

not the same. They each depend on what we observe for 1M

iX . 

To help see the how 1M

iX  and 2M

iX  are positively related, we compare the 

conditional distributions  2 1Pr 1| 1M M

i iX X   and  2 1Pr 1| 0M M

i iX X   to 

 2 1Pr 0 | 1M M

i iX X   and  2 1Pr 0 | 0M M

i iX X  . Applying equation (A2), we 

get the following calculations: 

 

 

 

 

 

 

2 1

2 1

2 1

2 1

Pr 0 | 0 0.6857 0.69

Pr 1| 0 0.3143 0.31

Pr 0 | 1 0.4154 0.42

Pr 1| 1 0.5846 0.58

M M

i i

M M

i i

M M

i i

M M

i i

X X

X X

X X

X X

   

   

   

   

  

 

Notice that conditional on 1M

iX  being small (large), the probabilities get larger for 

2M

iX  when it is also small (large). Therefore, they are positively related. 
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