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Most control charts require the assumption of normal distribution for observations. When 

distribution is not normal, one can use non-parametric control charts such as sign control 

chart. A deficiency of such control charts could be the loss of information due to 

replacing an observation with its sign or rank. Furthermore, because the chart statistics of 

T2 are correlated, the T2 chart is not a desire performance. Non-parametric bootstrap 

algorithm could help to calculate control chart parameters using the original observations 

while no assumption regarding the distribution is needed. In this paper, first, a bootstrap 

multivariate control chart is presented based on Hotelling’s T2 statistic then the 

performance of the bootstrap multivariate control chart is compared to a Hotelling’s T2 

parametric multivariate control chart, a multivariate sign control chart, and a multivariate 

Wilcoxon control chart using a simulation study. Ultimately, the bootstrap multivariate 

control chart is used in an empirical example to study the process of sugar production. 

 

Keywords: Non-parametric bootstrap, misspecified model, multivariate sign control 

chart, multivariate Wilcoxon control chart, average run length 

 

Introduction 

Statistical process control (SPC) is a proven method for improving quality of 

products and processes. Control chart is a featured tool of SPC which is very 

effective for controlling variability in manufacturing and service processes. Since 

a product ordinarily contains several quality characteristics, when a univariate 

control chart is used for monitoring product or process performance, misleading 

results due to ignoring the correlation between variables should be expected. 

Hotelling’s T2 control chart is one of the most important multivariate control 
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charts for monitoring the mean of a process. Shewhart and other multivariate 

control charts are usually based on the normality assumption of observations; 

however, in practice, this assumption might be violated. Thus, it will be suitable 

to use charts that are not based on normality assumption. In addition, it is often 

assumed that the F-distribution-based control limits account for the additional 

variability introduced into the T2 statistics when the mean vector and covariance 

matrix are estimated. Because the chart statistics are correlated, the run length 

distribution of the T2 chart is not a geometric distribution. Champ, Jones-Farmer, 

and Rigdon (2012) have shown that the F-distribution-based limits do not produce 

control charts with the desired in-control average run length (ARL0) unless the 

sample sizes are very large. On the other hand, the non-parametric control charts 

do not require the normality assumption. Nonetheless, non-parametric control 

charts are based on the observations sign or rank, which are less efficient. In 

addition, the exact distributions of nonparametric control statistics are unknown 

and instead their limiting distributions are used for which the size of the 

recommended samples might not be large enough. In such cases, a bootstrap 

multivariate control chart could be used based on resampling the observations 

with no need for the normality assumption. 

Bajgier (1992) presented a univariate control chart with limits obtained 

using the bootstrap method. Seppala, Moskowitz, Plante, and Tang (1995) 

improved the Bajgier control charts using subgroups bootstrap control charts. Liu 

and Tang (1996) presented a univariate bootstrap control chart for the mean of a 

process based on independent and dependent observations. The application of the 

bootstrap method in control charts based on discrete distributions using numerical 

integration was presented by Polansky (2005). Lio and Park (2008) suggested 

bootstrap control charts based on the Birnbaum-Saunders distribution. Park 

(2009) used bootstrap method to process median control charts. Chatterjee and 

Qiu (2009) presented a cumulative sum control chart in which the limits were 

obtained by the bootstrap method. Hotelling’s T2 multivariate bootstrap control 

chart for a process mean when a subgroup’s sample size is one was first suggested 

by Phaladiganon, Kim, Chen, Baek, and Park (2011). They were also able to use 

the bootstrap method in multivariate control charts for principal component 

analysis based on non-normal distributions when subgroup size is one 

(Phaladiganon, Kim, Chen, & Jiang, 2013). Mostajeran, Iranpanah, and 

Noorossana (2016) proposed a new bootstrap algorithm to construct Hotelling’s 

T2 control chart for individual observations (n = 1). 

The error caused by parameter estimation inevitably influences the chart 

performance. The effect of estimation error on control chart performance has been 
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studied for various control charts. Jensen, Jones-Farmer, Champ, and Woodall 

(2006) studied effects of parameter estimation on control chart properties. 

Bischak and Trietsch (2007) investigated the rate of false signals in X-bar control 

charts with estimated limits. Castagliola, Celano, and Chen (2009) studied the 

exact run length distribution of the S2 chart when the in-control variance is 

estimated. Mahmoud and Maravelakis (2010) discussed the performance of the 

MEWMA control chart when parameters are estimated. Saleh, Mahmoud, and 

Abdel-Salam (2013) studied the performance of the adaptive exponentially 

weighted moving average control chart with estimated parameters. Also, 

Mahmoud and Maravelakis (2013) discussed the performance of multivariate 

CUSUM control charts with estimated parameters. Lee, Wang, Xu, Schuh, and 

Woodall (2013) investigated the effect of parameter estimation on upper-sided 

Bernoulli cumulative sum charts. Psarakis, Vyniou, and Castagliola (2014) 

