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Effectively Comparing Differences in
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A single framework of developing and implementing tests about proportions is outlined. It
avoids some of the pitfalls of methods commonly put forward in an introductory data
analysis course.
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Introduction

Proportions derived from binary variables are simple predominantly due to the
nature of the variables involved. Because of this, the logic behind the methods are
able to be grasped, as opposed to resorting to memorizing formulas. However,
confusion arises when making a connection within the equations between a
Bernoulli random variable X and the associated estimator p of the sample
proportion p. A way to mitigate this confusion will be shown where only a basic
knowledge of descriptive/inferential statistics and linear combinations are required.
With all necessary formulations included, this study is essentially self-contained
and aimed at analysts (practitioners and teachers focusing on applications who need
a quick guide for analyzing proportions).

A subject can represent any object of analysis (people, products, etc.) and the
method refers to the two examples used to illustrate proportions, not the statistical
technique used in analysis. A single framework of developing and implementing
tests about proportions will be outlined, which avoids some of the pitfalls of
methods commonly put forward in introductory classes. The methods will entail
using the simple two-way probability table to easily calculate confidence intervals
and Z-scores while accounting for the correlation between the proportions. The key
contributions are: 1) to make use of this simple two-way table as an easy way to
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compute the correlation (which is often ignored in intro level treatments); and 2) to
motivate the methods in a way that makes use of the student’s intuition about how
sample means relate to population means. This study was motivated by experience
teaching graduate-level applied business statistics courses. Common points of
confusion are highlighted as remarks. For theoretical expositions on the topics
presented, Brownlee (1965) and Bickel and Doksum (2015) are recommended.

Comparing Proportions

Begin with an example that involves comparing the effectiveness of two different
methods of testing a product in order to provide a single method of comparing two
proportions. An illustrative example concerns comparing the effectiveness of two
methods. The methods are denoted as M1 (a chosen method 1) and M2 (a chosen
method 2 that is different from method 1). It is a loose assumption that there exists
an initial method of comparison (M0O) with a known statistical measure of
effectiveness. However, it is not necessary for the comparison of the test methods
(M1 and M2), and this is therefore omitted for the remainder of the paper. Both of
these methods will be given to a group of n test subjects. For a classic example of
comparing two proportions from an identical survey, see Scott and Seber (1983)
and Wild and Seber (1993).

Procedure

Assumption 1: To control for the potential individual-specific factors, each
subject in the test group is given both methods. Practical outlets for this assumption
are in clinical trials where each subject receives both the treatment and the control
(Senn, 2002).

For each subject i, define X =1 if method M is successful and 0 otherwise.

Prior to beginning the experiment, it is important to note that X" is a random

variable, since we do not know in advance whether the method will work for any
given subject.

Assumption 2: Outcomes for different subjects are independent and
identically distributed (i.i.d.).

Given this assumption, and based on the nature of the variables, we let the
distribution of each variable expressed in terms of p as
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X" ~Bernoulli( p" )i.i.d. (1)

where pM is the familiar probability Pr ( XM ) =1 representing the success of a given

method for the i™" subject. Let p" be the fraction of subjects for which method M
is successful. For dummy variables, let

R I @

i=1

be the estimator for pM, representing the sample proportion of ones contained in the
data set.

Assumption 3: The sample size nis large enough to follow the Central Limit

Theorem, thus define the sampling distribution of p" as

M (1— pM
f)M ..N{pM,wj (3)

n

For effective techniques in working with smaller data sets (especially in teaching
the logic behind these techniques), see Agresti and Caffo (2000).

Notice that in Assumption 3, the sampling distribution of p" depends on the
unknown parameter pM. With a large n, by equation (2), rewrite equation (3) in the

form
AM 1_'\M
p" ~ Lﬁ“ﬂ,—p b )J @)

Replace p with p in the equations to follow with the understanding that p~ p by
Assumption 3 and equation (4). Then, define the mean and variance of X" in

terms of pMand p" as

()
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and
(6)

Now, figure out which of the two methods is more effective. That is, the goal is to
find and explain the difference pM! — pM2. To do this, think about the two methods
together. Considering the potential unique nature of the subjects highlighted by
Assumption 1, the following assumption is introduced:

Assumption 4: Although it was assumed the outcomes are i.i.d. across
different subjects, do not assume the two outcomes X* and X are independent

for the same subject. Because there is no assumption that the two methods are
independent, the question arises how strongly they are related. Use the familiar
covariance formula

Cov| X", X"? |
I e i

XML xM2elo,1)

where the weights Pr(xi“"l, Xi'\"z) are the joint probabilities easily derived using

the two-way Table 1. In Appendix B, the numerical example is used to show a
connection between covariance and the assumption of independence via Bayes'
Rule.

