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Test Of Homogeneity For Umbrella Alternatives
In Dose-Response Relationship For Poisson Variables

Chengjie Xiong Yan Yan Ming Ji
Division of Biostatistics Division of Biostatistics ~ Graduate School of Public Health
Washington University in St. Louis Department of Surgery San Diego State University

Washington University in St. Louis

This article concerns the testing and estimation of a dose-response effect in medical studies. We study the
statistical test of homogeneity against umbrella alternatives in a sequence of Poisson distributions
associated with an ordered dose variable. We propose a test similar to Cochran-Armitage’s trend test and
study the asymptotic null distribution and the power of the test. We also propose an estimator to the
vertex point when the umbrella pattern is confirmed and study the performance of the estimator. A real
data set pertaining to the number of visible revertant colonies associated with different doses of test
agents in an in vitro mutagenicity assay is used to demonstrate the test and estimation process.
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Introduction

Medical studies often evaluate treatment effects
at several doses of a test drug. One usually
assumes a priori, based either on past experience
with the test drug or on theoretical
considerations, that if there is an effect on a
parameter of interest, the response is likely
monotonic with dose, i.e., the effect of the drug
is expected to increase or decrease
monotonically with increasing dose levels.
Comparing several doses with a placebo in a
clinical dose study is then typically performed
by one-sided many-to-one comparisons or trend
tests assuming an order restriction. Monotonicity
of dose-response relationship, however, is far
from universal.

Instances may be found where a reversal
or downturn at higher doses is likely to occur.
For example, many therapies for humans
become counterproductive at high doses.
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389

Similarly, in many in vitro mutagenicity assays,
experimental organisms may succumb to toxic
effects at high doses of the test agents, thereby
reducing the number of organisms at risk of
mutation and causing a downturn in the dose-
response curve (Collings et. al., 1981; Margolin
et al., 1981). These types of non-monotonic
dose-response behavior may not be caused by a
random effect, but may occur due to an
underlying biological mechanism. Mechanistic
arguments for non-monotonic dose-response
shapes can be found in many medical areas, such
as toxicology (Calabrese & Baldwin, 1998),
carcinogenesis (Portier & Ye, 1998), and
epidemiology (Thorogood et al., 1993).

One of the simplest non-monotonic
dose-response is the so-called umbrella pattern
in which the response increases (decreases) until
certain dose level (usually unknown) and then
decreases (increases). Ames, McCann and
Yamasaki (1975) reported experimental data
exhibiting this pattern from three replicate Ames
tests in which plates containing Salmonella
bacteria of strain TA98 were exposed to various
doses of Acid Red 114. The number of visible
revertant colonies on each plate was observed.
Figure 1 is a scatter plot of the number of visible
revertant colonies against dose level, which
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clearly indicates an umbrella pattern peaked
between the third dose and the fourth dose. This
same phenomenon is also observed and
discussed by Simpson and Margolin (1986).

When the dose-response curve contains
an umbrella pattern, the usual statistical trend
tests become inadequate because of their power
loss and inherent, and possibly erroneous
decisions (Collings et al., 1981; Bretz &
Hothorn, 2001). The statistical test of
homogeneity in response against an umbrella
alternative has been studied by many authors.
Most of these discussions deal with a continuous
response variable and assume the normality for
the associated distributions. The typical
approaches under the assumption of normality
are based on the framework of one-way analysis
of variance and the simultaneous confidence
intervals for umbrella contrasts of mean
parameters (Bretz & Hothorn, 2001; Rom et al.,
1994; Shi, 1988; Marcus & Genizi, 1994; Hayter
& Liu, 1999). Nonparametric approaches have
also been considered by several authors (Lim &
Wolfe, 1997; Mack & Wolfe, 1981 & 1982,
Simpson & Margolin, 1994).

When data are based on counts such as
those reported by Ames, McCann and Yamasaki
(1975), however, a more reasonable
distributional assumption might be the Poisson
distribution. The statistical test of homogeneity
against umbrella alternatives in a sequence of
Poisson distributions associated with an ordered
dose variable has not been addressed in the
biostatistics literature to the best of our
knowledge. This article studies this problem
using an approach based on so-called C(«)

statistics as proposed and studied by Neyman
(1959) and Bailey (1956). The C(a) statistics

are also discussed in more details by Moran
(1970) and by Cox and Hinkley (1974) under the
more general category of score statistics.