investigated some developments on the effects of parameter estimation on control 

charts. Jones-Farmer, Woodall, Steiner, and Champ (2014) discussed an overview 

of phase I analysis for process improvement and monitoring. Noorossana, 

Fathizadan, and Nayebpour (2015) investigated EWMA control chart 

performance with estimated parameters under non-normality. Aly, Saleh, 

Mahmoud, and Woodall (2015) studied the adaptive exponentially weighted 

moving average control chart when parameters are estimated. Epprecht, Loureiro, 

and Chakraborti (2015) discussed the effect of the amount of phase I data on the 

phase II performance of S2 and S control charts. Recently, Saleh, Zwetsloot, 

Mahmoud, and Woodall (2016) investigated CUSUM charts with controlled 

conditional performance under estimated parameters. Faraz, Heuchenne, and 

Saniga (2017) proposed the np chart with guaranteed in-control average run 

lengths. 

Bakir and Reynolds (1979) presented a cumulative sum control chart based 

on the Wilcoxon signed rank statistic. Chou, Mason, and Young (2001) proposed 

a control chart for individual observations from a multivariate non-normal 

distribution. The univariate non-parametric control charts were reviewed by 

Chakraborti, Van der Laan, and Bakir (2001) and Chakraborti, Human, and 

Graham (2008). Shewhart control charts based on the Wilcoxon sign rank statistic 

was first introduced by Bakir (2004). Albers and Kallenberg (2006) presented 

non-parametric control charts that use minimum subgroups instead of the mean of 

subgroups. In addition, Chakraborti and van de Weil (2008) developed the non-

parametric control chart based on the Mann-Whitney statistic. Boone and 

Chakraborti (2012) presented the multivariate non-parametric Shewhart control 



MOSTAJERAN ET AL 

5 

charts based on observations’ sign and ranks. Champ et al. (2012) investigated 

properties of the T2 control chart when parameters are estimated. 

Multivariate bootstrap control charts use subgroups of size one, but there are 

situations when subgroups of size greater than one are required. For the case of m 

subgroups of size n, there exists no suitable resampling algorithm in the literature. 

Many algorithms can be designed for resampling under this condition but the real 

challenge is the level of similarity between the algorithm and the original 

sampling idea. Obviously the more similar they are the more accurate data 

distribution will be established.  

A bootstrap algorithm for Hotelling’s T2 chart when subgroup size is greater 

than one is presented. The bootstrap algorithm is used in a simulation study for 

comparing the bootstrap control chart with non-parametric sign control chart, 

Wilcoxon control chart, and Hotelling’s T2 control chart. The proposed algorithm 

was also used in an actual example in the process of sugar production from sugar 

beets. 

Hotelling’s T2 Multivariate Control Chart 

Assume X is a random vector that follows a p-variate normal distribution and 

X1,…, Xn are i.i.d. random samples from N(μ0, Σ0). The Hotelling’s T2 

multivariate control chart for the process center is based on the statistic 

 

 ( ) ( )
t2 -1

0 0 0nT = − −X μ Σ X μ   

 

where 

 

 
1

1 n

j

jn =

= X X   

 

is the mean vector of the sample. Since the T2 statistic has a chi-square 

distribution with p degrees of freedom, the multivariate Shewhart control chart for 

the process mean with known parameters mean vector μ0 and covariance matrix 

Σ0 has upper control limit of 2

u 1 , pL  −= . In practice, both μ0 and Σ0 are unknown 

and are estimated based on m random samples of size n. Suppose a sample Xi1,…, 

Xin, i = 1,…, m in phase I with 
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1 1

1 1
and

m m
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i im m= =

= = X X S S   

 

is available where X̅i and 2

iS  are the mean vector and covariance matrix for the ith 

subgroup. In this case the Hotelling’s T2 control limit in phase II is based on 

statistic 

 

 ( ) ( )
t

2 1T n −= − −X X S X X   (1) 

 

where X̅ is the mean vector of the sample mean in phase II. 

Mason, Chou, and Young (2001) showed if the process has a normal 

distribution with p variables then T2 / c will follow an F distribution with p and 

mn – m – p + 1 degrees of freedom, where c = p(m + 1)(n – 1) / (mn – m – p + 1). 

The upper control limit for the p-variable Hotelling’s T2 is Lu = cF1–α,p,mn–m–p+1. 

Nonparametric Multivariate Control Charts 

The parametric multivariate control limit based on Hotelling’s T2 statistic in the 

previous section is based on the assumption that the p-variate vector of 

observations has a p-variable normal distribution. However, if such an assumption 

is not established, multivariate nonparametric control charts might be used. Two 

multivariate non-parametric control charts are presented which are based on the 

sign and rank of observations. Boone and Chakraborti (2012) presented the 

multivariate non-parametric Shewhart control charts based on the sign and rank of 

observations. 

