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INVITED ARTICLE 

Single Missing Data Imputation in PLS-
based Structural Equation Modeling 

Ned Kock 
Texas A&M International University 

Laredo, TX 

 

 
 

 

 
Missing data, a source of bias in structural equation modeling (SEM) employing the 

partial least squares method (PLS), are commonly handled with deletion methods such as 

listwise and pairwise deletion. Missing data imputation methods do not resort to deletion. 

Five single missing data imputation methods are considered employing the PLS Mode A 

algorithm of which two hierarchical methods are new. The results of a Monte Carlo 

experiment suggest that Multiple Regression Imputation yielded the least biased mean 

path coefficient estimates, followed by Arithmetic Mean Imputation. With respect to 

mean loading estimates, Arithmetic Mean Imputation yielded the least biased results, 

followed by Stochastic Hierarchical Regression Imputation and Hierarchical Regression 

Imputation. Single missing data imputation methods perform better with PLS-SEM based 

on their performance with other multivariate analysis techniques such as multiple 

regression and covariance-based SEM. 

 

Keywords: Partial least squares; structural equation modeling; missing data 

imputation; path bias; stochastic regression; Monte Carlo simulation 

 

Introduction 

The method of partial least squares (PLS) experienced explosive growth in the 

context of structural equation modeling (SEM), whereby latent variables are 

measured via indicators in questionnaires (Akter et al., 2017; Kock, 2016; Rigdon, 

2016). Indicators frequently take the form of scores generated based on question-

statements answered on Likert-type scales. PLS-SEM estimates latent variables 
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through composites, which are exact linear combinations of the indicators 

assigned to the latent variables (Kock, 2015a; 2015b). 

A main source of bias in PLS-SEM is missing data (Newman, 2014). 

Among patterns of missing data, particularly common in behavioral research is 

that known as missing at random (MAR), which is actually a misnomer. This 

pattern occurs when the probability of a missing value is related to other 

measured variables, but unrelated to the underlying values of the variable that are 

missing. For example, if scores measuring the accuracy of a graphical 

representation are more likely to be missing for a certain type of representation 

than for others, then the corresponding missing data will follow the MAR pattern. 

Researchers have traditionally used deletion methods, often listwise and pairwise 

deletion (Enders, 2010). They are a source of error that may distort coefficients of 

association; where the error is introduced into the data as deletion occurs. For 

example, missing data may be associated with groups of respondents who share 

some characteristics, and whose exclusion from datasets can significantly 

influence the strength of relationships among variables. Deletion methods also 

reduce the sample size available for an analysis, and thus the statistical power of 

virtually any type of analysis applied to the data. Wilkinson (1999) opine these 

techniques are “among the worst methods available for practical applications” (p. 

598). 

Missing data imputation methods provide an alternative to deletion methods. 

Through imputation missing data elements are replaced with well-informed 

guesses, obtained through various algorithms, leading to no reduction in sample 

size. Five single missing data imputation methods are considered in the context of 

PLS-SEM, with MAR data, of which two are new. 

Illustrative Model 

An illustrative model serves as the basis for a Monte Carlo experiment and 

empirical illustration. The illustrative model is depicted in Figure 1, and contains 

five latent variables, for which composites are estimated via PLS-SEM. The latent 

variables, which refer to theoretical constructs, are: communication flow 

orientation (C1), usefulness in the development of information technology (IT) 

solutions (C2), ease of understanding (C3), accuracy (C4), and impact on redesign 

success (C5). 
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Figure 1. Illustrative model 
 

 
 

The mathematical symbols used in the model, and in the following sections, 

were adapted from the classic path analysis, covariance-based SEM, and PLS 

literatures (Kline, 2010; Kock, 2016; Lohmöller, 1989; Wright, 1934; 1960): βij is 

the path coefficient for the link going from composite Cj to composite Ci, λij is the 

loading for the jth indicator of composite Ci, and ζi is the structural error 

associated with an endogenous composite Ci. With exception of communication 

flow orientation (C1), a set of indicators xij is used to measure each composite Ci. 

When more than one indicator is used to measure a composite, each indicator is 

assumed to measure the composite with a certain degree of imprecision. 

Communication flow optimization theory (Danesh-Pajou, 2005; Kock, 

2003) is the foundation on which the illustrative model is built. Although this 

theory is not the focus of the investigation, it is useful to know its main prediction. 

A greater focus on how communication takes place in business processes, in 

redesign efforts, is associated with better business process redesign outcomes. 