We propose a test similar to the
Cochran-Armitage trend test and study the
asymptotic null distribution and the power of our
test. We also propose an estimator of the vertex
point when the umbrella pattern is confirmed
and study the performance of the estimator. A
real data set reported by Ames, McCann and
Yamasaki (1975) pertaining to the number of
visible revertant colonies associated with

different doses of test agents in an in vitro
mutagenicity assay is used to demonstrate the
test and estimation process. We also present
results of a simulation study about the proposed
test and estimation.

Methodology

We consider an experiment in which
independent random samples are taken from K
distinct dose levels. Suppose that the K dose
levels are meaningfully ordered. Let
d,,d,,...,d, be the scores associated with these

dose levels and d, <d, <..<d,. We assume
that at dose level i, the response follows a
Poisson distribution with mean ,,i =1,2,...,K.

Let n; be the sample size associated with dose

K

level 1and n= Zni . Let X; be the total
i=1

response in the i-th dose level. For each | and

p, 1<i,p<k, let d=(d;-d,)’ and

&

d P =>"nd’/n. Suppose that the relationship
=

between the mean response and the score takes
the form of

u, =Hla+ pld, -d, .

where H is a monotonic function that is twice

differentiable, dp is the dose level associated

with the vertex dose of the umbrella pattern.
Notice that when p =1 or k, this formulation
reduces to the monotone trend. We consider the
problem of testing H ;S =0against the
H,:8#0. The
likelihood function as a function of «, f, and

p is:
L(aa ﬂa p) o« 1_Iik:l

exp-nHle + Ad, —d, PHe+ Ad, —d P

alternative  hypothesis
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p Is Known

When p is given, the test is the same as
the trend test based on the redefined dose score
d”,i=12,..,K. The test is based on the C(r)

statistic (Moran, 1970) and is obtained by
evaluating the derivative of the loglikelihood
with respect to £ at the maximum likelihood

estimate of & under H,,:

k
C(a)=algﬁg|—aﬂo HH((a))(ZX _*;nidip]’

where

and @ =H _1( ) The test statistic for testing
H,: B =0against the alternative hypothesis
H, : # # 0 is obtained after dividing C(a) by
its asymptotic standard deviation under
H,computed from the information matrix of

(a, f) (Tarone, 1982):

k K 2
{indip—XZnidip}
X2: i=1 i=1
p K v
£y n,(dp —d)

i=1

(M

Notice that this test statistic does not depend on
the choice of the function H . Under the null

hypothesis, X; has an asymptotic Chi-square

distribution with one degree of freedom. Notice
also that this test statistic is identical in formula
to the test statistic for testing monotone trend
with the redefined score in binomial proportions
proposed by Armirage (1955). In addition,
Tarone (1982) showed that, like the binomial
trend test (Tarone & Gart, 1980), this Poisson
trend test is asymptotically locally optimal
against any choice of smooth monotone function
H that satisfies

—Hlo+ B, -d, | i=12..k

p Is Unknown

When p is unknown and H ;: f=0is
tested against the alternative hypothesis
H,:pB#0, we propose to reject H,: =0

when X* = max, X; is large. Let

n.
,, — and assume that 0 < A, <1 for
n

k
I<i<k. For 1<p<k, let d?P=> 4dF

i=l

A =lim,

K

and u = Z/li,ui. Let A be the k by K matrix
i1

whose (i, p) entry is given by

dip_dp

l_\/ﬂiﬂf.(di”—d“)z'

i=1

Let A=(a;) be the K by k matrix such that
a; =0 if i# ] and a; =44, if 1= j. The

following theorem gives the limiting distribution
of the proposed test when the null hypothesis is
true.

Theorem 1: If H, is true, then for any X >0,
lim, ,, P(X? > x )
LA *Jz) A AA|

ol - XA X ..

2

where X = (X,,X,,....X, ) and | | is the matrix

determinant.

