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INVITED ARTICLE 

Robust ANCOVA, Curvature, and the 
Curse of Dimensionality 

Rand Wilcox 
University of Southern California 

Los Angeles, CA 

 

 
There is a substantial collection of robust analysis of covariance (ANCOVA) methods that 

effectively deals with non-normality, unequal population slope parameters, outliers, and 

heteroscedasticity. Some are based on the usual linear model and others are based on 

smoothers (nonparametric regression estimators). However, extant results are limited to 

one or two covariates. A minor goal here is to extend a recently-proposed method, based 

on the usual linear model, to situations where there are up to six covariates. The usual linear 

model might provide a poor approximation of the true regression surface. The main goal is 

to suggest a method, based on a robust smoother, for dealing with curvature when there are 

three or four covariates. The results include perspectives on the curse of dimensionality. 

Perspectives on the use of a linear model versus a smoother are given. 

 

Keywords: Smoothers, Multiple covariates, Trimmed means, Yuen’s method, 

Heteroscedasticity 

 

Introduction 

Consider comparing two independent groups in a manner that takes into account p 

covariates. Let Xj be a vector of p covariates associated with the jth group (j = 1, 2), 

and let Yj be some outcome of interest. Let Mj(X) be some conditional measure of 

location associated with Yj given X = (X1,…, Xp), where Mj(X) is some unknown 

function. The goal is to test 

 

 ( ) ( )0 1 2: M MH =X X   (1) 
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for a collection of covariate points in a manner that controls the probability of one 

or more Type I errors. 

A common approach is to assume that, for the jth group (j = 1, 2), 

 

 ( )0 1 1 1λ , ,j j j j pj jp j jp jY X X X X   = + + + +K K   (2) 

 

where Xj1,…, Xjp are the p covariates associated with the jth group, β0j,…, βpj are 

unknown parameters, λ(Xj1,…, Xjp) is some unknown function that models 

heteroscedasticity, and ε is some appropriate error term. The classic analysis of 

covariance method (ANCOVA) assumes that βk1 = βk2 (k = 1,…, p), 

λ(Xj1,…, Xjp) ≡ 1 (within group homoscedasticity), and that εj has a normal 

distribution with mean zero and unknown variance 
2

j  with 
2 2

1 2 =  (between 

group homoscedasticity), in which case the goal is to test H0: β01 = β02. Moreover, 

least squares regression is used to estimate the unknown parameters. 

There are several serious concerns with this classic method. First, least 

squares regression is not robust (e.g., Staudte & Sheather, 1990; Maronna, Martin, 

& Yohai, 2006; Heritier, Cantoni, Copt, & Victoria-Feser, 2010; Hampel, Ronchetti, 

Rousseeuw, & Stahel, 1986; Huber & Ronchetti, 2009; Wilcox, 2017a). Second, 

violating either of the two homoscedasticity assumptions can negatively impact 

both the control over the probability of a Type I error and power. Third, non-

normality can negatively impact control over the probability of a Type I error and 

power as well. Fourth, outliers can destroy power and they can yield a highly 

misleading indication of the association within each group. A fifth limitation is that 

the slope parameters are assumed to be identical. Sixth, the linear model given by 

(2) might poorly approximate the true regression surface. There might be curvature 

that is poorly modeled by this linear model. There is now a substantial collection 

of techniques aimed at dealing with all of these concerns (e.g., Wilcox, 2017a, 

chapter 12).  

Presumably, the linear model given by (2) provides an adequate 

approximation of the regression surface in some situations. But there is 

considerable evidence that often this is not the case (e.g., Hastie & Tibsherani, 

1990; Wilcox, 2017a, b). Moreover, there are indications that, as the number of 

covariates increases, curvature becomes an increasing concern. One strategy is to 

include terms in (2) having the form 
a

kjX  for some choice for a, but it is known that 

this approach can be unsatisfactory even when p = 1 (e.g., Wilcox, 2017a). 