Business process redesign efforts are aimed at improving the operations of 

organizations, regardless of size and industry. In them groups of employees and 

managers collaboratively analyze and redesign business processes, which are sets 

of interrelated activities (Kock, 2007; Mendling et al., 2012). Virtually any good 
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or service is produced in organizations via a business process – e.g., the process 

of assembling a car, carried out by an automaker. 

Communication flow orientation (C1) is the degree to which a business 

process modeling approach explicitly shows how communication interactions take 

place in a business process. This latent variable can be measured through a single 

indicator storing either 1 or 0, for a study contrasting two opposite modeling 

approaches, corresponding to a high or low communication flow orientation of a 

business process modeling approach used. 

Usefulness in the development of IT solutions (C2) is the degree to which a 

process modeling approach is useful in the development of a generic IT solution 

to automate the redesigned process. The need to automate redesigned processes 

with IT is almost universal in modern businesses. An example of question-

statement that can be used for measurement of this latent variable is: “This 

process modeling approach is useful in the development of a generic IT solution 

to automate the redesigned process”. 

Ease of understanding (C3) is the degree to which a process modeling 

approach is perceived to yield a process representation that is easy to understand. 

An example of question-statement that can be used for measurement of this latent 

variable is: Processes modeled using this approach are easy to understand. 

Accuracy (C4) is the degree to which a process modeling approach is 

perceived to lead to an accurate representation of the process. An example of 

question-statement that can be used for measurement of this latent variable is: 

This process modeling approach leads to accurate process representations. 

Impact on redesign success (C5) is the degree to which the process modeling 

technique used is perceived to lead to an actual improvement of the targeted 

business process. An example of question-statement that can be used for 

measurement of this latent variable is: Using this process modeling approach is 

likely to contribute to the success of a process redesign project. 

Missing Data Imputation Methods Analyzed 

All variables are assumed to be standardized. This has no effect on the 

implementation of the methods; the methods can take as inputs unstandardized 

variables, store means and standard deviations for later unstandardization, 

standardize the variables, apply the various operations that define the methods, 

and finally unstandardize the variables again prior to generating the outputs. 
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Arithmetic Mean Imputation 

Let xi be a column vector denoting one of the k manifest variables used in a SEM 

model. The Arithmetic Mean Imputation (MEAN) method assigns values to each 

missing element irx  according to (1), where Nm is the number of missing values in 

xi, and ix  is the arithmetic mean of variable xi. 

 

 ,ir ix x=   (1) 

 

 1 .mr N=   

 

The Arithmetic Mean Imputation (MEAN) method replaces each missing 

element irx  in a column of data i within a dataset, which refers to a manifest 

variable, with the average (or arithmetic mean) of that column. This method is the 

simplest of the imputation methods discussed here. Although it can be employed 

by itself, this method also plays an ancillary role in other methods. 

Multiple Regression Imputation 

The Multiple Regression Imputation (MREGR) method assigns values to each 

missing element irx  according to (2), where k is the number of manifest variables 

used in a model, Nm is the number of missing values in xi, and each of the 

elements of the matrix of estimated regression coefficients ˆ
i jx x  is calculated 

through a multiple regression analysis with xi as the criterion and 

xj(j = 1 … k, j ≠ i) as the predictors. 

 

 
1

ˆ ,
i j

k

ir x x jrj
x x

=
=   (2) 

 

 1 , , 1 .mj k j i r N=  =   

 

In the Multiple Regression Imputation (MREGR) method each missing 

element irx  is replaced with the corresponding expected value of xi given all of 

the other variables xj(j = 1 … k, j ≠ i) in the dataset. The regression coefficients 
ˆ

i jx x  for each variable xi are obtained via a multiple regression analysis after an 

Arithmetic Mean Imputation (MEAN) is applied to the dataset. 
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An alternative to using Arithmetic Mean Imputation (MEAN), which tends 

to lead to an exacerbation of the biases and that is therefore not employed here, is 

to conduct the multiple regression analysis to obtain the regression coefficients 
ˆ

i jx x  after a listwise deletion. The use of deletion is particularly problematic here 

because the regression equation will typically have quite a few predictors, and 

thus a great deal of data may end up being lost after a listwise deletion. 

Hierarchical Regression Imputation 

The Hierarchical Regression Imputation (HREGR) method, a new method, 

assigns values to each missing element irx  according to (3), where k is the 

number of manifest variables used in a model, Nm is the number of missing values 

in xi, and each of the elements of the matrix of estimated correlations ˆ
i jx x  is 

calculated after a pairwise deletion of missing elements is conducted for each pair 

of variables xi and xj. In this equation ( )ˆmax
i jx x  is the maximum estimated 

correlation between the manifest variable xi and any other manifest variable xj for 

which a corresponding non-missing value xjr exists. 

