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Industrial process use single and double Exponential Weighted Moving Average control 

charts to detect small shifts in it. Occasionally there is a need to detect small trends instead 

of shifts, but the effectiveness to detect small trends. A new control chart is proposed to 

detect a small drift. 

 

Keywords: EWMA, DEWMA, control charts, linear drift, forecast, average run length 

 

Introduction 

One of the most useful tools to assure the quality of a product or process in 

manufacture industry are quality control charts. Shewhart (1926) developed the 

control charts tool to identify when a process was producing a good or a defective 

product. Today, many control charts have developed to ensure quality through the 

control of certain characteristics of interest. The main idea of control charts is to 

detect as soon as possible when this characteristic has changed. In this sense, 

control charts are designed to detect a shift quickly. Several control charts have 

been designed to detect small shifts, while others were designed to detect big shifts. 

In practice, however, we occasionally wish to detect small trends, instead of shifts, 

in the process; this gradual changes may be due to tool wear or similar causes. 

Examples of this phenomenon are commonly observed in several manufacturing 

processes and administrative activities. The effectiveness of these methods to 

determine small trends in a process has not been thoroughly researched in the 

current literature. Knoth (2012) reviewed this literature and invited the statistical 

process community to extend research in this area in order to enhance the 

knowledge about drift detection. 

https://doi.org/10.22237/jmasm/1509495840
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A double exponentially weighted moving average (DEWMA) control chart 

was initially developed by Shamma and Shamma (1992). Zhang and Chen (2005) 

presented an extension of the exponentially weighted moving average (EWMA) 

technique to a DEWMA technique. These two DEWMA techniques are the same, 

and so are their conclusions. Research regarding DEWMA was developed, taking 

the DEWMA control chart as a reference. For example, Mahmoud and Woodall 

(2010) conducted a study to compare some characteristics between the EWMA and 

the DEWMA. Alkahtani (2013) assessed the robustness of DEWMA and EWMA 

control charts for abnormal processes. Extensions for a multivariate DEWMA 

control chart case exist. For example, Alkahtani and Schaffer (2012) developed a 

multivariate DEWMA control chart for detecting shifts in the mean vector of a 

multivariate normal quality characteristic distribution. 

The DEWMA control chart is constructed on the assumption of a data stream 

of Xi random values following a normal distribution, initially Xi ~ N(μ0, σ); the 

DEWMA ( ) 11i i iS S S  −
 = + −  is then calculated, where Si = λXi + (1 – λ)Si–1 with 

its corresponding initial values. The control chart is built by plotting the value iS   

with its limits, using k times the variance of iS  . The DEWMA value is plotted with 

the upper and lower limits versus i. The DEWMA and EWMA control charts work 

efficiently to detect small shifts when the mean of the process has changed slightly, 

and the classical Shewhart control chart works well to detect big shifts (more than 

twice the standard deviation of the process). What happens, however, if after a 

period of stability, the process has a permanent small change (a linear trend or drift 

in the stream of Xi)? 

Brown (1962) proposed using the smoothing technique to forecast the 

demand of goods. These forecast methods are the basis of other more complex 

forecast methods. Smoothing techniques to produce forecasting are well known in 

business, where it is essential to predict the demand for goods and services (Hanke 

& Wichern, 2009). According to the fundamental theorem of exponential 

smoothing explained by Brown and Meyer (1961), a linear prediction can be 

forecast by a DEWMA with a linear relationship by the follow equation: 

 

 i t i iF a bt+ = +   (1) 

 

where Fi+t is the forecast in the t period, 

 

 2i i ia S S= −   (2) 
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and 

 

 ( )
1

i i ib S S



= −

−
  (3) 

 

Details of the development of these equations can be seen in Brown (1962) 

and Yates (1968). Also, a similar linear prediction equation like the one shown in 

equation (1) can be built using Holt forecast equations or moving average equations, 

or other forecast techniques as explained in Hanke and Wichern (2009). 

The main idea is to build a three individual control charts under the null 

hypothesis of the in-control process, assuming the Xi ~ N(μ0, σ
2). The first control 

chart is the ai control chart, where the center line is E(ai) and the upper and lower 

limits are given by 

 

 ( ) ( )E Vari ia k a   

 

This control chart tests the null hypothesis that the forecast level is equal to μ0, (i.e. 