Table 1. Two-way joint probability table

XiMl
M2
0 . Pr(x™)
X" 0 Pr(0, 0) Pr(1, 0) 1-pM2
Pr(0, 1) Pr(1, 1) pM2
Pr(x") 1 - pMmt pML

189



EFFECTIVELY COMPARING DIFFERENCES IN PROPORTIONS

Table 2. Two-way joint probability table with p" estimators

o
0 1 Pr(XiMz)
X" 0| pr(0,0)  Pr(1,0) 1-p"2
1| pr(01)  Pr(11) p"’

Pr(xM™) 1-p™ p

Replace the unknown pM!, pM2 and Pr(Xi““,Xi““) Table 1 with the

estimators p™*, M2, and Pr(X"*, X"*) in the modified Table 2.
As with equation (5) and equation (6), rewrite equation (7) in terms of p as

COV[XiMl’ XiM2j|
" T POk e[ ) - x4

- Z Pr(X_M11XiM2)(XiMl_le)(XiMZ_pMz) (8)

XML xM2elo,1)

Q

Pr(XiMl’ XiMZ)(XiMl_ le)(XiMZ . sz)
XML xM2elo,1)
where Pr(X"*,X!"*) and Cov[xi““,xi""z] are estimates for Pr(X"*,X"?) and
Cov[ X", X*? |, respectively.

Remark 1:  The covariance of the methods are represented in the familiar
probabilistic form as Cov[M1, M2] = om1m2. Let Cov[xi““, Xi“"z} =0Oyiu. - Like

pMtand pM?, treat owm1,m2 as an unknown parameter.
Following Remark 1, for a particular subject i, define the mean and variance

of XM and XM? in two steps just as COV[XiMl,XiW} in equation (7) and

equation (8). First, use the linear formulas to write E[X"*—X*] and
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V[XiMl ~ Xi““] in terms of the means, variances, and the covariance of X! and

XM? as
E[XiMl_XiMz]:E[Xim]_EI:XiMz] (9)
and

VXM ex = VX VX -2 (Cov X X o)

Then, figure out what each mean, variance, and covariance is in terms of pM?, pM2,
and om1,m2 as

E[XiMl—XiM2]= E[Xim]_EI:XiMz]
_ le_pMZ (11)

AM2

~ PP
and
VXM= X2 =V XM+ v X2 ] -2 Cov[XiMl,XiMZD

le(l_ pM1)+ pMZ
le(l_ ﬁMl)‘F f)MZ

- ZO-Ml,MZ (12)

Q

This leads to estimating the mean and variance of p"*— p™?. The mean tends to

cause less confusion than the variance since a very simple connection can be made
in the form of the average difference

_ﬁMzz% & (XiMl_XiMz) (13)
i=1

AM1

P

Remark 2:  The benefit of equation (13) is that it follows from a bit of basic
algebra, so a formal proof is not needed. The analyst only needs to recall that the
expected difference in two variables is the difference in expected values. For the
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variance, it is important to recall the connection between the variance of averages
and individual values.

To achieve Remark 2, recognize that the average simply equals 1 / n times the
sum. Therefore, 1 / n acts as a constant. When a random variable is multiplied by a
constant, the mean gets multiplied by the same constant and the variance gets
multiplied by that constant squared.

V[pwu_ sz]:V|:lzn:(XiMl_XiM2)j|

N
1 2
{Hj nV[ X" - XM (14)
V[X_Ml_X_Mz

n

Then, the difference in means can be estimated as

E[f)Ml_ pMZ]: E[f)Mlj—EI:f)MZJ

=p"t-p"* (15)
zﬁ)Ml_ﬁMZ
and the variance as
M1 M2
V[ﬁm_ﬁmz}zv[xi — X ]
P (16)
P (1_p )+p (1_p )_ZO-MLMZ
n

Remark 3:  p™., pM2, or Cov[ X**,X"?] is not known, and the values of p"*,

A

p"? and Cov[XiMl, Xi““] are just approximations even though the sample size n

AM1

is such that pM'~ p“* and p“*~ p"?* by Assumption 3.
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Testing

Suppose the intent is test the null hypothesis Ho: pM! = pM?, which says the two
methods are equally effective. To clarify this point, another way to write the null
hypothesis is Ho: pM! — pM? = 0. However, the consequence of Remark 3 is there is
no guarantee of the equivalency p“'— p"? = pM'— pM?. By all preceding logic, at

best p¥*— pM? ~ p"* — p™?, which still leaves unknown values for pM! and pM2.