 

 ( )ˆmax ,
i jir x x jrx x=    (3) 

 

 1 , , 1 .mj k j i r N=  =   

 

In the Hierarchical Regression Imputation (HREGR) method each missing 

element irx  is replaced with the corresponding expected value of xi given a 

variable xj, stored in column j of the dataset, where xj is the variable with the 

highest correlation with xi after a pairwise deletion of missing elements. 

A pairwise deletion is preferred over an Arithmetic Mean Imputation 

(MEAN) for the calculation of the correlations ˆ
i jx x  because it leads to less bias, 

as indicated by exploratory versions of this method that we developed and tested. 

In datasets with multiple variables and widespread missing data elements, 

pairwise deletions usually lead to much lesser amounts of data loss than listwise 

deletions. Nevertheless, the results of analyses conducted after pairwise deletions 

tend to be dependent on the pair-specific idiosyncrasies of missing data patterns. 
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Stochastic Multiple Regression Imputation 

The Stochastic Multiple Regression Imputation (MSREG) method assigns values 

to each missing element irx  according to (4), where k is the number of manifest 

variables used in a model, Nm is the number of missing values in xi, and 

Srandn(⬚) is a function that returns a different element of a standardized 

normally distributed random column vector each time it is invoked. 

 

 ( )1 1

ˆ ˆ ˆ1
i j i j i j

k k

ir x x jr x x x xj j
x x Srandn 

= =

 
= + −  

 
  (⬚), (4) 

 

1 , , 1 .mj k j i r N=  =  

 

The Stochastic Multiple Regression Imputation (MSREG) method is similar 

to the Multiple Regression Imputation (MREGR) method. The key difference is 

that in this stochastic variety, implemented via the equation above, normal 

random error is added to the new values due to the assumption that not doing so 

can create a downward bias in standard errors. Such a bias could lead to an 

exacerbation of Type I errors. The random error elements yielded by Srandn(⬚) 

are weighted so that they collectively account for all of the variance in xi that is 

not explained by the predictors xj (j = 1…k, j ≠ i). 

Although the above assumption regarding standard error bias may be a 

reasonable one with respect to standard multiple regression and covariance-based 

SEM, in PLS-SEM path coefficients tend to present downward biases even 

without missing data. Therefore, a downward bias in standard errors may 

compensate for the related decrease in statistical power, due to the downward path 

coefficient bias, in turn countering an exacerbation in Type II errors (and a 

reduction in power). 

Stochastic Hierarchical Regression Imputation 

The Stochastic Hierarchical Regression Imputation (HSREG) method, another 

new method, assigns values to each missing element irx  according to (5), where k 

is the number of manifest variables used in a model, Nm is the number of missing 

values in xi, and Srandn(⬚) is a function that returns a different element of a 

standardized normally distributed random column vector each time it is invoked. 
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 ( ) ( )
2

ˆ ˆmax 1 max
i j i jir x x jr x xx x Srandn

 
=  + −  

 
(⬚), (5) 

 

1 , , 1 .mj k j i r N=  =  

 

The Stochastic Hierarchical Regression Imputation (HSREG) method is 

similar to the Hierarchical Regression Imputation (HREGR) method. The key 

difference (analogously to the discussion above) in this stochastic variety is that 

normal random error is added to the new values due to the assumption that not 

doing so can create a downward bias in standard errors and an overall deleterious 

effect on type I error rates. Although this assumption may find general application 

in standard multiple regression and covariance-based SEM, it may not readily 

apply to PLS-SEM. 

Monte Carlo Experiment 

A Monte Carlo experiment based on the true population model shown in Figure 2 

was conducted to assess the performance of the five missing data imputation 

methods discussed in the previous section. Performance was assessed in terms of 

path coefficient bias and standard error inflation. 
 
 

 
 
Figure 2. True population model 
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When creating data for our Monte Carlo experiment we varied the following 

conditions: percentage of missing data (0%, 30%, 40%, and 50%), and sample 

size (100, 300, and 500). This led to a 4 × 3 factorial design, with 12 conditions, 

where 1,000 samples were analyzed for each of these 12 conditions for a total of 

12,000 samples. 

 The PLS Mode A algorithm with the path weighting scheme (Lohmöller, 

1989) was used in the analyses. These are the most widely used algorithm (PLS 

Mode A) and inner model estimation scheme (path weighting) in the context of 

PLS-SEM. Results were obtained for analyses with no missing data (NMD), 

Arithmetic Mean Imputation (MEAN), Multiple Regression Imputation 

(MREGR), Hierarchical Regression Imputation (HREGR), Stochastic Multiple 

Regression Imputation (MSREG), and Stochastic Hierarchical Regression 

Imputation (HSREG). 