Numerous nonparametric regression estimators, generally known as smoothers, 
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have been derived with the goal of dealing with curvature in a reasonably flexible 

manner. From a robustness point of view, the running interval smoother has proven 

to have considerable practical value. However, in terms of ANCOVA, extant results 

are limited to p = 1 or 2 covariates. The main goal here is to suggest a method for 

dealing with ANCOVA via the running interval smoother with the focus on p = 3 

or 4 covariates. As will be seen, the method used here differs from the methods in 

Wilcox (2017a) in a manner to be described.  

A method in Wilcox (2017c), based on the linear model given by (2), is 

readily extended to more than two covariates. Another goal is to report results on 

this alternative approach and to provide some sense of its relative merits. The 

method does not assume homoscedasticity and it does not assume that the 

regression slopes for each group are identical. A practical issue is how much is 

gained or lost when using the running interval smoother instead. The paper also 

comments of the relative merits of using certain diagnostic tools aimed at justifying 

the use of (2). 

The Running Interval Smoother and Yuen’s Method 

Let (Yij, Xij) (i = 1,…, nj; j = 1, 2) be a random sample from the jth group, where Xij 

is a vector of p covariate values. Roughly, for the jth group, the running interval 

smoother determines a subset of the Xij vectors that are close to X, then a measure 

of location is computed based on the corresponding Yij values, which yields an 

estimate of Mj(X). Here, the distance of X from each Xij is based on a robust analog 

of Mahalanobis distance. To elaborate, let S be some covariance matrix. Then the 

distance between X and Xij is 

 

 ( ) ( )1 ,ij ij ijd −
= − −X X S X X   (3) 

 

where S is taken to be the minimum covariance determinant estimator (e.g., Wilcox, 

2017a, section 6.3.2). There are many other robust measures of covariance as well 

as robust measures of the distance of a point that are not based on some robust 

covariance matrix (Wilcox, 2017a, chapter 6). Perhaps one of these alternative 

choices offers a practical advantage for the situation at hand, but this issue goes 

beyond the scope of this paper. 
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Regarding the measure of location, here the focus is on the 20% trimmed 

mean. For the jth group (j = 1, 2), let 
( ) ( )1

j
j n j

Y Y K  denote the Yij values written in 

ascending order. For some 0 ≤ γ < 0.5, the γ-trimmed mean for the jth group is 

 
( ) ( )( )1

1

2 j j j
j g j n g j

j j

Y Y Y
n g + −

= + +
−

L   

 

where gj = [γnj] is the greatest integer less than or equal to γnj. A 20% trimmed 

mean corresponds to γ = 0.2, which has good efficiency relative to the sample mean 

under normality (Rosenberger & Gasko, 1983). Moreover, the sample 20% 

trimmed mean enjoys certain theoretical advantages. First, it has a reasonably high 

breakdown point, which refers to the proportion of values that must be altered to 

destroy it. Asymptotic results and simulations indicate that it substantially reduces 

concerns about the impact of skewed distributions on the probability of a Type I 

error (e.g., Wilcox, 2017a). This is not to suggest that 20% trimming is always the 

optimal choice; clearly this is not the case. It is a reasonable choice among the many 

robust estimators that might be used. 

For some constant f, generally known as the span, let Ij(X) = {i : dij ≤ f}. That 

is, Ij(X) indexes the points that are close to X. Then the estimate of Mj(X), M̂j(X), 

is the trimmed mean based on the Yij such that i ∈ Ij(X). For p = 1 or 2, a good 

choice for the span is often f = 0.8 or 1. This is not always the case, but these two 

values appear to perform reasonably well in general. Here, f = 1 is assumed unless 

stated otherwise. (The final section of this paper comments further on the choice 

for the span.) The main issue here is whether the ANCOVA method in the next 

section performs reasonably well in terms of controlling the probability of a Type 

I error. 