Multivariate Sign Control Chart 

The multivariate sign control chart is based on the multivariate sign test. If the 

sign function is defined as 

 

 ( )
1; 0

sign 0; 0

1; 0

ij i

ij i ij i

ij i

X

X X

X



 



 − 


− = − =
− − 
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where θ = (θ1,…, θp)
t is the median vector, then for the ith quality specification 

subject of the study, the sign test statistic is defined as 

 

 ( )
1

sign , 1, ,
n

i ij i

j

Z X i p
=

= − =   

 

The multivariate sign control chart for the process center is based on the statistic 

 

 2 t 1ˆT −=S Z V Z   (2) 

 

where Z = (Z1,…, Zp)
t is a sign vector and the matrix V̂ estimates the covariance 

matrix V as follows 

 

 
( ) ( )

1

ˆ ,

ˆ sign sign , , 1,2, ,

ii

n

ij ik i jk j

k

n

X X i j p 
=

=

= − − =

V

V
  

 

Hettmansperger (1983) showed that when process is under control, by increasing 

the size of sample n, the distribution of 
2TS  is asymptotically distributed as chi-

square with p degrees of freedom. Therefore, the upper limit for the non-

parametric multivariate sign control chart is 2

u 1 , pL  −= . 

Multivariate Wilcoxon Signed-Rank Control Chart 

The multivariate Wilcoxon signed-rank control chart is based on the multivariate 

Wilcoxon signed-rank test. For the ith quality characteristic, we have 

 

 ( ) ( )
1

R sign , 1, ,
n

i ij i ij i

j

W X X i p 
=

= − − =   

 

where R(|Xij – θi|) is the rank of |Xij – θi| among {|Xij – θi|, j = 1,…, n}. Therefore, 

Wi is the sum of the Wilcoxon signed-ranks for the ith quality characteristic. If 

W = (W1,…, Wp)
t is a vector with covariance matrix estimated by L̂, defined by 
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( )( )

( ) ( ) ( ) ( )
1

1 2 1ˆ ,
6

ˆ R R sign sign , , 1,2, ,

ii

n

ij ik i jk j ik i jk j

k

n n n
l

l X X X X i j p   
=

+ +
=

= − − − − =
  

 

then the Wilcoxon signed-rank chart statistic for the process center will be based 

on the statistic 

 

 2 t 1

R
ˆT −= W L W   (3) 

 

Hettmansperger (1983) showed that when the process is under control, when 

sample size n increases, the distribution of 
2

RT  is asymptotically distributed as chi-

square with p degrees of freedom. Therefore, the upper control limit for the 

multivariate Wilcoxon signed-rank chart is given by 2

u 1 , pL  −= . 

Bootstrap Multivariate Control Chart 

In multivariate control charts based on Hotelling’s T2 statistic, the normality 

assumption is essential; however, in practice, this assumption could be violated 

most of the times. However, in non-parametric multivariate control charts, the 

control limits are based on the limiting distribution of the statistic while, in 

practice, the size of subgroup is small. In this part, an upper control limit in phase 

II is presented by using the bootstrap method based on resampling from 

observations in phase I with no need to use the assumption of normality for 

observations or the large subgroup size. 

Suppose m random samples of size n on p quality characteristics are 

obtained in phase I. The different stages of the bootstrap algorithm for calculating 

the upper control limit are as follows: 

 

1. Generate a simple random sample of size n, 1 , , n

 
X X , by resampling 

from the observed p-variable sample vectors Xij: i = 1,…, m, j = 1,…, n in 

phase I and define 

 

 
1

1 n

j

jn

 

=

= X X   
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2. The bootstrap Hotelling’s T2 control statistic is presented as 

 

 ( ) ( )
t

2 1nT    −  = − −X X S X X   (4) 

 

where X  and S̅* are the mean vector and covariance matrix of a sample 

of size m × n generated by simple random sampling with replacement 

from the samples in phase I. 

3. Repeat steps 1 and 2 for B times to calculate 2 2

1 , , BT T  . 

4. The bootstrap upper control limit is presented based on the empirical 

distribution of T2* in 
( )

2

u 1B
L T





−  
=  form, in which 

 
2

b
T 

 is the bth percentile of 

the 
2 2

1 , , BT T 
 bootstrap control statistic in step 2. 

 

Use the established control limit to monitor new observations. In other words, if 

the statistic for the new observations exceeds uL
, we declare those observations 

as out-of-control signals. 