A summarized set of results are shown in Table 1 and Figure 3, where 

N = 300 and 30% missing data (MAR). In the figure, consider the absolute path 

coefficient differences with respect to no missing data (NMD) estimates, to 

highlight the performance of the various missing data imputation methods. In the 

table, true path coefficients, mean path coefficient estimates, and standard errors 

of path coefficient estimates are shown next to one another. Full results, for all 

percentages of missing data and sample sizes included in the simulation, are 

available in Appendix A. Because all loadings are the same in the true population 

model, loading-related estimates for only one indicator of the composites are 

shown. This avoids crowding and repetition, as the same pattern of results repeats 

itself in connection with all loadings. 

The mean path coefficient estimates that are shown underlined in the table 

were obtained through the application of the PLS Mode A algorithm to datasets 

where no data was missing (NMD). Note that they generally underestimate the 

true path coefficients. This underestimation stems from the use of composites in 

PLS-SEM, discussed earlier, which leads to an attenuation of composite 

correlations (Nunnally & Bernstein, 1994). This correlation attenuation extends to 

the path coefficients (Kock, 2015b), leading to the observed underestimation. The 

opposite effect is observed in connection with loadings, which tend to be 

overestimated in PLS-SEM. 

Multiple Regression Imputation (MREGR) yielded the least biased mean 

path coefficient estimates, followed by Arithmetic Mean Imputation (MEAN). 

When we look at mean loading estimates, Arithmetic Mean Imputation (MEAN) 

yielded the least biased results, followed by Stochastic Hierarchical Regression 

Imputation (HSREG) and Hierarchical Regression Imputation (HREGR). 
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Compared with the no missing data condition (NMD), none of the methods 

induced a significant bias in standard errors. This is noteworthy since prior results 

outside the context of PLS-SEM have tended to show a significant downward bias 

in standard errors, particularly for non-stochastic varieties. Such downward bias 

in standard errors has led to concerns regarding an inflation in type I errors, and 

warnings against the use of single missing data imputation methods in general 

(Enders, 2010; Newman, 2014). 
 
 
Table 1. Summarized Monte Carlo experiment results (N = 300, 30% MAR data) 
 

Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.390 0.348 0.367 0.354 0.333 0.300 

CO>GT(SEPath) 0.075 0.113 0.110 0.113 0.138 0.162 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.349 0.312 0.321 0.313 0.289 0.262 

CO>EU(SEPath) 0.069 0.101 0.108 0.106 0.133 0.151 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.198 0.206 0.195 0.188 0.161 

CO>AC(SEPath) 0.062 0.078 0.090 0.083 0.100 0.108 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.381 0.357 0.359 0.352 0.334 0.312 

GT>SU(SEPath) 0.127 0.152 0.156 0.158 0.179 0.195 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.192 0.183 0.199 0.178 0.188 0.163 

EU>SU(SEPath) 0.062 0.072 0.077 0.078 0.082 0.089 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.165 0.157 0.176 0.154 0.166 0.141 

AC>SU(SEPath) 0.058 0.067 0.073 0.072 0.077 0.081 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.691 0.606 0.649 0.623 0.652 

GT3<GT(SELoad) 0.113 0.042 0.120 0.076 0.115 0.090 
 

Notes: NMD = no missing data; MEAN = Arithmetic Mean Imputation; MREGR = Multiple Regression 
Imputation; HREGR = Hierarchical Regression Imputation; MSREG = Stochastic Multiple Regression 
Imputation; HSREG = Stochastic Hierarchical Regression Imputation; XX>YY = link from composite XX to YY; 
CO = communication flow orientation (C1); GT = usefulness in the development of IT solutions (C2); EU = ease 
of understanding (C3); AC = accuracy (C4); SU = impact on redesign success (C5); TruePath = true path 
coefficient; AvgPath = mean path coefficient estimate; SEPath = standard error of path coefficient estimate; 
TrueLoad = true loading; AvgLoad = mean loading estimate; SELoad = standard error of loading estimate. 
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Figure 3. Absolute path coefficient differences with respect to no missing data (NMD) 
estimates 
 

 

Empirical Illustration 

Summarized in Table 2 are results of an empirical field study related to the 

illustrative and true population models discussed earlier. It served as the basis for 

the development of the illustrative and true population models. Shown next to one 

another are estimated path coefficients (top part of the table), and loadings 

(bottom part of the table). All path coefficients and loadings are shown. Except 

for the column “NMD”, all other columns show results with 30% missing data 

(MAR). 