E(ai) = μ0) at time t. 

The second control chart is for bi, a control chart for the forecast slope, where 

the center line of the control chart is E(bi) = 0 and the upper and lower limits can 

be built as 

 

 ( ) ( )E Vari ib k b   

 

This control chart tests the null hypothesis bi = 0 at time t (i.e. the forecast linear 

trend is equal to zero) versus the alternative hypothesis bi ≠ 0 (i.e. the slope differs 

from zero). The main idea is to detect a change when the slope differs from zero. 

The third control chart is the sum Fi+t = ai + bit, a control chart for the forecast 

assuming a linear prediction, where the center line is 

E(Fi+t) = E(ai + bit) = E(ai) + tE(bi) and the upper and lower limits can be built as 

 

 ( ) ( )E Vart tF k F   

 

This control chart tests the null hypothesis Ft = μ0 at time t (i.e. the forecast linear 

trend is equal to μ0, the target value) versus the alternative hypothesis Ft ≠ μ0 (i.e. 
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the mean level differs from the target). The principal idea is to try and detect a linear 

drift as soon as it occurs. 

The Control Charts to Detect Small Shifts 

The EWMA control chart was introduced by Roberts (1959). According to Lucas 

and Saccucci (1990), the EWMA control chart was a good alternative to the 

Shewhart control chart when the interest is in detecting small shifts. The EWMA is 

generally used with individual observations; therefore, this control chart will be 

discussed when n = 1. 

The Exponentially Weighted Moving Average Control Chart 

For a Xi ~ N(μ0, σ), i = 1, 2,…, n, the EWMA control statistic Si is explained by 

Montgomery (2007) as: 

 

 ( ) 11i i iS X S  −= + −   (4) 

 

where 0 < λ < 1 and S0 = μ0. It can be shown 

 

 ( ) 0E iS =   (5) 

 

and 

 

 ( ) ( )
2 2Var 1 1

2

i

iS


 

 = − −
 −

  (6) 

 

For large values of i, the asymptotic variance becomes 

 

 ( ) 2

asymVar
2

iS





 
=  

− 
  (7) 

 

Therefore, the control limits, and center line become 
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0

0

0

UCL
2

CL

LCL
2

k

k


 






 



= +
−

=

= −
−

  

The Double Exponentially Weighted Moving Average Control Chart 

For a Xi ~ N(μ0, σ), i = 1, 2,…, n, the DEWMA control statistic iS   was first 

developed by Shamma and Shamma (1992). It is defined as 

 

 ( ) 11i i iS S S  −
 = + −   (8) 

 

 ( ) 11i i iS X S  −= + −   (9) 

 

where 0 < λ < 1 and 0 0 0S S = = . It can be shown that 

 

 ( ) 0E iS  =   (10) 

 

and 

 

 

( )

( ) ( ) ( ) ( )( ) ( )( )
( )( )

2 2 2 2 42 2

4 2

3
2

Var

1 1 1 1 2 2 1 1 1

1 1

i

i

S

i i i i   
 





+ − − − + − + − − + −
=

− −

  (11) 

 

For large values of i, the asymptotic variance becomes 

 

 ( )
( )
( )

2

2

asym 3

2 2
Var

2
iS

  




− +
 =

−
  (12) 

 

Then for large values of i the control limits become 
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Mahmoud and Woodall (2010) show how these variances can be obtained. 

A Proposed Control Chart to Detect Small Change in the 
Trends 

Double Exponentially Weighted Moving Average Based on a Linear 

Prediction 

A new control charts is now proposed to detect linear trends. The double 

exponentially weighted moving average based on a linear prediction 

(DEWMABLP) is constructed assuming a stream of variables Xi ~ N(μ0, σ), then 

the DEWMA is ( ) 11i i iS S S  −
 = + − , where ( ) 11i i iS X S  −= + −  and the smooth 

linear forecast is 

 

 i t i iF a bt+ = +   (13) 

 

where Fi+t is the forecast in the t period ahead, 

 

 2i i ia S S= −   

 

and 

 

 ( )
1

i i ib S S



= −

−
  

 

Ft is called the statistic of the DEWMABLP. It is possible to create three 

control charts: first, a control chart for the intercept ai that will be similar than the 

EWMA control chart; second, a control chart for the slope bi that is used to test if 

there is a linear drift or trend; and third, a control chart for a linear prediction t 



ABREU & SCHAFFER 

449 

periods ahead of i, Ft, that can be used to test if the statistic one period forecast 

ahead is or not in statistical control. 