Numerical Examples 

Numerical examples are used to evaluate the performance of the proposed 

bootstrap multivariate control chart compared to the results obtained when 

multivariate parametric and non-parametric control charts are used. The average 

run length (ARL) is used as a criterion for performance evaluation. The control 

charts’ ARL is the average number of observations prior to observing an out-of-

control point. When a process is in-control, a false alarm rate (α) is used to 

calculate the in-control average run length, or ARL0, as ARL0 = 1 / α. Because the 

proposed bootstrap multivariate control chart is not dependent on the distribution, 

the simulation process is carried out using normal, T, skew-normal, and gamma 

distributions. For the two- and three-variable normal distribution, the mean 

vectors are defined as μ = (0, 0)t and μ = (0, 0, 0)t, respectively, with the 

following covariance matrices: 

 

 1 2

1 0.5 1.5
1 0.5

and 0.5 4.25 1.75
0.5 4.25

1.5 1.75 2.99

− 
   

= = −   
   − − 

Σ Σ   
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In addition, in the two- and three-dimensional T distributions, the scale matrices 

are defined as Σ1 and Σ2, respectively, with two degrees of freedom. In the 

multivariate T distribution, the covariance matrix is given by cov(X) = Σ(df / df –

 2), where Σ is the shape matrix. 

Azzalini (1985) proposed the univariate skew-normal distribution and it was 

generalized to the multivariate case by Azzalini and Dalla Valle (1996) and 

Arellano-Valle, Bolfarine, and Lachos (2005). The probability density function 

(pdf) of the generic element of a multivariate skew-normal distribution is given by 

 

 ( ) ( ) ( )( )
1
2

1f 2 | ,, p

p
−

=  − Y µ Σ µy y λ Σ y y   

 

where ϕp(y | μ, Σ) stands for the pdf of the p-variate normal distribution with 

mean vector μ and covariate matrix Σ and Φ1(.) represents the cumulative 

distribution function (cdf) of the standard normal distribution. When λ = 0, the 

skew normal distribution reduces to the multivariate normal distribution. The 

skewness parameters λ = (-9, -6) and λ = (-9, -6, -3) have been used in the case of 

two and three variable response vectors, respectively. 

To generate the multivariate data using a gamma distribution, let 

y = (y0, y1,…, yn)' be an (n + 1) variate random vector and yi ~ Ga(γi, αi) be 

mutually independent gamma random variables possessing the pdfs 

 

 ( )
( )

1
f e , 0

i

i i

i

yi
y

i

y y y


 



− −
= 


  

 

where γi > 0 and αi > 0 are the shape and rate parameters, respectively. Also let 

 

 

0

1

0 1

2 2

0 1 2

3 3 3

0 31 2

1 0 0 0

1 0 0

1 0

1
n n n n





 

 

  

  

  

   

 
 
 
 
 
 
 =
 
 
 
 
 
  

A   
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Thus, ( )~ MG ,Ay γ α , where ( )0 1 0 1 2 0, , , n       = + + + + +γ  and 

α = (α1, α2,…, αn) are the n-variate vectors of the shape and rate parameters, 

respectively (Furman, 2008). 

In the case of two- and three-multivariate gamma distributions, we take 

γ = (0.5, 1.25, 2)' and γ = (0.5, 1.25, 2, 2.5)' as the shape parameters and 

α = (0.01, 0.03, 0.04)' and α = (0.01, 0.03, 0.04, 0.06)' as the rate parameters, 

respectively. The suggested bootstrap charts and non-parametric charts are 

implemented in R-3.3.1 software for our simulation study. 

Empirical Distribution of T2* Bootstrap Multivariate Statistic 
via Simulation 

The empirical distribution of the bootstrap multivariate control statistic is studied 

in a simulated study. To study the bootstrap T2* statistic, plots based on the 

empirical distribution function are prepared. The data used in the simulation study 

are generated based on the three-variable normal, T, skew-normal, and gamma 

distributions. 

In Figure 1, the Hotelling’s T2 values generated in phase II using 

relationship (1) are presented along with the Hotelling’s T2 three-dimensional 

upper control limit and the bootstrap T2* which is obtained in phase I. The phase I 

observations in this figure are generated using m = 100 samples of size n = 10 and 

the upper control limit for Hotelling’s T2 chart is obtained using 

1 2u 1 , , 7.9L cF   −= = , where ν1 and ν2 are equal to 3 and 898, respectively. In 

addition, the upper control limit T2* bootstrap is obtained based on the algorithm 

introduced in the previous section using the samples generated from each of the 

four distributions in phase I and bootstrap replications equal to 2000. Ultimately 

in phase II, 100 samples of size n = 10 are generated form each distribution, and 

the Hotelling’s T2 values in relationship (1) are calculated using X  and S̅ as the 

estimators for population mean vector and covariance matrix. The estimates are 

computed using the observations generated in phase I. 