The data for this empirical study was collected from 156 individuals who 

participated in various business process redesign projects in organizations located 

in Northeastern U.S.A. The participants employed one of two business process 

modeling approaches. One of the modeling approaches focused primarily on the 

communication flow within business processes. The other focused primarily on 

the chronological flow of activities. Both approaches are illustrated in Appendix 

B. Appendix C has the questionnaire used for data collection. 

Overall, all missing data imputation methods analyzed yielded estimates 

consistent with communication flow optimization theory (Kock, 2003). No 

method led to biases that were severe enough, at 30% missing data, to generate 

non-significant P values. Given this, we could say that the empirical study results 

provide real data validation of all imputation methods, and to a certain extend 
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qualified support for all of them. This is because the theory, which forms the 

underlying theoretical foundation for the model, has been validated before in 

multiple empirical studies employing different datasets and methods (Danesh-

Pajou, 2005; Danesh-Pajou & Kock, 2005; Kock et al., 2008; 2009). 
 
 
Table 2. Empirical study results 
 

Missing data imputation scheme NMD MEAN HREGR HSREG MREGR MSREG 

CO>GT 0.485a 0.427a 0.472a 0.445a 0.462a 0.379a 

CO>EU 0.362a 0.244a 0.282a 0.313a 0.248a 0.263a 

CO>AC 0.269a 0.184b 0.209b 0.183b 0.195b 0.213b 

GT>SU 0.506a 0.531a 0.536a 0.527a 0.532a 0.493a 

EU>SU 0.217b 0.184b 0.204b 0.233b 0.187b 0.174c 

AC>SU 0.194b 0.181b 0.150c 0.146c 0.173c 0.170c 

GT1<GT 0.926 0.854 0.938 0.883 0.899 0.900 

GT2<GT 0.880 0.883 0.919 0.887 0.897 0.863 

GT3<GT 0.893 0.878 0.929 0.885 0.907 0.855 

EU1<EU 0.796 0.740 0.815 0.801 0.786 0.742 

EU2<EU 0.875 0.831 0.853 0.816 0.862 0.827 

EU3<EU 0.910 0.884 0.909 0.901 0.903 0.871 

AC1<AC 0.916 0.926 0.925 0.918 0.926 0.926 

AC2<AC 0.868 0.812 0.863 0.847 0.840 0.794 

AC3<AC 0.753 0.674 0.723 0.634 0.703 0.677 

SU1<SU 0.937 0.914 0.950 0.913 0.934 0.895 

SU2<SU 0.947 0.934 0.957 0.916 0.949 0.919 

SU3<SU 0.932 0.913 0.944 0.925 0.933 0.908 
 

Notes: N = 156; a P < .001, b P < .01, c P < .05; PLS algorithm used = PLS Mode A; P values calculated via 
bootstrapping with 500 resamples; NMD = no missing data; MEAN  = Arithmetic Mean Imputation; MREGR = 
Multiple Regression Imputation; HREGR = Hierarchical Regression Imputation; MSREG = Stochastic Multiple 
Regression Imputation; HSREG = Stochastic Hierarchical Regression Imputation; XX>YY = link from variable 
XX to YY; CO = communication flow orientation (C1); GT = usefulness in the development of IT solutions (C2); 
EU = ease of understanding (C3); AC = accuracy (C4); SU = impact on redesign success (C5); 
XX1 … XXn = indicators associated with composite XX. 

 

Conclusion 

Multiple Regression Imputation (MREGR) yielded the least biased mean path 

coefficient estimates, followed by Arithmetic Mean Imputation (MEAN). With 

respect to mean loading estimates, Arithmetic Mean Imputation (MEAN) yielded 

the least biased results, followed by Stochastic Hierarchical Regression 

Imputation (HSREG) and Hierarchical Regression Imputation (HREGR). 
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None of the methods induced a significant bias in standard errors when 

compared with the no missing data condition (NMD). This is at odds with past 

results outside the context of PLS-SEM, which tended to show a significant 

downward bias in standard errors, particularly for non-stochastic imputation 

methods. This observed downward bias in standard errors has led to concerns 

regarding type I error inflation, and admonitions against the use of single missing 

data imputation methods in general. PLS-SEM may be a fertile ground for the 

application of single missing data imputation methods, although more research is 

needed to shed light as to whether this is truly the case and why. 
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Appendix A: Full Monte Carlo Experiment Results 

The full Monte Carlo experiment results are provided in the tables below. Notes: 

NMD = no missing data; MEAN  = Arithmetic Mean Imputation; MREGR = 

Multiple Regression Imputation; HREGR = Hierarchical Regression Imputation; 

MSREG = Stochastic Multiple Regression Imputation; HSREG = Stochastic 

Hierarchical Regression Imputation; XX>YY = link from composite XX to YY; 

CO = communication flow orientation (C1); GT = usefulness in the development 

of IT solutions (C2); EU = ease of understanding (C3); AC = accuracy (C4); SU = 

impact on redesign success (C5); TruePath = true path coefficient; AvgPath = 

mean path coefficient estimate; SEPath = standard error of estimate; TrueLoad = 

true loading; AvgLoad = mean loading estimate; SELoad = standard error of 

estimate. 
 