Therefore, construct a 95% confidence interval for the difference pM! — pM? as

(p™ - pMZ)ﬂ.ge\/v[le— p"? | (17)

which follows from considerations about the weight in the tails of the standard
normal distribution. Two may be used instead of the usual 1.96 in equation (17). If
the interval does not contain 0, the null hypothesis is rejected at the usual 5% level
(Bickel & Doksum, 2015).

The hypothesis could also be tested using the Z-score

M1 _ pMz
(18)
le _ pmz:l

,__ b
Wl

where Z represents the number of standard errors, \jv[ pMt — f)'\“] , the estimate,

AML _ aM2

p p" <, and the null, 0, are from each other. In the event that | Z | > 1.96, then
based on the data, there is evidence that one method is more effective than the other.
For an example of the power of the traditional Z-test in comparing Bernoulli
proportions, see Suissa and Shuster (1984). An advantage of these tests is that the
confidence interval is always consistent with the hypothesis test decision for a two-
tailed test. A formal connection is provided in Appendix A.

Remark 4:  Although the method of examining the overlap between two
confidence intervals is a recognized technique, avoid using this method in formal
significance testing; for justification, see Schenker and Gentleman (2001). This is
highlighted the following example:
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Example

Suppose the success of two types of nail polish removal methods are tested on
n =100 people. Each participant has the exact type of nail polish on each testable
finger. For each subject i, define XM' =1 if method M is successful (that is,
reducing the target amount of polish on the applied nail within a given timeframe)
and 0 otherwise. As the aim of this article is for statistical clarity more than method
content, for brevity assume this can be nail polish remover of any type (acetone-
based vs. acetone-free, remover strips vs. soaking, etc.). The uniqueness of people
helps make clear Assumptions 1 and 4. To satisfy Assumption 1, we can apply
Method 1 (M1) to any right-hand finger and Method 2 (M2) to the corresponding
finger on the left hand simultaneously. The data on each of the 100 participants,
including Excel functions, is shown in the supplementary material. Initially, use the
logic of Table 2 to complete Table 3.

The mean values given in equation (5) for each variable are shown in the table
and, by equation (1), note X"* ~Bernoulli(0.65) and X"? ~ Bernoulli(0.49).

The corresponding variances given in equation (6) are derived as
p¥* (1- pM*)=0.2275 and p™*(1- p"'?)=0.2499. Notice this is multiplying the

two marginal probabilities Pr(XiM :1)>< Pr(XiM :O) for each method M. By
equation (8), calculate the covariance as

Cov| X", XM? |
=Pr(0,0)(0-0.65)(0-0.49)+Pr(1,0)(1-0.65)(0-0.49)

+Pr(0,1)(0-0.65)(1-0.49)+Pr(1,1)(1-0.65)(1-0.49)
=0.0615

(19)

Table 3. Two-way joint probability table for the persuasion example

M1

X

0 1 Pr(X‘MZ)

X" 0| Pr(0,0)=024 Pr(1,0)=027 1-p"* =051

~M2

1] pr(0,1)=011 Pr(1,1)=0.38 p- =0.49

~AM1

Pr(x"™) | 1-p" =035 p" =0.65
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Then, calculate the variance of the difference by equation (15) as

i sz 0-65(0.35)+0.49(0.51)-2(0.0615)
vp*-p = 100 (20)

=0.0035

AM1 _ aM2

Using equation (20), the interval (17) for the difference p pre is
calculated to be (0.0409, 0.2791). Notice it does not contain 0, reject the null, and
conclude the proportions are significantly different. In this case, M1 is more
effective.

To highlight Remark 4, consider the interval

(21)

representing the 95% confidence interval for a single sample p" . The interval in
(21) is the familiar nominal 95% confidence interval shown in Brownlee (1965).
Should Assumption 4 be violated, the covariance would be 0, thereby eliminating
the covariance term in equation (16). This condition (via the assumption of
independence) mirrors the calculation for V[ pMt — f)““] in Brownlee, and is used

to compare proportions discussed in Schenker and Gentleman (2001). Applying the
interval (21) to the proportions p"* and pM? results in (0.5546, 0.7454) and

(0.3900, 0.5899), respectively. By the overlap method, conclude that the
proportions are not significantly different resulting in a contradiction with our
preceding analysis.