As can be seen in Figure 1, when observations are generated from a normal 

distribution, the bootstrap upper control limit is very close to the upper control 

limit value of Hotelling’s T2 chart; however, in three other distributions, the upper 

control limits are not close. Therefore, we should expect the performance of a 

bootstrap control chart, in terms of false alarm rate, to be better than the simulated 

control charts, except the first one which is related to normal distribution. 
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Figure 1. Hotelling’s T2 and T2* bootstrap control charts with three-variables 
 

 

In Figures 2 and 3, the boxplots and the cumulative distribution function of 

Hotelling’s T2 values, the data simulated from the F distribution, and the bootstrap 

T2* control chart values are presented. First, in phase I, m = 100 samples, each 

with size n = 10 for three variables and four distributions, are generated and then 

the estimates of μ0 and Σ0 are calculated using X  and S̅. In phase II, m = 1000 

samples of size n = 10 are simulated and the Hotelling’s T2 values are calculated 

using relationship (1). In addition, using random sampling with replacement, 

m = 1000 samples of size n = 10 are generated in phase I and using relationship 

(4); the values for bootstrap T2* are calculated and plotted on the chart. To 

compare the performances of Hotelling’s T2 statistic distribution and the bootstrap 

T2* distribution in normal and non-normal cases, 1000 observations from the F 

distribution with v1 = 3 and v2 = 898 degrees of freedom are generated, and graphs 

for Hotelling’s T2 chart and T2* bootstrap chart are prepared. 
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Figure 2. The boxplot of Hotelling’s T2 statistic, T2* bootstrap statistic, and the simulated 
values from F distribution 
 

 

In Figure 2, in the normal distribution, the boxplot of the bootstrap control 

statistic is similar to the Hotelling’s T2 boxplot. In all three boxplots related to the 

normal distribution, the first and third quartiles, interquartile ranges, and outlier 

observations are almost similar. In other distributions, as can be seen in Figure 2, 

the T2* bootstrap control boxplot is closer to the Hotelling’s T2 plot. In fact, when 

the data do not follow a normal distribution, the T2* bootstrap control boxplot is 

closer than the Hotelling’s T2 boxplot and is similar to the actual distribution in 

each figure. 

In Figure 3, in the normal distribution, the cumulative distribution function 

of the bootstrap T2* control chart is close to the Hotelling’s T2 cumulative 

distribution function. In other distributions, as Figure 3 shows, the bootstrap 

T2*cumulative distribution function control chart is closer to the Hotelling’s T2 

actual cumulative distribution than the F cumulative distribution function. In other 

words, when the distribution is not normal or is unknown, the bootstrap control 

chart estimates the Hotelling’s T2 distribution with more precision. 
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Figure 3. The empirical distribution function of Hotelling’s T2 control statistic, the 
empirical distribution function T2* bootstrap, and the empirical distribution function based 
on F distribution 
 

Comparison between the Bootstrap T2* Control Charts and 
the Parametric and Non-Parametric Control Charts 

To obtain a suitable bootstrap algorithm for resampling m samples of size n, 8 

different algorithms were designed. In the basic stage, the algorithms were 

designed in simulated studies and the best bootstrap T2* algorithm was selected to 

be compared with the Hotelling’s T2 chart and the non-parametric chart. 
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The ARL0 is used in Monte Carlo simulations for comparing the 

performances of Hotelling’s T2 multivariate control charts, the sign non-

parametric, the Wilcoxon non-parametric, and the bootstrap T2*control chart. In 

order to do this, m = 10, 20 samples of size n = 5, 10 are generated from normal, T, 

skew-normal, and gamma distributions with two and three variables using the 

parameters presented in this section. An upper control limit for T2* computed 

using the bootstrap method based on the algorithm introduced in the Bootstrap 

Multivariate Control Chart section with B = 2000 replications. The upper control 

limit for Hotelling’s T2 chart is calculated using Lu = cF1–α,p,mn–m–p+1, where 

c = p(m + 1)(n – 1) / (mn – m – p + 1) for a given significance level. In addition, 

the upper control limit for the non-parametric sign and Wilcoxon charts, as shown 

in the Nonparametric Multi-Variate Control Charts section, are calculated based 

on p and the significance level alpha using 2

u 1 , pL  −= . The simulated data in 

phase I is used to estimate the mean vector μ0 and the covariance matrix Σ0 using 

X  and S̅. In addition, the median vector was also calculated. 

In phase II, n observations in the sample are used to generate data in order to 

calculate the Hotelling’s T2 statistic, the sign statistic from relationship (3), and 

the Wilcoxon statistic from relationship (4). The results are compared to the 

corresponding limits which were obtained in phase I. If the statistics are smaller 

than the limits, another set of n observations are produced and this process will be 

repeated until the statistic does not exceed the control limits. As soon as an 

observation plots out of control, the average run length criterion is computed. 

Phases I and II are repeated 10,000 times, and the in-control average run length, 

denoted by ARL0 as, well as standard error of the run length (SDRL) are 

calculated. The values are presented in Tables 1 to 8 per each distribution, number 

of variables, number of samples, and the size of subgroups. 