The proof of Theorem 1 can be found in
Appendix. Notice that the asymptotic null
distribution does not depend on the unknown

common mean 4, =M, =...= 4, as the
common mean 4 is cancelled out in the
integrand. Therefore, g =1 can always be
assumed for the computation. The evaluation of



392 TEST OF HOMOGENEITY FOR UMBRELLA ALTERNATIVES

the integration can be done by the iterative
algorithm proposed by Genz (1992). This
algorithm  begins  with a  Cholesky
decomposition of the covariance matrix and then
uses a simple Monte-Carlo algorithm. Another
possible way of evaluating the distribution of the
test statistic under the null hypothesis is through
a large simulation of the test statistic. We point
out that the asymptotic null distribution does
depend on the unknown  proportion

. n.
Ai,1=12,..,K. —can be used for A, in the
n

n.
computation based on the consistency of — to
n

A, . In addition, according to Sidak and Zbyngk
(1967), under H,

Pr(X* < x*)= 2d(x)- 1],

where @ is the distribution function of the
standard normal distribution. Therefore, under

H

0>

lim, ,, Pr(X? > x*)<1- 2@ (x)- 1],

n—

which then provides a conservative test of H

against H .

Estimation of the Vertex Point

If the alternative hypothesis is true, the
problem of interest is then the estimation of the
true vertex point. To avoid the problem of
parameter identification, we assume that the
umbrella pattern satisfies

My S Hy S Sy <y >y 2 2

or

My Z My 2 2 >y < g S S U

i.e., we only consider the case where a single
vertex point | exists. Notice that this
formulation does not rule out the possibility that
the vertex point is on the boundary of the dose
interval if a monotone trend is the alternative

hypothesis. We propose to estimate | by I such

2 2
that X =max_,, X,

by (1). Notice that as n-—oo, for any
I1<p<k,

2 . .
where X is given

lim, —" = - -
T Yauy Al -d°f
i=1 i=1
: 2
2 Al —n)
_ =l
- k ur v’
zﬂ"uui
i=1
where ij,v is the correlation coefficient

between random variables U " and V defined
on the sample space {1,2,...,k} with the
multinomial probability distribution
Ao Aysn Ay b, and UP(i)=dP, V(i)=g.

Since

—UP1)<-UP@2)<..<-U(p-1)<-U"(p)
=0>-U(p+1)>..2-U"K)

and either

My S Hy S S <>y 2 2 fy

or

My 2y 2 2y >y <y S LS py

holds, the proposed estimator to the true vertex
point | asymptotically maximizes the square of

the correlation coefficient between U P and V
over p=12,..,k.

A Real Example

In in vitro mutagenicity assays,
experimental organisms may succumb to toxic
effects at high doses of test agents, thereby
reducing the number of organisms at risk of
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mutation and causing a downturn in the dose-
response curve (Collings et al., 1981; Margolin
etal., 1981).

Ames, McCann and Yamasaki (1975)
reported experimental data exhibiting this
pattern from three replicate Ames tests in which
plates containing Salmonella bacteria of strain
TA98 were exposed to various doses of Acid
Red 114. The number of visible revertant
colonies on each plate was observed. We assume
a Poisson distribution for the number of visible
revertant colonies and test whether an umbrella
pattern in the mean exists.

Figure 1 is a scatter plot of the number
of visible revertant colonies against dose level,
which clearly indicates an umbrella pattern
peaked between the third dose and the fourth
dose. The test statistic is

X? =max(75.71,75.76,75.90,76.20,69.78,55.96)
=76.20.

The conservative test gives a P -value

less than 0.00001, indicating a strong evidence
that an umbrella pattern exists. Since

max,_, X,
dose d, =10000 (png/ml) of Acid Red 114 is
used, the estimated peak dose is d,=10000

(ng/ml).

is obtained when p =4, i.e., when

120
£ 100 *
£ a0 S
S B0 - .
@ : .
= 0] . M
€ 204 § ¥ 2 i !
D T T T
] 2 4 B g
Figure 1. Visible colonies count against
dose

Simulation Studies

To understand the performance of the
proposed test and the estimator for the vertex
point when the alternative hypothesis is true, we
have carried out a simulation study to evaluate
the statistical power of the proposed test and the
probability that the vertex point estimator

correctly estimates the true vertex point for a set
of selected parameters.