An Intercept Prediction DEWMA Control Chart (at) 

The center line for an ai control chart is the expected value of ai. It is 

 

 

( ) ( )

( ) ( )

( ) ( )

0 0

0

E E 2

E 2 E

2E E

2

i i i

i i

i i

a S S

S S

S S

 



= −

= −

= −

= −

=

  (14) 

 

This can be verified using equations (5) and (10). Using equations (6) and (11), the 

variance of ai can be obtained as 

 

 ( ) ( )asymVar Var 2i i ia S S= −   (15) 

 

Brown (1962) showed the asymptotic variance for a predict value of ai is 

 

 ( )
( ) ( )( )

( )( )

2

2

asym 2

1 4 1 5 1
Var

1 1
ia

  




+ − + −
=

+ −
  (16) 

 

For large values of i the control limits for the ai control chart become 

 

 

( ) ( )( )
( )( )

( ) ( )( )
( )( )

2

2

0 2

0

2

2

0 2

1 4 1 5 1
UCL

1 1

CL

1 4 1 5 1
LCL

1 1

k

k

  
  





  
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

+ − + −
= +

+ −

=

+ − + −
= −

+ −
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A Slope Prediction DEWMA Control Chart (bt) 

In a similar manner, the center line for bi is the expected value of bi. Using the 

equations (5) and (10) it can be shown that 

 

 

( ) ( )

( ) ( )( )

( )0 0

E E
1

E E
1

1

0

i i i

i i

b S S

S S










 



 
= − 

− 

= −
−

= −
−

=

  (17) 

 

The variance of bi is defined as: 

 

 

( ) ( )

( )
2

Var Var
1

Var
1

i i i

i i

b S S

S S









 
= − 

− 

 
= − 

− 

  (18) 

 

Brown (1962) gave the asymptotic variance of bi for large values of i as 

 

 ( )
( )( )

3
2

asym 2

2
Var

1 1
ib





=

+ −
  (19) 

 

Then, for large values of i the control limits for the bi chart become 

 

 

( )( )

( )( )

3

3

3

3

2
UCL

1 1

CL 0

2
LCL

1 1

k

k











=
+ −

=

= −
+ −
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A Linear Trend Prediction Double EWMA Control Chart (Ft) 

Using equations (14) and (17), it can be shown that the expected value of Ft is 

 

 

( ) ( )

( ) ( )

0

0

E E

E E

0

i t i i

i i

F a b t

a t b





+ = +

= +

= +

=

  

 

The variance of Ft is 

 

 
( ) ( )

( ) ( ) ( )

Var Var

Var Var 2Cov ,

i t i i

i i i i

F a b t

a b t a b t

+ = +

= + +
  (20) 

 

The covariance term 2Cov(ai, bit) in the previous equation was investigated via 

simulation to verify the possible independence between ai and bi. Simulation for 

the covariance between ai and bi were performed for several values of the smooth 

parameter λ, considering a process under the in-control null hypothesis. The 

simulation yielded values very close to zero for the Cov(ai, bi). These results 

suggest that the covariance Cov(ai, bi) can be considered negligible. Nevertheless, 

For t = 1, Brown (1962) gives the asymptotic covariance of Cov(ai, bi): 

 

 ( )
( )( )

( )( )

2

2

3

1 3 1
Cov ,

1 1
i ia b

 




+ −
=

+ −
  (21) 

 

Substituting equations (16), (19), and (21) in equation (20) it is possible to obtain 

the asymptotic variance of the Ft as 

 

 

( )

( ) ( )( )
( )( ) ( )( )

( )( )

( )( )

asym

2
23

2

2 3 3

Var

1 4 1 5 1 1 3 12

1 1 1 1 1 1

tF

    


  

 + − + − + − = + +
  + − + − + −
 

  (22) 

 

Then, for large values of i the control limits and the center line for the Ft control 

chart become 
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( ) ( )( )
( )( ) ( )( )

( )( )

( )( )

( ) ( )( )
( )( ) ( )( )

( )( )

( )( )