As can be seen from Tables 1 and 2 for the normal distribution case, the 

Hotelling’s T2 chart performs better than the other charts. In cases where the size 

of the subgroup is five, the ARL0 value of the bootstrap control chart is in 

proximity to the nominal value and, even for two and three variables, on one 

occasion it is better than Hotelling’s T2 chart. Clearly, the non-parametric charts 

such as the Wilcoxon chart are far from the nominal ARL0 value. Using the 

results in Table 2, the performance of the Wilcoxon chart in terms of ARL0 gets 

worse as the subgroup size decreases from 10 to 5. In Tables 1 and 2, as one can 

see, the standard error of the bootstrap control chart is less than the other charts. 
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Table 1. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for normal distribution with p = 2 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n TRUE 200 200 200 200 
 

100 100 100 100 

10 5 
 

221.2 264.0 491.8 174.0 
 

112.1 69.3 231.3 92.2 

   
(257.0) (271.2) (489.3) (198.1) 

 
(136.2) (62.3) (237.3) (104.7) 

 
10 

 
211.8 157.5 230.8 178.1 

 
105.3 109.6 85.5 92.1 

   
(242.9) (152.4) (244.3) (186.0) 

 
(111.2) (105.7) (85.9) (96.8) 

20 5 
 

211.6 276.2 543.7 186.3 
 

101.1 73.7 248.9 97.5 

   
(230.0) (280.6) (541.2) (202.1) 

 
(106.8) (69.3) (249.3) (101.2) 

 
10 

 
206.1 182.6 259.9 192.8 

 
102.9 108.3 92.3 96.6 

   
(219.1) (187.2) (270.3) (194.2) 

 
(104.7) (98.9) (88.6) (98.3) 

 
 
Table 2. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for normal distribution with p = 3 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n 
TRU

E 200 200 200 200 
 

100 100 100 100 

1
0 

5 
 

232.3 300.4 1547.9 168.2 
 

114.6 175.9 254.9 88.7 

   
(266.9

) 
(306.1

) 
(1630.9

) 
(180.4

)  
(126.2

) 
(186.9

) 
(250.3

) 
(95.7) 

 
1
0  

222.6 686.3 446.7 177.9 
 

109.1 120.7 109.6 88.9 

   
(247.2

) 
(113.1

) 
(470.1) 

(206.2
)  

(111.1
) 

(113.1
) 

(99.1) (92.9) 

2
0 

5 
 

212.5 331.1 1861.9 180.7 
 

101.2 185.3 287.6 92.7 

   
(221.2

) 
(332.8

) 
(1951.8

) 
(189.6

)  
(100.2

) 
(185.2

) 
(289.1

) 
(92.0) 

 
1
0  

202.6 795.6 521.8 187.2 
 

100.7 129.9 119.3 95.4 

   
(213.3

) 
(784.9

) 
(545.7) 

(176.8
)  

(98.6) 
(126.5

) 
(118.8

) 
(93.1) 

 
 
Table 3. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for T distribution with p = 2 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n TRUE 200 200 200 200 
 

100 100 100 100 

10 5 
 

126.9 264.7 639.6 251.2 
 

91.1 69.3 253.2 108.3 

   
(225.1) (282.1) (659.1) (366.8) 

 
(178.1) (66.1) (259.3) (210.5) 

 
10 

 
130.3 170.2 247.2 214.2 

 
107.4 103.6 90.2 97.1 
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(213.2) (173.0) (252.8) (405.1) 

 
(141.5) (97.8) (86.4) (138.3) 

20 5 
 

142.9 290.5 709.8 244.9 
 

110.2 77.9 318.6 112.3 

   
(275.7) (280.8) (742.3) (461.9) 

 
(211.9) (72.9) (315.5) (109.4) 

 
10 

 
136.1 185.9 287.8 221.6 

 
108.9 111.4 103.1 102.9 

   
(168.8) (197.2) (281.6) (322.1) 

 
(178.2) (109.8) (97.7) (160.1) 

 

Based on the results presented in Table 3 for the T distribution, the bootstrap 

control chart is better than Hotelling’s T2 chart and the non-parametric charts; 

however, in three cases, its standard error is bigger than the other chart. Based on 

the results in Table 4, the ARL0 value of the bootstrap control chart is closer to 

the desirable value, specifically for α = 0.005. The ARL0 values of Hotelling’s T2 

chart are in all cases lower than the nominal value with low standard error. In fact, 

when the data distribution follows a T distribution, Hotelling’s T2 chart yields 

large false alarm rate. 
 