Conclusion

Proportions are a key part of applied statistics and merit the attention of useful
guides in clarifying common techniques. A classic technique was discussed for
comparing proportions with a target audience of students and practitioners (and to
adegree, teachers) dealing with statistics of everyday life. A step-by-step procedure
was presented for analysis to mitigate the confusion of the audience when making
a connection within the equations between a Bernoulli random variable X and the
associated proportion p (as well as its respective estimator p). This procedure

culminated with a basic example where we showed the connection between
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confidence intervals and hypothesis testing and highlighted the deficiencies of
relying on overlapping confidence intervals as a means of inference. This article
should serve as a good secondary reference analysts who needs to not only apply
statistical procedures to their research, but also to appreciate the basic connections
within them.
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Appendices

In the following appendices, we first present a formal connection of confidence
intervals and hypothesis tests; then, via Bayes' Rule, we show a connection between
covariance and the assumption of independence.

Appendix A

The confidence interval and hypothesis test are two ways of saying what we think
about the true value of the unknown difference pM! — pM2, To make clear this notion,
recall the formula for the 95% confidence interval in (17) expressed in its
equivalency as

(pM—p"?)+1.969 SE (A22)

Now consider the formula for the test statistic in equation (18) in its comparative
form

AM1 AM2

P~ —P
l=—-—"— A23
SE (A23)

allowing us to compare two values for pM! — pM2, These two values are the value
we guessed, 0 (from HO: pM! — pM2 = 0), and the value we actually estimated from

our data, p™* —p“?. The difference between the two values gets divided by the

standard error \/V[ pM* — f)““} , labeled simply as SE.

Just like with the single sample hypothesis test, we want to calculate the
number of standard errors away from the null hypothesis value our estimate actually
is. So if pM'— pM? and 0 are more than 1.96 standard errors apart, we will get a Z-
score greater than 1.96 and will reject the null at the 5% level. Now, recall that the
95% confidence interval contains all the values within 1.96 standard errors of

pMt — pV2. If our guess, 0, lies outside the 95% confidence interval, we will reject

the null.
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Appendix B

There is a positive relationship between the two methods by the sign of the
covariance 0.0615 calculated in equation (19). We can verify this by Bayes' Rule

) X.MZ’XiMl
Pr(X"| X}"")= r(PrI(X.Ml) ) (B24)

where Pr(X?| X! represents the conditional distribution and Pr(X?, X"*)
and Pr(X"!) each represent the joint and marginal distributions discussed

previously. We could also structure equation (B1) with respect to X" by solving
for Pr(xi“"2 | xi““) . Using the data from the supplemental material, we estimate

Pr(X"? =1, X" =1)
Pr(Xx"=1)

Pr(X"? =1 X" =1)=

- 0.38
0.65
—0.5846

(B25)

With equation (B2) yielding 0.5846 ~ 0.58, we can now compare the marginal
distribution ~ X? ~Bernoulli(0.49) to the conditional  distribution

X" X" ~ Bernoulli(0.58) . Notice that we didn't really need to calculate
Pr(XiM2 =0| X" :1) since

Pr(XM? =1] X" =1)+Pr(X}"* =0| X" =1) =1

by the definition of a distribution. Thus, the marginal distribution Pr(XiMZ) and

the conditional distribution Pr(XiM2 | XM =1) are not the same. The distribution

of XM? depends onwhat we observe for X"*. Therefore, they are not independent,

validating Assumption 4.
Given
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Pr(X"?)=Pr( X2 X" =1)
itis easily inferred that

Pr(X"?)=Pr(XM"?| X" =0)

Thus, the conditional distributions Pr(Xi""2 | XM :1) and Pr(XiM2 | XM :O) are
not the same. They each depend on what we observe for X .
To help see the how X* and XM? are positively related, we compare the

conditional distributions Pr(X"*=1| X" =1) and Pr(X"*=1]X/""=0) to
Pr(XiM2 =0| Xi“’”:l) and Pr(XiM2 =0| xﬁ“:o). Applying equation (A2), we
get the following calculations:
Pr(X*=0| X" =0)=0.6857 ~ 0.69
Pr(X"* =1 X" =0)=0.3143~0.31
Pr(XM*=0| X" =1)=0.4154 ~0.42
(

Pr(X"* =1 X" =1)=0.5846 ~ 0.58

Notice that conditional on X "* being small (large), the probabilities get larger for
X M? when it is also small (large). Therefore, they are positively related.
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