2
23

0 2 3 3

0

2
23

0 2 3 3

UCL

1 4 1 5 1 1 3 12

1 1 1 1 1 1

CL

LCL

1 4 1 5 1 1 3 12

1 1 1 1 1 1

k

k

    
 

  



    
 
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+ − + − + −
= + + +

+ − + − + −

=

+ − + − + −
= − + +

+ − + − + −

  (23) 

Design of a Double EWMA Base on Linear Prediction Control Chart Ft 

The design parameters for this chart are constructed with k times the multiple of 

sigma, the standard deviation used in the control limits, and the value of λ, the 

smooth parameter. It is possible to choose these parameters to give a mean 

performance of average run length (ARL) under the null hypothesis (H0), i.e. ARL0, 

for a certain number. For example, an ARL0 = 370 is the equivalent of an ARL of 

a Shewhart control chart under H0 for 3σ as its control limits; the DEWMABLP can 

be designed with k = 2.16 and λ = 0.10 to obtain an ARL0 = 373 ≈ 370. 

Assessing the Performance of DEWMABLP 

In order to assess the performance of this new chart, its performance was compared 

with the performance of the EWMA, DEWMA, and Shewhart control charts. This 

comparison was made using the average run length under out-of-control (ARL1). 

Design Parameters for EWMA, DEWMA, and DEWMABLP Control 

Charts 

A Monte Carlo simulation with 10,000 replications with an ARL0 in-control was 

fixed approximately to 370 for all control charts under study: EWMA, DEWMA, 

DEWMABLP, and Shewhart control charts. In order to be fair, all charts were set 

to an ARL0 ≈ 370. Table 1 shows the parameters for λ and k for EWMA, DEWMA, 

and DEWMABLP control charts to give an ARL0 ≈ 370. Also, the standard 

deviation of ARL0 is displayed. 
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Table 1. Average run length under H0 for several λ and k 
 

Control Chart λ k ALR0 sd(ARL0) 

EWMA 0.01 1.980 372.5 450.1 

EWMA 0.05 2.511 371.8 372.1 

EWMA 0.10 2.710 369.6 367.2 

EWMA 0.15 2.800 371.1 366.0 

EWMA 0.20 2.862 370.0 367.4 

DEWMA 0.01 1.300 374.6 533.8 

DEWMA 0.05 1.920 373.3 382.6 

DEWMA 0.10 2.220 368.4 370.5 

DEWMA 0.15 2.408 373.6 369.5 

DEWMA 0.20 2.530 374.9 380.7 

Ft = at + btt 0.01 1.725 375.2 557.0 

Ft = at + btt 0.05 2.035 377.5 399.4 

Ft = at + btt 0.10 2.160 373.3 386.0 

Ft = at + bt 0.15 2.240 379.1 385.4 

Ft = at + bt 0.20 2.287 374.5 373.7 

 
 

Simulations were conducted to compare the performance of the EWMA, 

DEWMA, DEWMALP, and Shewhart control charts. The ARL under linear drift 

(ARL1) for several slopes, that is the out-of-control, were compared between all 

this control charts. The control chart with lowest ARL1 is considered the best chart. 

The simulation was written in R. A stream of Xt for t = 1, 2,.., 100 

observations were created such that Xt are independent and identically distributed 

as Xt ~ N(μ0 = 10, σ = 1), and then another stream Xt was created such that of Xt for 

t = 101,…, 200 observations where Xt ~ N(μ0 = 10 + βtσ, σ = 1). This procedure 

was repeated several times using values of 0, 0.025, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 

0.5, 0.75, and 1 for the slope β. 

Results 

A summary of the simulation is presented in Tables 2 to 5. Table 2 shows the ARL1 

for these several slopes and λ = 0.20. In the same manner, Tables 3, 4, and 5 show 

the ARL1 for these several slopes and λ = 0.10, 0.05, and 0.01, respectively. 

When λ = 0.2, it can be observed in Table 2 that the ARL1 of the Ft control 

chart is less than the ARL1 of the other control charts only when the slope β > 0.20. 

For λ = 0.10 in Table 3, the ARL1 of the Ft control chart is less than the ARL1 of 

the other control charts when the slope β ≥ 0.10. In similar way, for λ = 0.05 in 

Table 4, the ARL1 of the Ft control chart is less than the ARL1 of the other control 

charts for slope values β ≥ 0.05. Finally, for λ = 0.01 in Table 5, the ARL1 of the 
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Ft control chart is less than the ARL1 of the other control charts for slope values 

between 0.025 ≤ β < 0.200. For values β ≥ 0.200, the ARL1 of Shewhart chart has 

the best performance. 
 