 
Table 4. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for T distribution with p = 3 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n TRUE 200 200 200 200 
 

100 100 100 100 

10 5 
 

86.5 314.4 1910.1 221.2 
 

66.5 170.2 282.6 92.1 

   
(127.4) (318.9) (2132.1) (244.3) 

 
(84.2) (165.9) (278.5) (118.2) 

 
10 

 
97.4 689.1 521.7 196.6 

 
67.3 119.1 115.7 103.3 

   
(124.2) (722.4) (570.2) (452.5) 

 
(84.7) (118.0) (116.6) (107.4) 

20 5 
 

108.5 342.0 2319.1 194.7 
 

81.3 183.9 319.0 109.1 

   
(137.4) (352.3) (2408.0) (273.4) 

 
(113.8) (185.0) (326.9) (130.4) 

 
10 

 
111.6 775.5 621.6 189.1 

 
76.6 138.7 133.3 105.0 

   
(127.2) (789.4) (668.0) (235.9)   (111.4) (131.6) (127.8) (123.1) 

 
 
Table 5. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for skew-normal distribution with p = 2 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n TRUE 200 200 200 200 
 

100 100 100 100 

10 5 
 

256.9 262.6 444.7 194.9 
 

128.9 71.2 200.2 99.4 

   
(361.5) (262.4) (467.8) (213.4) 

 
(152.7) (67.1) (205.1) (117.5) 

 
10 

 
258.6 162.3 218.1 191.1 

 
115.3 91.1 83.4 92.5 

   
(282.6) (165.9) (215.8) (209.0) 

 
(121.5) (90.6) (82.9) (96.3) 

20 5 
 

235.7 292.9 483.9 196.6 
 

117.1 71.2 217.1 98.4 

   
(260.0) (292.3) (483.7) (213.1) 

 
(118.3) (68.8) (213.3) (100.7) 

 
10 

 
226.9 186.7 242.5 195.4 

 
109.8 106.3 90.6 96.2 

   
(258.8) (191.0) (247.1) (197.1)   (107.8) (105.2) (89.8) (95.3) 
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Table 6. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for skew-normal distribution with p = 3 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n TRUE 200 200 200 200 
 

100 100 100 100 

10 5 
 

247.8 316.7 1234.1 191.4 
 

125.3 155.9 243.2 92.8 

   
(310.5) (316.5) (1270.2) (207.8) 

 
(136.7) (153.7) (254.1) (99.7) 

 
10 

 
238.6 619.3 446.7 178.4 

 
110.9 119.1 109.5 92.5 

   
(262.3) (679.3) (452.3) (196.3) 

 
(116.9) (117.9) (105.6) (92.0) 

20 5 
 

221.2 334.5 1421.2 188.7 
 

109.2 169.5 257.0 94.6 

   
(235.9) (331.9) (1459.9) (190.8) 

 
(109.6) (163.6) (261.2) (96.5) 

 
10 

 
216.7 683.2 484.9 189.4 

 
116.3 127.2 123.1 96.2 

   
(225.3) (695.7) (493.7) (196.4)   (111.7) (119.8) (118.7) (94.5) 

 
 
Table 7. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for gamma distribution with p = 2 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n TRUE 200 200 200 200 
 

100 100 100 100 

10 5 
 

265.2 277.2 428.6 229.1 
 

136.9 77.1 229.6 110.9 

   
(419.7) (274.4) (470.1) (322.4) 

 
(197.7) (72.3) (238.3) (152.1) 

 
10 

 
254.5 186.3 168.4 196.8 

 
120.6 140.6 72.1 97.4 

   
(359.5) (183.5) (198.2) (256.2) 

 
(143.5) (144.4) (71.9) (113.8) 

20 5 
 

219.7 295.5 444.1 209.3 
 

118.6 82.7 234.3 103.1 

   
(256.8) (291.3) (455.9) (238.9) 

 
(137.9) (76.9) (239.2) (113.7) 

 
10 

 
220.8 209.3 181.6 208.1 

 
111.8 147.1 77.1 98.1 

   
(257.3) (206.1) (184.6) (217.9)   (115.4) (144.6) (77.9) (97.0) 

 
 
Table 8. ARL0 values (SDRL in parenthesis) calculated by Hotelling’s T2, Sign chart, 
Wilcoxon chart, and bootstrap chart for gamma distribution with p = 3 variables 
 

   
alpha = 0.005 

 
alpha = 0.01 

  
Chart T2 Sign W Boot 

 
T2 Sign W Boot 

m n TRUE 200 200 200 200 
 

100 100 100 100 

10 5 
 

239.3 307.4 1397.1 208.7 
 

118.6 170.1 217.1 99.3 

   
(290.3) (301.5) (1410.1) (280.4) 

 
(141.5) (166.7) (219.6) (126.6) 

 
10 

 
222.5 699.9 344.8 197.4 

 
116.7 123.7 82.7 94.5 

   
(281.8) (762.9) (389.0) (247.4) 

 
(131.9) (126.4) (91.1) (101.2) 

20 5 
 

208.5 349.6 1571.2 196.1 
 

111.4 186.2 247.1 101.8 
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(228.5) (348.9) (1629.2) (223.6) 

 
(116.4) (181.7) (255.7) (100.1) 

 
10 

 
218.9 750.3 384.6 202.7 

 
109.6 139.2 92.1 96.6 

   
(261.2) (755.9) (406.9) (215.2)   (111.2) (134.3) (91.0) (94.9) 

According to the results in Tables 5 and 6, in almost all cases, the bootstrap 

control chart performs better than Hotelling’s T2 chart and the non-parametric 

charts. For α = 0.005, Hotelling’s T2 chart had a relatively acceptable performance 

by considering the fact that the skew-normal distribution is similar to the normal 

distribution; however, the standard error of ARL0 vales for the T2 Hotelling chart 

is greater than the bootstrap control chart. 