Another issue is the so-called curse of dimensionality: neighborhoods with a 

fixed number of points become less local as the dimensions increase (Bellman, 

1961). In practical terms, as p increases, what is the impact on the cardinality of 

Ij(X) for a given choice for the span, f ? Results related to this issue are described 

in a later section in conjunction with the ANCOVA method described below. 

Consider the goal of testing H0: μt1 = μt2, the hypothesis that two independent 

groups have identical trimmed means. For notational convenience, the method is 

described when ignoring the covariates. Derived by Yuen (1974), it is applied as 

follows: First, Winsorize the Yij values. That is, compute 
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( ) ( )

( ) ( )

( ) ( )

1 1

1

, if 

if 

if 

j j

j j j

j j j j

ij ijg g

ij ij ijg n g

ij ijn g n g

W Y Y Y

W Y Y Y Y

W Y Y Y

+ +

+ −

− −

= 

=  

= 

  

 

The Winsorized sample mean corresponding to group j is the mean based on the 

Winsorized values, and the Winsorized variance, 
2

wjs , is the usual sample variance, 

again based on the Winsorized values. 

Let hj = nj − 2gj. That is, hj is the number of observations left in the jth group 

after trimming. Let 

 

 
( )

( )

2

w1

1

j j

j

j j

n s
d

h h

−
=

−
  

 

Yuen’s test statistic is 

 

 1 2
y

1 2

Y Y
T

d d

−
=

+
  

 

The null distribution is taken to be a Student’s t distribution with degrees of 

freedom 

 

 
( )

2

1 2ˆ
d d

D


+
=   

 

where 

 

 
2 2

1 2

1 2

d d
D

h h
= +   

Description of the ANCOVA Method 

Let Nj(X) be the cardinality of the set Ij(X). The basic idea is that if both N1(X) and 

N2(X) are reasonably large, Yuen’s (1974) method for comparing trimmed means, 
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based on the Yij such that i ∈ Ij(X), will generally provide reasonably adequate 

control over the Type I error probability when γ = 0.2. Following Wilcox (2017a), 

N1(X) and N2(X) are considered reasonably large if both are greater than or equal 

to 12. But there remains the issue of choosing which covariate points to use. If there 

are covariate points that have a particular substantive interest, and if the number of 

such points is relatively small, one can simply use the method in Wilcox (2017a, 

section 7.4.1) to control the probability of one or more Type I errors. But in various 

situations, such as an exploratory study, it might not be obvious which covariate 

points to use. Several strategies for choosing the covariate points are described in 

Wilcox (2017a). For example, determine the deepest half among the cloud of 

covariate points for the first group, which was the approach in Wilcox (2017c). For 

each such X, if both N1(X) and N2(X) are greater than or equal to 12, perform 

Yuen’s test. However, the details are not provided because here a different strategy 

is used: perform Yuen’s test for each Xij such that both N1(Xi1) and N2(Xi2) are 

greater than or equal to 12. 

Consider how to control family wise Type I error rate (FWE), meaning the 

probability of one or more Type I errors. Let C be the number of covariate points 

such that both N1(Xi1) and N1(Xi2) are greater than or equal to 12. So, C reflects the 

number of hypotheses to be tested. If the goal is to perform the C tests so that the 

probability of one or more Type I errors is approximately α, a simple strategy is to 

reject the null hypothesis if |Ty| ≥ q, where q is the 1 − α quantile of Studentized 

maximum modulus distribution. However, when the number of tests is relatively 

large, this approach becomes too conservative due to the strong association among 

the C tests. The probability of one or more Type I errors can be substantially smaller 

than the nominal α level, which in turn can negatively impact power. 

Results in Wilcox (2017c) suggest how to proceed when C > 25. Let pc 

(c = 1,…, C) be the p-value associated with the cth test and let pm = min(p1,…, pC). 

The basic idea is to determine the α quantile of pm, pa, when all C hypotheses are 

true and when there is no association between Y and each of the p covariates. So, 

the probability of rejecting one or more hypotheses, when all C hypotheses are true, 

is 1 − α. That is, if any hypothesis is rejected when pc ≤ pa, FWE will be α. But this 

leaves open the issue of well FWE is controlled when there is an association, an 

issue that is studied via simulations below. 