In our simulation, we assume that a total
of five independent Poisson distributions
associated with five different dose levels

d, =1,i=0,1,2,3,4. We also assume that the

sample size of all 5 groups is the same, i.e.,
n,=n,=n, =n, =N,. Theorem 1 is used to

determine the X* which achieves the upper 5%
percentile of the test statistic under the null
hypothesis.

The empirical power of the proposed
test is computed as the proportion of rejections
of the null hypothesis over repeated independent
tests with a selected set of umbrella patterns.
The performance of the proposed estimator to
the vertex point is assessed by computing the
empirical probability that the proposed estimator
correctly estimates the true vertex point.

Table 1 presents the empirical power of
the test and the empirical probability of correct
estimation of the vertex point for three different
choices of the true umbrella pattern and various
sample sizes. Each entry in Table 1 is computed
from 10000 independent hypotheses tests and
estimations. All the tests assume a significance
level of 5%.

The first column in Table 1 is the true

mean vector (4, 1,, My, Uy, Ms). Notice that

these umbrella patterns are chosen so that each
possible interior vertex point (i.e., 1=2,3,4)
within the boundary of the dose interval is
considered. Because the monotone trend is
included in the alternative hypothesis when the
vertex point falls on the boundary of the dose
interval, it is of interest to see how our proposed
test performs in these alternatives.

This is relevant given the fact that, when
an umbrella pattern is likely in the dose-response
relationship, the traditional statistical monotone
trend tests become inadequate because of their
power loss and inherent, and possibly erroneous
decisions (Collings et al., 1981; Bretz and
Hothorn, 2001). We simulated the statistical
power of the proposed test for detecting the
monotone trend and compared that to the
traditional trend test as discussed by Cochran
(1954) and Tarone (1982).
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Table 1: Empirical Power and Probability with an Interior Vertex Point.

Umbrella Pattern Sample Size Per Power (%) Correct Vertex
Dose Estimation (%)

(2,2.5,3,2.5,1.5) 10 51.98 68.81

20 84.66 77.90

30 96.56 82.85

40 99.22 87.18

50 99.79 89.71

80 100 93.59

(1.5,2,2.5,3,2.5) 10 53.31 47.84

20 85.97 57.63

30 96.54 62.92

40 99.34 66.64

50 99.86 69.15

80 100 74.32

(2.5,3,2.5,2,1.5) 10 53.23 46.85

20 85.47 58.08

30 96.60 63.88

40 99.24 66.64

50 99.79 68.66

80 100 74.09
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Table 2 provides the empirical power
and the comparison along with the empirical
probability of the correct estimation of the
vertex point. The second column in Table 2 is
the empirical power based on our proposed test.
The third column in Table 2 is the empirical
power based on the test by Cochran (1954) and
Tarone (1982). Because the vertex point for a
monotone trend could be either 1=1 or | =5, the

395

Another different type of alternative hypothesis
is when a flat segment appears in the Poisson

mean vector (4, fy, My, My, Hs) -

Table 3 presents the empirical power
and the empirical probability of the correct
estimation of the vertex points for several
different choices of such patterns. Since the
vertex point in some of these situations is not
unique, the empirical probability of the correct

Table 2: Empirical Power and Probability with a Boundary Vertex Point.

Umbrella Pattern Sample Size

Per Dose
10

(1.5,1.8,2.0,2.3,2.5)
20
30
40
50
80
(3.5,3.4,3.0,2.8,2.6) 10
20
30
40
50

80

'Proposed test, >Cochran & Tarone’s test.

empirical probability of the correct estimation to
the true vertex points reported in Table 2 refers
to the proportion over repeated estimates that
either =1 or 1=5 is correctly estimated. Each
entry in Table 2 is also computed from 10000
independent hypotheses tests and estimations.