 
Table 2. Average run length under different slopes, λ = 0.20 
 

k 3.000 2.862 2.530 2.287 

Slope Shewhart EWMA DEWMA Ft 

0.000 370.00 370.00 374.85 374.50 

0.025 50.12 30.80 29.41 36.40 

0.050 30.64 19.64 19.36 21.97 

0.100 18.41 12.59 13.14 13.42 

0.150 13.59 9.79 10.62 10.16 

0.200 11.00 8.27 9.25 8.41 

0.300 8.11 6.49 7.60 6.45 

0.400 6.51 5.46 6.63 5.37 

0.500 5.52 4.84 6.02 4.71 

0.750 4.05 3.84 5.04 3.67 

1.000 3.27 3.27 4.43 3.11 

 
 
Table 3. Average run length under different slopes, λ = 0.10 
 

k 3.000 2.710 2.220 2.160 

Slope Shewhart EWMA DEWMA Ft 

0.000 370.0 369.6 368.4 373.3 

0.025 50.15 28.99 29.83 30.78 

0.050 30.68 19.12 20.98 19.52 

0.100 18.52 12.85 15.27 12.70 

0.150 13.67 10.16 12.74 9.91 

0.200 11.01 8.62 11.21 8.33 

0.300 8.14 6.92 9.47 6.62 

0.400 6.56 5.90 8.39 5.62 

0.500 5.52 5.21 7.70 4.94 

0.750 4.04 4.22 6.57 3.96 

1.000 3.29 3.63 5.83 3.40 
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Table 4. Average run length under different slopes, λ = 0.05 
 

k 3.000 2.511 1.920 2.035 

Slope Shewhart EWMA DEWMA Ft 

0.000 370.00 371.80 373.33 377.51 

0.025 50.17 29.19 24.78 29.39 

0.050 30.60 19.70 18.69 19.36 

0.100 18.55 13.62 18.69 13.18 

0.150 13.65 10.83 15.74 10.44 

0.200 11.07 9.36 14.23 8.93 

0.300 8.13 7.51 12.09 7.14 

0.400 6.52 6.46 10.85 6.11 

0.500 5.49 5.75 9.93 5.43 

0.750 4.06 4.67 8.54 4.40 

1.000 3.27 4.02 7.63 3.78 

 
 
Table 5. Average run length under different slopes, λ = 0.01 
 

k 3.000 1.980 1.300 1.735 

Slope Shewhart EWMA DEWMA Ft 

0.000 370.0 372.5 374.6 375.2 

0.025 49.94 33.41 56.08 33.14 

0.050 30.79 23.45 43.63 23.09 

0.100 18.49 16.56 34.15 16.20 

0.150 13.72 13.50 29.56 13.18 

0.200 11.09 11.65 26.70 11.37 

0.300 8.12 9.45 23.08 9.21 

0.400 6.54 8.14 20.76 7.92 

0.500 5.51 7.28 19.18 7.09 

0.750 4.07 5.96 16.71 5.78 

1.000 3.29 5.16 15.11 5.02 

Conclusions 

The new DEWMABLP control chart works better than the other control charts to 

detect linear trends in the cases where a small linear trend is present. It works better 

when slopes are between 0.05 and 0.75 times the standard deviation. The EWMA 
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control chart also performed well, but with an ARL1 slightly higher than 

DEWMABLP. The DEWMA works better for small shifts, but works poorly for 

linear drifts. Also, it is observed that the performance of the DEWMABLP 

overcomes the performance of the Shewhart, EWMA, and DEWMA control charts 

when a linear drift is present and the slope of this linear drift is greater than the 

parameter lambda of the DEWMABLP, EWMA, and DEWMA. It can be 

concluded that the new DEWMABLP control chart can be used as an alternative 

when it is suspected that a linear drift can occur in the process after a period of 

stability. Of course, the DEWMABLP is not designed to detect a shift in the 

process; therefore, if a shift and a drift are expected at the same time, it should be 

used in combination with other control charts. This is a similar practice as utilizing 

both the Shewhart and EWMA control charts with the intention to detect both small 

and big shifts. 
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