To be more precise, consider the case p = 3. The α quantile of pm was 

estimated as follows: Given p and n = n1 = n2, data were generated via (2) when all 

of the regression parameters are zero, the covariate values are generated from 

standard normal distributions all having correlation zero, λ(Xj1,…, Xjp) ≡ 1, and 

when ε has a standard normal distribution. Then pm was determined among the C 
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tests that were performed. This process was repeated 2000 times yielding 2000 pm 

values. Next, a quantile regression smoother (Wilcox, 2017a, section 11.5.6) was 

used to estimate the regression line for predicting pα, the α quantile of the 

distribution of pm, given C, when α = 0.05 (the method is based on the running 

interval smoother used in conjunction with the quantile estimator derived by Harrell 

& Davis, 1982). That is, pa is the critical p-value when testing at the 0.05 level. The 

result suggested using a linear model for estimating pa, given C, when 

25 < C ≤ 100 and a different linear model when C > 100. This was done via the 

quantile regression estimator derived by Koenker and Bassett (1978). The results 

suggested estimating pa, when α = 0.05, with 0.0806452604/C − 0.0002461736 

when 25 < C ≤ 100. For C > 100, use 6.586286e-02/C + 4.137143e-05. In effect, 

this approach improves upon an approach based on the Studentized maximum 

modulus distribution by taking advantage of the strong association among the tests 

that are performed. This will be called method SM henceforth. 

To add perspective, it is noted that with p = 3, f = 1, and n = 50, it was 

estimated that there is only a 0.003 probability that one or more tests would be 

performed. That is, due the curse of dimensionality, both N1(Xi1) and N1(Xi2) are 

typically less than 12. In practical terms, sample sizes greater than 50 are needed 

when dealing with curvature via the method used here. Increasing n to 80, this 

probability was estimated to be 0.612, and for n = 150 the estimate was 0.9995. For 

n = 100 the values of C ranged between zero and 27, with a median value of 9. For 

n = 150 they ranged between 18 and 68 with a median value of 47. With p = 4 and 

n = 150, the probability of performing one or more tests was estimated to be 0.23 

with C ranging between 0 and 8. So without a fairly large sample size, large portions 

of the regression surfaces cannot be compared, which might result in missing 

important differences. 

A Method Based on the Linear Model 

The method above is readily modified for the situation where the linear model given 

by (2) is assumed to be true. In essence, the method described here is a 

generalization of the method in Wilcox (2017a, section 12.1.3), which is focused 

on p = 2 covariates only. 

The method begins by pooling the covariate points for both groups and 

determining the deepest half of these points. There are various ways this might be 

done. Here projection distances are used. Roughly, projection distances are 

computed as follows: First determine the center of the data cloud. The marginal 

medians are used here, but there are several other robust location estimators that 
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might be used (e.g., Wilcox, 2017a, section 6.3). Next, project all of the covariate 

points onto the line connecting the kth covariate point and the center of data cloud. 

Then for each of the projected points, compute its distance from the center. This 

process is repeated for each k, and the projection distance of ith point is taken to be 

its maximum distance among all of the projections. For a detailed description of the 

calculations, see Wilcox (2017a, section 6.2.5). If Di is the distance of the ith 

covariate point from the center of data cloud, its depth is taken to be 1 / (Di + 1). 

Here, the R function pdepth, stored in the R package WRS, is used to compute 

projection depths. So here, the deepest half of the pooled covariate points to the 

center of the data cloud is used. 