Power' (%)

33.69

62.45

80.55

90.20

95.58

99.71

22.81

40.99

56.80

70.90

80.05

94.85

Power” (%) Correct Vertex

Estimation (%)
41.85 52.86
70.45 68.05
86.65 78.25
94.18 84.46
97.45 88.14
99.89 9491
28.27 44.66
49.29 57.09
65.14 66.32
78.63 73.20
86.83 78.59
97.14 88.04

estimation reported in Table 3 refers to the
proportion that one of the possible vertex points
is correctly identified over 10000 independent
estimates. Data simulations are done using the
random number generating function RANPOI
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Table 3: Empirical Power and Probability with a Flat Segment in the Pattern

Umbrella Pattern Sample Size Per Power (%) Correct Vertex
Dose Estimation (%)

(2.5,3.0,3.0,2.5,2.0) 10 26.18 77.21

20 50.48 87.36

30 69.76 92.19

40 82.76 95.12

50 90.61 96.64

80 98.95 98.91

(2.5,3.0,3.0,3.0,2.5) 10 11.95 83.36

20 20.81 90.08

30 30.39 93.72

40 40.36 95.98

50 49.78 97.37

80 71.38 99.36

(2.5,2.5,3.0,3.0,2.5) 10 9.71 63.19

20 15.07 70.92

30 21.47 78.14

40 28.10 81.78

50 34.82 85.59

80 52.70 92.83
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from Statistical Analysis System (SAS Institute,
Inc. 1999).

Conclusion

When an umbrella pattern is likely in the dose-
response relationship, the usual statistical trend
tests become inadequate because of their power
loss and inherent, and possibly erroneous
decisions (Collings et al., 1981; Bretz &
Hothorn, 2001). We proposed in this paper a test
of homogeneity against umbrella alternatives in
a sequence of Poisson distributions associated
with an ordered dose variable and studied the
limiting null distribution and the statistical
power.

We also proposed an estimator of the
vertex point when the umbrella pattern is
confirmed and studied the performance of the
estimator. Although the simulation study verifies
that the increase of the sample size always
increases the statistical power of the test and the
probability of the correct estimation to the vertex
point, Table 1 seems to indicate that for the
selected set of parameters, the proposed
estimator to the true vertex point performs better
when the vertex point (1=3) is in the middle of
the dose interval than when it is away from the
middle of the dose interval (1=2,4). The
statistical power of the proposed test, however,
seems to be very comparable wherever the
interior vertex is.

Our proposed test not only detects an
umbrella pattern effectively based on the
simulation results in Table 1, but also possesses
reasonable statistical power to detect a
monotone trend which is a subset of the
alternative hypothesis considered in this paper.
In fact, the simulation in Table 2 shows that,
although our proposed test does not have as
much the statistical power for detecting the
monotone trend as the trend test of Cochran
(1954), the difference in power between these
two tests is relatively small. This is especially
promising given the fact that the trend test of
Cochran (1954) is asymptotically locally optimal
against any choice of smooth monotone function
H (Tarone, 1982).

On the other hand, the simulation results
reported in Table 3 seem to indicate that the

statistical power of the proposed test deteriorates
when a substantial flat segment exists in the
mean vector of the Poisson distributions,
although the proposed vertex estimator still
shows a high probability of correctly identifying
one of these multiple vertex points.

Like the similarity on the test statistic
for testing a monotone trend between a sequence
of binomial distributions and a sequence of
Poisson distributions (Armitage 1955; Cochran
1954), the proposed test and estimation
techniques can be readily extended to the
situation for detecting an umbrella pattern in a
sequence of binomial distributions.
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Appendix

We give the proof of Theorem 1, which gives
the null distribution of X *. Let

Y [zx‘“ 3

i=l i=1

where

K

=> Ad?
i=1
K

H= Zﬂ“i:ui
i=1

K
- Zﬂ’ldip
AP '

| \/ﬂiﬂ«(d” aF

i=I

A X.
Let X, = —. Note that

Y, X,
Y2 =A X 2
Y, X,

where A = (A?)is the Kby Kmatrix whose
(i, p) entry is A” . Since

I )21 Ay |
X A
i %2 =] 42 | S N(o,A)
L )Zk Ay )

where A =(a;) is the K by k matrix such that
a; =0 if i= ] and a; =4 if i=], and

the limit is in distribution. Therefore,

Y, Aty
Y A

Jnl] 2 ma] P S N(0,a0A).
Yy A M

Theorem 1 follows from the fact that
In(Y,Y,....Y, ) and (X, X,,...X,) are

stochastically equivalent under H .
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