Based on the results in Tables 7 and 8, the bootstrap control chart is better 

than Hotelling’s T2 chart and the non-parametric charts. In fact, in all cases, the 

ARL0 value for the bootstrap control chart is close to the nominal value. This is 

particularly obvious for α = 0.005. In fact, when observations follow a gamma 

distribution, using non-parametric charts would increase the number of defective 

products due to the low number of out-of-control alarms. In other words, the non-

parametric control charts wrongly indicate an out-of-control process as an in-

control process. The ARL0 values which are presented in Tables 1 through 8 and 

their corresponding boxplots, which are presented in Figure 4 to 7, show (from 

left to right) Hotelling’s T2 control chart, sign chart, Wilcoxon chart, and the 

bootstrap chart. The normal, T, skew-normal, and gamma distributions are 

considered for two variables using alpha levels of 0.01 and 0.005. The size of 

subgroups used are n = 5, 10, the number of samples taken are m = 10, 20. The 

number of bootstrap replications is 2,000 and the number of Monte Carlo 

simulation iterations is 10,000. 
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Figure 4. The boxplots of ARL0 values for a bivariate normal distribution and Hotelling’s 
T2, Sign chart, Wilcoxon chart, and bootstrap chart 
 

 
 
Figure 5. The boxplots of ARL0 values for a bivariate T distribution and Hotelling’s T2, 
Sign chart, Wilcoxon chart, and bootstrap chart 
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Figure 6. The boxplots of ARL0 values for a bivariate skew-normal distribution and 
Hotelling’s T2, Sign chart, Wilcoxon chart, and bootstrap chart 
 

 
 

 
 
Figure 7. The boxplots of ARL0 values for a bivariate gamma distribution and Hotelling’s 
T2, Sign chart, Wilcoxon chart, and bootstrap chart 
 

 

The interquartile range (IQR) of Hotelling’s T2 chart and the Wilcoxon chart 

are bigger than the sign and bootstrap charts. The IQR of the bootstrap charts are 
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smaller than the other charts for all distributions. Furthermore, the number of 

outliers is smaller than the other charts. 

A Real Data Example 

Several factors are important in the production process of sugar from the sugar 

beet. The juice extracted from beets is converted to sugar after a number of 

chemical processes. Two of the most important variables in this process are the 

Brix number (the amount of solid particles in the juice solution) and pH of the 

solution; both affect the quality of the sugar obtained from the beet juice. A 

dataset obtained from Isfahan sugar factory contains the Brix number and pH of 

the diluted juice, recorded six times a day for 20 days. First, the normality of the 

data was tested by using the Mardia test (Mardia, 1980) and the probability value 

was obtained to be less than 0.0001, which strongly rejects the assumption of 

normality. 
 
 

 
 
Figure 8. Plot of bootstrap, Hotelling’s T2, and non-parametric control charts 
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The upper limit of bootstrap control chart was obtained using 2,000 

replications of the Brix and pH of the diluted juice, as well as the upper limits of 

Hotelling’s T2 and the sign and Wilcoxon non-parametric charts. The Hotelling’s 

T2, sign, and Wilcoxon statistics and the corresponding control limits are drawn in 

Figure 8. As Figure 8 shows, the control limit of the bootstrap chart is 

significantly different than the control limit of Hotelling’s T2 chart and the control 

limits of the non-parametric charts. The non-parametric statistics obtained from 

samples reveal that the samples are under control, while the Hotelling’s T2 chart 

show six samples to be out-of-control, and the bootstrap chart shows four samples 

to be out-of-control. 

Conclusion 

In general, the non-parametric charts are sensitive to subgroup size, that is, as the 

size of sample decreases, the non-parametric chart performance deteriorates. The 

non-parametric charts usually require a large amount of sample size subgroups 

while, in practice, the size of the sample is small. Hotelling’s T2 chart does not 

have the required efficiency in misspecified models. 

Here, work on the T2 chart was extended, especially pertaining to 

Phaladiganon et al. (2011), by considering n > 1 (when subgroup sample size is 

greater than one). A recently proposed non-parametric algorithm was described to 

be used in designing the T2 chart. This procedure enables practitioners to achieve 

the desired in-control performance using the available phase I data. However, the 

non-parametric bootstrap control chart, which is presented in this paper for 

Hotelling’s T2, statistic does not depend on the observations’ distribution. That is, 

if a non-parametric bootstrap is applied, the approach is robust against model 

misspecification. This fact was studied and presented in simulation studies. The 

bootstrap control chart performs fairly well when the size of subgroups is small. 
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