 
Table A1a. Monte Carlo experiment results with a sample size of 100 and 30% missing 
data. 
 
Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.394 0.354 0.364 0.308 0.362 0.327 

CO>GT(SEPath) 0.094 0.129 0.133 0.175 0.148 0.171 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.355 0.323 0.326 0.280 0.335 0.308 

CO>EU(SEPath) 0.096 0.120 0.130 0.161 0.145 0.156 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.227 0.205 0.205 0.172 0.214 0.196 

CO>AC(SEPath) 0.093 0.111 0.124 0.140 0.148 0.153 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.384 0.355 0.353 0.319 0.351 0.328 

GT>SU(SEPath) 0.141 0.170 0.178 0.206 0.188 0.206 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.193 0.188 0.187 0.172 0.207 0.196 

EU>SU(SEPath) 0.094 0.103 0.112 0.121 0.121 0.129 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.172 0.165 0.167 0.150 0.193 0.183 

AC>SU(SEPath) 0.091 0.107 0.114 0.123 0.130 0.134 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.810 0.687 0.645 0.644 0.593 0.603 

GT3<GT(SELoad) 0.118 0.072 0.105 0.128 0.156 0.165 
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Table A1b. Monte Carlo experiment results with a sample size of 100 and 40% missing 
data. 
 
Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.394 0.309 0.315 0.247 0.307 0.264 

CO>GT(SEPath) 0.094 0.188 0.193 0.240 0.223 0.251 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.355 0.280 0.283 0.225 0.275 0.240 

CO>EU(SEPath) 0.096 0.185 0.194 0.226 0.219 0.239 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.227 0.186 0.182 0.145 0.189 0.165 

CO>AC(SEPath) 0.093 0.170 0.188 0.185 0.208 0.211 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.384 0.320 0.324 0.272 0.311 0.280 

GT>SU(SEPath) 0.141 0.222 0.227 0.263 0.246 0.270 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.193 0.191 0.189 0.163 0.189 0.178 

EU>SU(SEPath) 0.094 0.144 0.157 0.163 0.186 0.195 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.172 0.177 0.177 0.146 0.186 0.164 

AC>SU(SEPath) 0.091 0.157 0.172 0.170 0.204 0.208 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.810 0.479 0.440 0.444 0.395 0.398 

GT3<GT(SELoad) 0.118 0.261 0.295 0.306 0.347 0.359 

 
 
Table A1c. Monte Carlo experiment results with a sample size of 100 and 50% missing 
data. 
 
Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.394 0.241 0.248 0.170 0.227 0.183 

CO>GT(SEPath) 0.094 0.272 0.287 0.327 0.323 0.345 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.355 0.215 0.211 0.145 0.190 0.159 

CO>EU(SEPath) 0.096 0.263 0.284 0.308 0.323 0.327 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.227 0.146 0.151 0.110 0.136 0.113 

CO>AC(SEPath) 0.093 0.227 0.242 0.228 0.276 0.270 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.384 0.267 0.263 0.208 0.238 0.207 

GT>SU(SEPath) 0.141 0.292 0.303 0.337 0.351 0.359 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.193 0.172 0.168 0.137 0.163 0.139 

EU>SU(SEPath) 0.094 0.212 0.239 0.213 0.264 0.259 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.172 0.152 0.149 0.118 0.153 0.135 

AC>SU(SEPath) 0.091 0.219 0.242 0.213 0.270 0.263 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.810 0.284 0.250 0.263 0.217 0.214 

GT3<GT(SELoad) 0.118 0.451 0.480 0.483 0.511 0.526 
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Table A2a. Monte Carlo experiment results with a sample size of 300 and 30% missing 
data. 
 
Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.390 0.348 0.354 0.300 0.367 0.333 

CO>GT(SEPath) 0.075 0.113 0.113 0.162 0.110 0.138 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.349 0.312 0.313 0.262 0.321 0.289 

CO>EU(SEPath) 0.069 0.101 0.106 0.151 0.108 0.133 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.198 0.195 0.161 0.206 0.188 

CO>AC(SEPath) 0.062 0.078 0.083 0.108 0.090 0.100 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.381 0.357 0.352 0.312 0.359 0.334 

GT>SU(SEPath) 0.127 0.152 0.158 0.195 0.156 0.179 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.192 0.183 0.178 0.163 0.199 0.188 

EU>SU(SEPath) 0.062 0.072 0.078 0.089 0.077 0.082 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.165 0.157 0.154 0.141 0.176 0.166 

AC>SU(SEPath) 0.058 0.067 0.072 0.081 0.073 0.077 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.691 0.649 0.652 0.606 0.623 

GT3<GT(SELoad) 0.113 0.042 0.076 0.090 0.120 0.115 

 
 
Table A2b. Monte Carlo experiment results with a sample size of 300 and 40% missing 
data. 
 
Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.390 0.309 0.311 0.240 0.308 0.264 

CO>GT(SEPath) 0.075 0.160 0.165 0.224 0.173 0.209 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.349 0.273 0.274 0.211 0.271 0.234 

CO>EU(SEPath) 0.069 0.147 0.152 0.204 0.162 0.191 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.176 0.174 0.132 0.178 0.156 

CO>AC(SEPath) 0.062 0.113 0.116 0.142 0.129 0.138 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.381 0.323 0.320 0.264 0.314 0.282 

GT>SU(SEPath) 0.127 0.191 0.196 0.246 0.207 0.235 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.192 0.186 0.180 0.157 0.201 0.184 

EU>SU(SEPath) 0.062 0.087 0.094 0.101 0.096 0.099 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.165 0.161 0.161 0.138 0.180 0.163 

AC>SU(SEPath) 0.058 0.083 0.085 0.097 0.099 0.103 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.496 0.461 0.475 0.423 0.440 

GT3<GT(SELoad) 0.113 0.221 0.256 0.253 0.296 0.286 
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Table A2c. Monte Carlo experiment results with a sample size of 300 and 50% missing 
data. 
 
Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.390 0.243 0.252 0.176 0.243 0.193 

CO>GT(SEPath) 0.075 0.229 0.226 0.288 0.246 0.284 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.349 0.217 0.223 0.152 0.213 0.172 

CO>EU(SEPath) 0.069 0.209 0.208 0.264 0.230 0.260 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.145 0.150 0.099 0.143 0.112 

CO>AC(SEPath) 0.062 0.150 0.154 0.179 0.180 0.194 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.381 0.271 0.273 0.212 0.264 0.227 

GT>SU(SEPath) 0.127 0.246 0.249 0.300 0.263 0.295 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.192 0.183 0.185 0.143 0.194 0.168 

EU>SU(SEPath) 0.062 0.104 0.114 0.130 0.134 0.138 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.165 0.160 0.159 0.126 0.171 0.151 

AC>SU(SEPath) 0.058 0.112 0.123 0.124 0.141 0.137 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.329 0.296 0.311 0.256 0.268 

GT3<GT(SELoad) 0.113 0.386 0.417 0.412 0.456 0.453 

 
 
Table A3a. Monte Carlo experiment results with a sample size of 500 and 30% missing 
data. 
 
Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.389 0.346 0.352 0.296 0.363 0.328 

CO>GT(SEPath) 0.070 0.110 0.109 0.162 0.104 0.135 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.343 0.308 0.309 0.258 0.317 0.286 

CO>EU(SEPath) 0.067 0.100 0.102 0.149 0.102 0.129 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.197 0.192 0.159 0.204 0.183 

CO>AC(SEPath) 0.052 0.070 0.077 0.103 0.077 0.090 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.380 0.354 0.348 0.309 0.358 0.333 

GT>SU(SEPath) 0.124 0.151 0.157 0.196 0.151 0.175 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.189 0.180 0.176 0.160 0.198 0.184 

EU>SU(SEPath) 0.055 0.064 0.070 0.083 0.065 0.073 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.164 0.154 0.151 0.137 0.174 0.164 

AC>SU(SEPath) 0.054 0.063 0.067 0.077 0.061 0.067 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.692 0.652 0.654 0.609 0.627 

GT3<GT(SELoad) 0.113 0.035 0.069 0.082 0.113 0.106 
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Table A3b. Monte Carlo experiment results with a sample size of 500 and 40% missing 
data. 
 

Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.389 0.307 0.308 0.236 0.307 0.265 

CO>GT(SEPath) 0.070 0.155 0.158 0.223 0.164 0.201 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.343 0.270 0.267 0.205 0.267 0.230 

CO>EU(SEPath) 0.067 0.145 0.151 0.205 0.157 0.188 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.174 0.171 0.129 0.175 0.151 

CO>AC(SEPath) 0.052 0.098 0.104 0.135 0.109 0.125 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.380 0.321 0.315 0.260 0.312 0.280 

GT>SU(SEPath) 0.124 0.187 0.194 0.246 0.200 0.230 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.189 0.181 0.178 0.152 0.194 0.177 

EU>SU(SEPath) 0.055 0.078 0.082 0.097 0.084 0.090 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.164 0.161 0.157 0.134 0.178 0.163 

AC>SU(SEPath) 0.054 0.072 0.076 0.088 0.078 0.082 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.501 0.468 0.486 0.433 0.455 

GT3<GT(SELoad) 0.113 0.213 0.245 0.237 0.281 0.267 

 
 

Table A3c. Monte Carlo experiment results with a sample size of 500 and 50% missing 
data. 
 

Missing data imputation scheme NMD MEAN MREGR HREGR MSREG HSREG 

CO>GT(TruePath) 0.450 0.450 0.450 0.450 0.450 0.450 

CO>GT(AvgPath) 0.389 0.245 0.250 0.171 0.238 0.193 

CO>GT(SEPath) 0.070 0.218 0.218 0.288 0.236 0.274 

CO>EU(TruePath) 0.400 0.400 0.400 0.400 0.400 0.400 

CO>EU(AvgPath) 0.343 0.213 0.216 0.150 0.209 0.168 

CO>EU(SEPath) 0.067 0.205 0.206 0.260 0.218 0.251 

CO>AC(TruePath) 0.250 0.250 0.250 0.250 0.250 0.250 

CO>AC(AvgPath) 0.219 0.143 0.144 0.098 0.140 0.113 

CO>AC(SEPath) 0.052 0.133 0.137 0.168 0.154 0.168 

GT>SU(TruePath) 0.500 0.500 0.500 0.500 0.500 0.500 

GT>SU(AvgPath) 0.380 0.270 0.270 0.206 0.263 0.227 

GT>SU(SEPath) 0.124 0.240 0.243 0.301 0.254 0.285 

EU>SU(TruePath) 0.230 0.230 0.230 0.230 0.230 0.230 

EU>SU(AvgPath) 0.189 0.172 0.170 0.134 0.183 0.158 

EU>SU(SEPath) 0.055 0.098 0.103 0.119 0.105 0.115 

AC>SU(TruePath) 0.200 0.200 0.200 0.200 0.200 0.200 

AC>SU(AvgPath) 0.164 0.157 0.158 0.127 0.175 0.151 

AC>SU(SEPath) 0.054 0.090 0.095 0.103 0.104 0.109 

GT3<GT(TrueLoad) 0.700 0.700 0.700 0.700 0.700 0.700 

GT3<GT(AvgLoad) 0.811 0.339 0.307 0.322 0.267 0.285 

GT3<GT(SELoad) 0.113 0.373 0.403 0.395 0.443 0.431 
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Appendix B: Business Process Modeling Approaches Used 

The figure below illustrates the two types of representations used in the business 

process redesign projects. In the context of our data analyses example, the one on 

the left was coded as 1, and the one on the right as 0. They correspond to high and 

low communication flow orientations, respectively, of the business process 

modeling approach used. 
 
 

 
 
Figure A1. High (left) and low (right) communication flow orientations of the business 
process modeling approach. 
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Appendix C: Questionnaire Used in Empirical Study 

The question-statements below were used for latent variable measurement in the 

illustrative study. Except for communication flow orientation (C1), all question-

statements were answered on 7-point Likert-type scales.  

Communication flow orientation (C1) 

• C11: Coded as either 1 or 0, corresponding to high or low 

communication flow orientation of the business process modeling 

approach used. 

Usefulness in the development of IT solutions (C2) 

• C21: This process modeling approach is useful in the development of 

a generic IT solution to automate the redesigned process. 

• C22: Creating a generic IT solution to enable the redesigned process 

is easy based on this process modeling approach. 

• C23: Graphical process representations using this approach facilitate 

the generation of a generic IT solution to automate the redesigned 

process. 

Ease of understanding (C3) 

• C31: Processes modeled using this approach are easy to understand. 

• C32: Graphical representations of processes using this approach are 

clear. 

• C33: This process modeling approach leads to graphical models that 

are easy to understand. 

Accuracy (C4) 

• C41: This process modeling approach leads to accurate process 

representations. 

• C42: Models created using this approach are correct representations 

of a process. 

• C43: Graphical representations using this approach clearly reflect the 

real process. 
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Impact on redesign success (C5) 

• C51: Using this process modeling approach is likely to contribute to 

the success of a process redesign project. 

• C52: Success chances are improved if this process modeling approach 

is used. 

• C53: Using the graphical process representations in this approach is 

likely to make process redesign projects more successful. 
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