Consider the goal of testing (1). Compute some robust estimate of the 

regression parameters in (2), which yields an estimate of Mj(X), say M̃j(X), for any 

X of interest. Here, the robust MM-estimator (Yohai, 1987) is used. The standard 

error of M̃j(X) is estimated using a basic bootstrap method. For fixed j generate a 

bootstrap sample by resampling with replacement nj vectors from (Yij, Xij). Based 

on this bootstrap sample, estimate Mj(X) yielding say ( )M j


X% . Repeat this process 

B times yielding ( )M jb


X%  (b = 1,…, B). Then an estimate of the squared standard 

error of M̃j(X) is 

 

 ( ) ( )( )
2

2 * *1
M M

1
jb jS

B
= −

−
 X X%   

 

where ( ) ( )M Mj jb B =X X% . Here, B = 100, which seems to suffice in a range 

of situations (e.g., Wilcox, 2017a). An appropriate test statistic for testing (1) is 

 

 
( ) ( )1 2M M   

V
S

−
=

X X% %
  

 

Simulations revealed a limitation associated with S: with small sample sizes, 

it is severely biased. More precisely, the actual standard error can be substantially 

smaller than indicated by S. For p = 2 covariates the bias becomes negligible when 

the sample size is at least 50. For p = 3, 4, 5, and 6 covariates, a sample size of 100 

or more is required. 

Let D denote the number of unique points among the deepest half of the 

covariate points. If all n1 + n2 covariate points are unique, then D = (n1 + n2) / 2. 

There remains the issue of controlling the probability of one or more Type I errors 
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among all D tests that are performed. This is done by proceeding in a manner similar 

to the approach in the previous section. Momentarily focus on the case where all of 

the slope parameters are zero, there is homoscedasticity, and the error term has a 

standard normal distribution. Generate data for both groups and compute a p-value 

assuming that V has a standard normal distribution. This is done for each covariate 

point of interest yielding D p-values. Next, determine the smallest p-value. This 

process was repeated 2000 times for sample sizes 50, 100, 500, and 800; and for 

p = 2, 3, 4, 5, and 6. This yields an estimate of the null distribution of the smallest 

p-value among the D tests that are performed. 

For p = 2, the critical 0.05 p-value changes very little as the sample size 

increases, provided the smallest sample size is at least 50. In particular, if (1) is 

rejected whenever a p-value is less than or equal to 0.00615847, the probability of 

one or more Type I errors, when all D hypotheses are true, is approximately 0.05. 

For sample sizes less than 50, this probability can be substantially smaller than 0.05 

due to the bias associated with S. For p = 2, 3, 4, 5, and 6, the critical 0.05 p-values 

are 0.002856423, 0.00196, 0.001960793, and 0.001120947, respectively. Now the 

probability of one or more Type I errors is approximately 0.05 provided the smallest 

sample size is at least 100. More generally, these critical p-values appear to be 

approximately correct when the number of tests is greater than 25. Otherwise, using 

a critical value based on the Studentized maximum modulus distribution, with 

infinite degrees of freedom, seems preferable. Again, with smaller sample sizes, the 

probability of one or more Type I errors can be substantially smaller than 0.05 due 

to the bias associated with S. The method in this section is called method LIN 

henceforth. 

Simulation Results 

Simulations were used as a partial check on the ability of the methods in the 

preceding sections to control the family wise error (FWE) rate when testing at the 

0.05 level. First the focus is on method SM and then results for method LIN are 

reported. Four types of distributions are considered for the error term: normal, 

symmetric and heavy-tailed (roughly meaning that outliers tend to be common), 

asymmetric and relatively light-tailed, and asymmetric and relatively heavy-tailed. 

More specifically, data are generated from g-and-h distributions (Hoaglin, 1985). 

If Z has a standard normal distribution, then by definition 
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( )
( )

( )

2

2

exp 1
exp 2 , if 0

exp 2 , if 0

gZ
V hZ g

g

V Z hZ g

−
= 

= =

  

 

has a g-and-h distribution where g and h are parameters that determine the first four 

moments. The four distributions used here were the standard normal (g = h = 0), a 

symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an asymmetric distribution 

with relatively light tails (h = 0.0, g = 0.2), and an asymmetric distribution with 

heavy tails (g = h = 0.2). Table 1 shows the skewness (κ1) and kurtosis (κ2) for each 

distribution. Hoaglin (1985) summarizes additional properties of the g-and-h 

distributions. As for the independent variables, they were generated from a bivariate 

normal distribution with correlation zero or 0.6. 

Data were generated from the model 

 

 ( )1

1

λ , ,
p

a

j j jp

j

Y X X X 
=

= + K   (4) 

 

where a = 1 or 2, p = 3 or 4, and ε has one of the g-and-h distributions shown in 

Table 1. Two choices for λ(Xj1,…, Xjp) were used: λ(Xj1,…, Xjp) ≡ 1 

(homoscedasticity) and λ(Xj1,…, Xjp) = |Xj1 + Xj2| + 1 (heteroscedasticity). The 

results are reported in Table 2 based on 2000 replications, where the column headed 

by HOM are the results when there is homoscedasticity and HET indicates 

heteroscedasticity. The common correlation is zero; results when the common 

correlation is 0.6 did not reveal any additional insights. 

Although the seriousness of a Type I error can depend on the situation, 

Bradley (1978) has suggested that as a general guide, when testing at the 0.05 level, 

the actual level should be between 0.025 and 0.075. As indicated in Table 2, all of 

the estimated Type I error probabilities fall in this range. 
 
 
Table 1. Some properties of the g-and-h distribution 
 

g h κ1 κ2 

0.00 0.00 0.00 3.00 

0.00 0.20 0.00 21.46 

0.20 0.00 0.61 3.68 

0.20 0.20 2.81 155.98 
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Table 2. Estimates of FWE when using SM and testing at the 0.05 level 
 

g h n p a HOM HET 

0.0 0.0 80 3 1 0.044 0.041 

0.0 0.0 80 3 2 0.047 0.041 

0.0 0.2 80 3 1 0.042 0.038 

0.0 0.2 80 3 2 0.043 0.036 

0.2 0.0 80 3 1 0.046 0.040 

0.2 0.0 80 3 2 0.048 0.040 

0.2 0.2 80 3 1 0.042 0.037 

0.2 0.2 80 3 2 0.043 0.034 

0.0 0.0 150 3 1 0.051 0.053 

0.0 0.0 150 3 2 0.050 0.046 

0.0 0.2 150 3 1 0.045 0.040 

0.0 0.2 150 3 2 0.038 0.035 

0.2 0.0 150 3 1 0.054 0.054 

0.2 0.0 150 3 2 0.046 0.046 

0.2 0.2 150 3 1 0.042 0.036 

0.2 0.2 150 3 2 0.040 0.034 

0.0 0.0 200 4 1 0.044 0.039 

0.0 0.0 200 4 2 0.047 0.039 

0.0 0.2 200 4 1 0.039 0.031 

0.0 0.2 200 4 2 0.037 0.028 

0.2 0.0 200 4 1 0.040 0.038 

0.2 0.0 200 4 2 0.043 0.035 

0.2 0.2 200 4 1 0.034 0.028 

0.2 0.2 200 4 2 0.037 0.029 

 
 
Table 3. Estimates of FWE when using LIN and testing at the 0.05 level 
 

g h n p HOM HET 

0.0 0.0 100 3 0.046 0.051 

0.0 0.2 100 3 0.033 0.041 

0.2 0.0 100 3 0.040 0.043 

0.2 0.2 100 3 0.030 0.039 

0.0 0.0 200 3 0.042 0.044 

0.0 0.2 200 3 0.041 0.036 

0.2 0.0 200 3 0.043 0.045 

0.2 0.2 200 3 0.040 0.046 

0.0 0.0 100 6 0.048 0.040 

0.0 0.2 100 6 0.033 0.034 

0.2 0.0 100 6 0.050 0.038 

0.2 0.2 100 6 0.033 0.028 

0.0 0.0 200 6 0.052 0.057 

0.0 0.2 200 6 0.046 0.050 

0.2 0.0 200 6 0.054 0.054 

0.2 0.2 200 6 0.036 0.048 
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Table 4. Estimated power assuming a linear model 
 

g h n p SM LIN 

0.0 0.0 100 3 0.206 0.490 

0.0 0.2 100 3 0.170 0.438 

0.2 0.0 100 3 0.202 0.485 

0.2 0.2 100 3 0.169 0.440 

0.0 0.0 200 4 0.208 0.804 

0.0 0.2 200 4 0.168 0.786 

0.2 0.0 200 4 0.204 0.804 

0.2 0.2 200 4 0.165 0.785 

 
 

Now consider method LIN in the previous section. Simulations were run for 

the same distributions used in connection with method SM. Estimates of the FWE 

are shown in Table 3 for p = 2 and 6 when all correlations among the covariates are 

zero. Again, the column headed by HOM indicates results when the error term is 

homoscedastic and HET indicates the heteroscedastic case. Very similar results 

were obtained when all correlations are equal to 0.6. As can be seen, all indications 

are that method LIN performs reasonably well based on Bradley’s criterion. 

Next, the power of methods SM and LIN are compared when the linear model 

is true and there is a shift in location. More precisely, for the first group data were 

generated based on (2) where all of the slope parameters are equal to one, the 

intercept is zero, there is homoscedasticity, the error term has a standard normal 

distribution, and the independent variables have a multivariate normal distribution 

with all correlations equal to zero. Data for the second group were generated in 

exactly the same manner only the intercept was taken to be δ. Table 4 shows the 

estimated power when δ = 0.5. Not surprisingly, LIN always has more power. Table 

4 illustrates that the increase in power can be substantial. 

When the linear model is wrong, the reverse can happen. Consider, for 

example, a situation where p = 4, n = 200, all of the slopes for the first group are 

zero, otherwise the situation is the same as in Table 4. Now imagine that for the 

second group, 
2

1 1Y X = + − . Method SM was estimated to have power 0.490 

versus 0.174 for method LIN. If instead for the second group 
2 2

1 2 2Y X X = + + − , 

the power estimates for methods SM and LIN are now 0.902 and 0.317, respectively. 

A natural strategy is to consider diagnostic tools for choosing between SM 

and LIN. For example, one might test the hypothesis that the linear model given by 

(2) is correct. A robust method for accomplishing this goal is described in Wilcox 

(2017a, section 11.6.1). But it is unclear when this method will have enough power 

to detect a situation where the departure from the linear model is enough to create 
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practical concerns. Another approach is to use the diagnostic strategy derived by 

Berk and Booth (1995) for detecting curvature. If curvature does not appear to be 

an issue, this would seem to suggest using method LIN. Again, it is unclear when 

this approach is able to detect a situation where power, for example, will be higher 

using SM rather than LIN. A third possibility is to plot the predicted value of Y 

using the linear model versus the predicted values using method SM. If the plotted 

points appear to be centered around a line having slope one and intercept zero, this 

would seem to suggest that there is little or no advantage to using method SM. The 

next section illustrates that all three of these strategies can be unsatisfactory in the 

sense that they appear to support the use of method LIN, yet method SM yields 

significant results while method LIN does not. 

Illustration 

Methods SM and LIN are illustrated with data from the Well Elderly 2 study (Clark 

et al., 2012), which was generally designed to assess the effectiveness of an 

intervention program aimed at improving the physical and emotional wellbeing of 

older adults. Depressive symptoms (CESD) are compared to a control group taking 

into account three covariates: measures of life (LSIZ) satisfaction, meaningful 

activities (MAPA), and stress. The sample size for the control group is 232 and 141 

for the experimental group. 

Consider method SM. It performs comparisons for a total of 85 covariate 

points, five of which were significant. For the control group, the median values for 

LSIZ, MAPA, and stress were 18, 32, and 4, respectively. The corresponding lower 

quartiles were 14, 28, and 2; and the upper quartiles were 21, 36, and 6. For the 

experimental group, the medians were 18, 32, and 4. The lower quartiles were 14, 

28, and 2; and the upper quartiles were 22, 36, and 6. The covariate points where a 

significant difference was found were (19, 38, 1), (17, 34, 1), (18, 35, 1), 

(22, 40, 0), and (21, 38, 0). So significant differences are found when LSIZ and 

MAPA are relatively high among the participants, and when stress is relatively low. 

Now consider the linear model given by (2). The next goal is to illustrate some 

issues and concerns again using the Well Elderly 2 data. For all of the analyses 

reported here, leverage points (covariate points flagged as outliers) are removed. 

Testing the hypothesis that the model given by (2) is correct, when the MM-

estimator is used, the p-value for the control group is 0.63 and for the experimental 

group it is 0.19. The R function lintest was used; see Wilcox (2017a) for details. 

But as previously noted, it is unclear whether power is sufficiently high to detect a 

departure from the linear model that creates practical concerns. If the MM-
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estimator is replaced by the Theil (1950) and Sen (1968) estimator, for the 

experimental group there is now a significant result at the 0.05 level: the p-value is 

0.046. So, the choice of which regression estimator is used can matter. However, 

one might argue that even if there is some departure from the linear model, perhaps 

it is of little or no consequence. As a partial check on this possibility, Figure 1 

shows the smooth for predicting M̃2(X), the fitted values based on the linear model, 

versus M̂2(X), the fitted values based on the running interval smoother. The solid 

line is the predicted value of M̂2(X) given M̃2(X). The dashed line is a line having 

slope one and intercept zero. So, the plot suggests that there is little practical 

difference between the two methods. Partial residual plots (Berk & Booth, 1995) 

also suggest that assuming a liner model provides a reasonably accurate 

approximation of the regression surface. The R function prplot, described in Wilcox 

(2017a, section 14.4.7), was used. 
 
 

 
 
Figure 1. The x-axis corresponds to M̃2(X), the estimate of CESD based on the linear 
model; the y-axis corresponds to given M̂2(X), the estimate of CESD based on the 
running interval smoother; the solid line is the regression line for predicting M̃2(X) given 
M̂2(X); the dashed line has slope one and intercept zero; so, the plot provides some 
indication of the extent the two regression estimators give similar results. 
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Based on the results just described, an argument might be made that assuming 

a linear model is reasonable with the hope that this will yield more power. However, 

for the situation at hand, method LIN does not reject for any of 161 covariate points 

used. If the analysis is limited to the same covariate points used by method SM, 

again no significant results are obtained. 

Conclusion 

An obvious advantage of method LIN is that it is less restrictive in terms of the 

number of covariates and the sample sizes that can be accommodated. And there is 

some possibility that it can have substantially more power when the linear model is 

true. But this comes at a price. In essence, LIN ignores any issues related to the 

curse of dimensionality. Moreover, even if diagnostic tools suggest that the linear 

model provides a reasonable approximation of the regression surface, it is possible 

for method SM to reject when method LIN does not, as was illustrated in the final 

section. For the moment, the suggestion is to use SM if possible. If there are 

indications that a linear model is reasonable, also use method LIN, as might be done 

in an exploratory study. 

Another issue is the span used by method SM. While the choice used here 

appears to be reasonable in general, if curvature is sufficiently severe, a smaller 

choice for the span can be required to get a reasonable approximation of the 

regression surface. Diagnostic tools for detecting such situations are in need of 

further development. The point here is that in the context of ANCOVA, reducing 

the span exacerbates concerns associated with the curse of dimensionality; much 

larger sample sizes are needed than those indicated here. 

The R function ancdetM4 applies method SM and ancJNPVAL applies 

method LIN. Both of these functions have been added to the file Rallfun-v35, which 

can be downloaded from https://dornsife.usc.edu/cf/labs/wilcox/wilcox-faculty-

display.cfm. Both functions are also available in the R package WRS, which is 

located at https://github.com/nicebread/WRS. 
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